Значення хімії у розв’язанні енергетичної проблеми

Основні етапи розвитку хімії: відкриття явища радіоактивності (Беккерель), електрона (Томсон), електронної теорії хімічного зв'язку (Льюіс та Ленгмюр), Х-променів, отримання лінійних полімерів. Розгляд внеску науки у розв'язання енергетичної проблеми.

Рубрика Химия
Вид реферат
Язык украинский
Дата добавления 28.11.2009
Размер файла 13,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Зміст

1 Розвиток хімії та зростання її ролі в сучасному житті

2 Значення хімії у розв'язанні енергетичної проблеми

3 Вплив хімії на природне довкілля

Список використаної літератури

1. Розвиток хімії та зростання її ролі в сучасному житті

Хімія, наука про склад речовин і їх перетворення, починається з відкриття людиною здатності вогню змінювати природні матеріали. Люди уміли виплавляти мідь і бронзу, обпалювати глиняні вироби, отримувати скло ще за 4000 років до н.е. З 7 в. до н.е. Єгипет і Месопотамія стали центрами виробництва барвників; там же отримували в чистому вигляді золото, срібло і інші метали. Приблизно з 1500 до 350 до н.е. для виробництва барвників використали перегонку, а метали виплавляли з руд, змішуючи їх з деревним вугіллям і продуваючи через суміш, що горить - повітря. Самим процедурам перетворення природних матеріалів давали містичне значення.

З розвитком фізичних теорій про будову атомів і молекул були переосмислені такі старі поняття, як хімічна спорідненість і трансмутація. Виникли нові уявлення про будову матерії.

У 1896 Антуан Анрі Беккерель (1852 - 1908) відкрив явище радіоактивності, виявивши спонтанне випущення солями урану субатомних часток, а через два роки дружина Пьера Кюрі (1859 - 1906) і Марія Кюрі (1867 -1934) виділила два радіоактивних елементи: полоній і радій. Відкриття Фредеріка Содді (1877 - 1956), що показало, що при радіоактивному розпаді відбувається перетворення одних речовин в інші, дало нове значення тому, що древні називали трансмутація.

У 1897 Джозеф Джон Томсон (1856 - 1940) відкрив електрон, заряд якого з високою точністю виміряв в 1909 Роберт Міллікен (1868 - 1953). У 1911 Ернст Резерфорд (1871 - 1937), виходячи з електронної концепції Томсона, запропонував модель атома: в центрі атома знаходиться позитивно заряджене ядро, а навколо нього обертаються негативно заряджені електрони. У 1913 Нільс Бор (1885 - 1962), використовуючи принципи квантової механіки, показав, що електрони можуть знаходитися не на будь-яких, а на суворо визначених орбітах. Планетарна квантова модель атома Резерфорда примусила вчених по-новому підійти до пояснення будови і властивостей хімічних сполук.

Німецький фізик Вальтер Коссель (1888 - 1956) передбачив, що хімічні властивості атома визначаються числом електронів на його зовнішній оболонці, а утворення хімічних зв'язків зумовлюється в основному силами електростатичної взаємодії. Американські вчені Гілберт Ньютон Льюїс (1875 - 1946) і Ірвінг Ленгмюр (1881 - 1957) сформулювали електронну теорію хімічного зв'язку. Відповідно до цих уявлень молекули неорганічних солей стабілізуються електростатичними взаємодіями між іонами, що входять до їх складу, які утворяться при переході електронів від одного елемента до іншого (іонний зв'язок).

Всі нові уявлення про будову речовини могли формуватися тільки внаслідок розвитку у 20 ст. експериментальної техніки і появи нових методів дослідження. Відкриття в 1895 Вільгельмом Конрадом Рентгеном (1845 - 1923) Х-променів послужило основою для створення згодом методу рентгенівської кристалографії, що дозволяє визначати структуру молекул по картині дифракції рентгенівських променів на кристалах. За допомогою цього методу була розшифрована структура складних органічних сполук інсуліну, ДНК, гемоглобіну і інш. З створенням атомної теорії з'явилися нові могутні спектроскопічні методи, що дають інформацію про будову атомів і молекул.

