Введение в химию

Понятие об атомах: атомный номер и масса, массовое число, нуклиды, изотопы, изобары, изотоны. Молекулы, радикалы и ионы: валентность, эмпирическая и молекулярная формулы. Номенклатура неорганических соединений (катионы и анионы), законы стехиометрии.

Рубрика Химия
Вид учебное пособие
Язык русский
Дата добавления 05.09.2009
Размер файла 494,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

ГЛАВА 1 ВВЕДЕНИЕ В ХИМИЮ

1.1. Понятие об атомах

Химия изучает свойства веществ и закономерности процессов, сопровождающихся изменениями их структуры и состава.

Объектами изучения в химии служат: атомы, ионы, молекулы, радикалы, растворы, коллоидные и дисперсные частицы, кристаллические, стеклообразные и полимерные системы, координационные и кластерные соединения.

Атом - наименьшая (неделимая химическим путем) часть элемента, сохраняющая все свойства, определенные зарядом ядра и электронной оболочкой. Составная часть вещества, содержащая одинаковые атомы, называется химическим элементом.

Модель 1.1 - Размеры атомов и молекул

Атомный номер Z равен числу протонов в атомном ядре. В электронной оболочке электронейтрального атома содержится Zэлектронов.

Массовое число A равно сумме числа протонов Z и числа нейтронов N в атомном ядре;

A = Z + N.

Нуклиды - атомы с определенным числом протонов и нейтронов.

Изотопы - атомы с одинаковым Z, но разными N.

Изобары - атомы с одинаковым A, но разными Z.

Изотоны - атомы с одинаковым N, но разными A.

Модель 1.2 - Масс-спектрометр

Элемент обозначается установленным одно- или двухбуквенным символом. Левые индексы указывают массовое число  A (верхний) и число протонов Z (нижний).

Таблица 1.1 - Классификация нуклидов.

Нуклид

Изотоп

Z

N

A

Вид нуклида

протий

1

0

1

изотопы

дейтерий

1

1

2

тритий

1

2

3

углерод-12

6

6

12

изотопы

углерод-13

6

7

13

углерод-14

6

8

14

аргон-40

18

22

40

изобары

калий-40

19

21

40

кальций-40

20

20

40

радий-228

88

140

228

изотоны

торий-230

90

140

230

Атомная масса - масса атома в атомных единицах массы (а. е. м.). За единицу а. е. м. принята 1/12 массы изотопа углерод-12.

Относительная атомная масса (безразмерная величина)

Она численно равна атомной массе элемента.

Относительная атомная масса элемента с учетом его изотопного состава равна:

где А - относительная атомная масса изотопа,

- доля каждого из изотопов элемента в земной коре.

1.2 Молекулы, радикалы и ионы

Молекула - наименьшая частица вещества, определяющая его свойства, способная к самостоятельному существованию. Состоит из одинаковых или разных атомов.

Соединения, образованные одинаковыми атомами, называют простыми (He, O2, O3, H2, S8), а образованные разными атомами - сложными (H2O, H2O2, NH3, CCl4, C2H5OH).

Рисунок 1.1 - Молекула воды Рисунок 1.2 - Молекула этанола.

Атомы в молекуле удерживаются химическими связями, возникающими в результате обобществления или перераспределения внешних (валентных) электронов. Каждая обобществленная пара электронов изображается чертой, соединяющей связываемые атомы.

Ионы - заряженные одно- или многоатомные частицы, образующиеся в результате отрыва (присоединения) электрона (электронов) от атома или молекулы с образованием энергетически устойчивых электронных оболочек:

Образование сложных ионов возможно путем присоединения к нейтральным молекулам других ионов:

Образование поваренной соли NaCl из простых веществ сопровождается полным переходом электрона от натрия к хлору с образованием ионов Na+ и Cl-. В кристаллическом NaCl нет молекул. Кристалл поваренной соли состоит из катионов Na+ и анионов Cl-, которые образуют трехмерную решетку. Каждый из ионов занимает центр октаэдра, вершины которого заняты ионами противоположного знака.

Способность атома присоединять или замещать определенное число других атомов называют валентностью. Мерой валентности считают число атомов водорода или кислорода, присоединенных к элементу (ЭHn, ЭOm), при условии, что водород одно- , а кислород двухвалентен.

Степень окисления - условный заряд атома элемента, полученный в предположении, что соединение состоит из ионов. Она может быть положительной, отрицательной, нулевой, дробной и обозначается арабской цифрой со знаком «+» или «-» в виде верхнего правого индекса символа элемента: Cl-I, Cl+VII, O-II, H+I, Mg+II, N-III, N+V, Cr+VI.

Для определения степени окисления (с. о.) элемента в соединении (ионе) пользуются следующими правилами:

1. В простых веществах (H2, S8, P4) с. о. равна нулю.

2. Постоянную с. о. имеют щелочные (Э+I) и щелочно-земельные (Э+II) элементы, а также фтор F-I.

3. Водород в большинстве соединений имеет с. о. H+ (H2O, CH4, HCl), в гидридах - H- (NaH, CaH2); с. о. кислорода, как правило, равна -II (O-II), в пероксидах (-O-O-) - -I (O-I).

4. В бинарных соединениях неметаллов отрицательная с. о. приписывается элементу, расположенному