Біохімія. Ця наукова дисципліна, що займається вивченням хімічних властивостей біологічних речовин, спочатку була одним з розділів органічної хімії. У самостійну область вона виділилася в останнє десятиріччя 20 ст. внаслідок досліджень хімічних властивостей речовин рослинного і тваринного походження. Одним з перших біохіміків був німецький вчений Еміль Фішер (1852 - 1919). Він синтезував такі речовини, як кофеїн, фенобарбітал, глюкозу, вніс великий внесок в науку про ферменти білкових каталізаторів, уперше виділених в 1878. Формуванню біохімії як науки сприяло створення нових аналітичних методів. У 1923 шведський хімік Теодор Сведберг (1884 - 1971) сконструював ультрацентрифугу і розробив новий метод визначення молекулярної маси макромолекул, головним чином білків. Асистент Сведберга Арне Тізеліус (1902 - 1971) в тому ж році створив метод електрофорезу більш довершений метод розділення гігантських молекул, заснований на відмінності в швидкості міграції заряджених молекул в електричному полі. У 1944 англійські хіміки Арчер Мартін ( 1910) і Річард Синг ( 1914) запропонували новий варіант методу: вони замінили трубку з адсорбентом на фільтрувальний папір. Так з'явилася паперова хроматографія один з найбільш поширених в хімії, біології і медицині аналітичних методів, за допомогою якого в кінці 1940х початку 1950-х років вдалося проаналізувати суміші амінокислот, що виходять при розщепленні різних білків, і визначити склад білків. Внаслідок копітких досліджень був встановлений порядок розташування амінокислот в молекулі інсуліну (Фредерік Сенгер, 1953), а до 1964 цей білок вдалося синтезувати. Зараз методами біохімічного синтезу отримують багато гормонів лікарських засобів, вітамінів.

Промислова хімія. Ймовірно, найбільш важливим етапом в розвитку сучасної хімії було створення у 19 в. різних дослідницьких центрів, що займалися, крім фундаментальних, також прикладними дослідженнями. На початку 20 ст. ряд промислових корпорацій створили перші промислові дослідницькі лабораторії. У США в 1903 була заснована хімічна лабораторія "Дюпон", а в 1925 лабораторія фірми "Белл". Після відкриття і синтезу в 1940-х роках пеніциліну, а потім і інших антибіотиків з'явилися великі фармацевтичні фірми, в яких працювали професійні хіміки. Велике прикладне значення мали їх дослідження в області хімії високомолекулярних сполук. Одним з її основоположників був німецький хімік Герман Штаудінгер (1881 - 1965), що розробив теорію будови полімерів. Інтенсивні пошуки способів отримання лінійних полімерів привели в 1953 до синтезу поліетилену (Карл Циглер, 1898 - 1973), а потім інших полімерів із заданими властивостями. Сьогодні виробництво полімерів найбільша галузь хімічної промисловості.

2. Значення хімії у розв'язанні енергетичної проблеми

Забезпеченість енергією є найважливішою умовою соціально-економічного розвитку будь-якої країни, її промисловості, транспорту, сільського господарства, сфер культури і побуту.

Особливо багато енергії споживає хімічна промисловість. Енергія витрачається на здійснення ендотермічних процесів, на транспортування матеріалів, кришіння та здрібнення твердих речовин, фільтрування, стиснення газів тощо. Значних затрат енергії потребують виробництва карбіду кальцію, фосфору, аміаку, поліетилену, ізопрену, стиролу тощо. Хімічні виробництва разом із нафтохімічними є найенергоємнішими галузями індустрії. Випускаючи майже 7 % промислової продукції, вони споживають у межах 13--20% енергії, що витрачається всією промисловістю.

Джерелами енергії найчастіше є традиційні невідновні природні ресурси -- вугілля, нафта, природний газ, торф, сланці. Останнім часом вони дуже швидко виснажуються. Особливо прискореними темпами зменшуються запаси нафти і природного газу, а вони обмежені й непоправні. Не дивно, що це породжує енергетичну проблему.

У різних країнах енергетичну проблему розв'язують по-різному, проте всюди в її розв'язання значний внесок робить хімія. Так, хіміки вважають, що й у майбутньому (приблизно ще років 25--30) нафта збереже свою позицію лідера. Але її внесок в енергоресурси помітно скоротиться і буде компенсуватися зрослим внеском вугілля, газу, водневої енергетики ядерного пального, енергії Сонця, енергії земних глибин та інших видів відновної енергії, включаючи біоенергетику.

Уже сьогодні хіміки турбуються про максимальне і комплексне енерготехнологічне використання паливних ресурсів -- зменшення втрат теплоти у навколишнє середовище, вторинне використання теплоти, максимальне застосування місцевих паливних ресурсів тощо.

Розроблено хімічні методи вилучення в'язкої нафти (містить високомолекулярні вуглеводні), значна частина якої залишається у підземних коморах. Для збільшення виходу нафти у воду, яку закачують у пласт, додають поверхнево-активні речовини, їхні молекули розміщуються на межі нафта--вода, що збільшує рухливість нафти.

На майбутнє поповнення паливних ресурсів поєднують із раціональною переробкою вугілля. Наприклад, подрібнене вугілля змішується з нафтою, на добуту пасту діють воднем під тиском. При цьому утворюється суміш вуглеводнів. На добування 1 т штучного бензину витрачається близько 1 т вугілля і 1500 м водню. Поки що штучний бензин дорожчий від добутого з нафти, проте важлива принципова можливість його добування.

Дуже перспективною видається воднева енергетика, що ґрунтується на спалюванні водню, під час якого шкідливі викиди не виникають. Проте для її розвитку потрібно розв'язати низку завдань, поєднаних зі зниженням собівартості водню, створенням надійних засобів його зберігання та транспортування тощо. Якщо ці завдання будуть розв'язані, водень буде широко використовуватися в авіації, водному і наземному транспорті, промисловому і сільськогосподарському виробництвах.

Невичерпні можливості містить ядерна енергетика, її розвиток для виробництва електроенергії та теплоти дає змогу вивільнити значну кількість органічного палива. Тут перед хіміками стоїть завдання створити комплексні технологічні системи покриття енергетичних витрат, що відбуваються під час здійснення ендотермічних реакцій, за допомогою ядерної енергії.

Великі надії покладаються на використання сонячної радіації (геліоенергетика). У Криму діють сонячні батареї, фотогальванічні елементи яких перетворюють сонячне світло в електрику. Для опріснення води й опалення житла широко використовуються сонячні термоустановки, що перетворюють сонячну енергію на теплоту. Сонячні батареї вже давно застосовуються у навігаційних спорудах і на космічних кораблях На відміну від ядерної вартість енергії, яку добувають за допомогою сонячних батарей, постійно знижується.

Для виготовлення сонячних батарей головним напівпровідниковим матеріалом є силіцій та сполуки силіцію. Нині хіміки працюють над розробкою нових матеріалів-перетворювачів енергії. Це можуть бути різні системи солей як накопичувачі енергії. Подальші успіхи геліоенергетики залежать від тих матеріалів, які запропонують хіміки для перетворення енергії.

У новому тисячолітті приріст виробництва електроенергії буде відбуватися за рахунок розвитку сонячної енергетики, а також метанового бродіння побутових відходів та інших нетрадиційних джерел добування енергії.

3. Вплив хімії на природне довкілля

Хімічна промисловість разом з користю приносить і багато шкоди, особливо це стосується забруднення навколишнього середовища. Найбільше потерпають атмосферний басейн, водна система, грунти. Однак при розумному підході негативний вплив на довкілля можна максимально зменшити. При цьому ще хімічна промисловість може боротися із забрудненням довкілля, впроваджуючи різноманітні утилізаційні технології тощо.

Отже, роль хімії у житті людини досить велика, її важко переоцінити. А сучасний прогрес та втілення інноваційних заходів на виробництвах практично у всіх галузях промисловості без хімії майже неможливий!

Список використаної літератури

1. Енциклопедія юного хіміка. - М., 1998.

2. Основи теоретичної хімії. Посібник. - М., 2000.


Подобные документы

  • Значення хімії у розв'язанні сировинної проблеми. Значення хімії у створенні нових матеріалів. Неметалічні матеріали, біотехнології. Основні напрямки досліджень. Сфери застосування сучасних нанотехнологій. Напрями розвитку хімічного комплексу.

    презентация [14,0 M], добавлен 27.04.2016

  • Місце хімії серед наук про природу, зумовлене предметом її вивчення й тісними зв'язками з іншими науками. Роль хімії в народному господарстві, у побуті, її внесок у створення різноманітних матеріалів. Значення хімії у розв’язанні сировинної проблеми.

    презентация [1,8 M], добавлен 04.02.2014

  • Практична користь хімічної науки для виробництва сировини. Засоби, що використовуються хімією для розвідування і застосування дешевої сировини і видів альтернативних сировинних матеріалів. Специфіка застосування деревини і продуктів її переробки.

    реферат [283,5 K], добавлен 28.04.2010

  • Предмет, задачі, значення і основні поняття аналітичної хімії. Система державної служби аналітичного контролю, його організація в державі. Способи визначення хімічного складу речовини. Класифікація методів аналізу. Напрями розвитку аналітичної хімії.

    реферат [19,8 K], добавлен 15.06.2009

  • Дослідження значення хімії - однієї з наук про природу, що вивчає молекулярно-атомні перетворення речовин. Основне призначення та галузі застосування хімії: сільське господарство, харчова промисловість, охорона здоров'я людей. Використання хімії у побуті.

    презентация [240,5 K], добавлен 27.04.2011

  • Значення хімії для розуміння наукової картини світу. Склад хімічних речовин. Виокремлення найважливіших галузей хімії: органічної, еорганічної, аналітичної та фізичної. Розвиток хімічної технології. Діалектико-матеріалістичне сприйняття природи.

    презентация [7,9 M], добавлен 12.05.2015

  • Хімічний зв’язок між природними ресурсами. Значення хімічних процесів у природі. Роль хімії у створенні нових матеріалів. Вивчення поняття синтетичної органічної та неорганічної речовини, хімічної реакції. Застосування хімії в усіх галузях промисловості.

    презентация [980,0 K], добавлен 13.12.2012

  • Аналітична хімія — розділ хімії, що займається визначенням хімічного складу речовини. Загальна характеристика металів. Хроматографічний метод аналізу. Ретельний опис обладнання, реактивів та посуду для хімічного аналізу. Методика виявлення катіонів.

    курсовая работа [528,6 K], добавлен 27.04.2009

  • Хімія в розвитку матеріального виробництва. Теоретичне природознавство. Питання філософського світогляду. Причинни зв’язків між предметами і явищами. Три великі відкриття природознавства XIX століття. Формування діалектико-матеріалістичного світогляду.

    реферат [28,5 K], добавлен 22.10.2008

  • Хімічний зв’язок та будова макромолекул. Лінійні аморфні полімери та неорганічні наповнювачі. Основні геометричні константи макромолекул лінійних аморфних полімерів. Макромолекулярні константи і дефект модуля зсуву в гетерогенних полімерних системах.

    дипломная работа [1,6 M], добавлен 22.12.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.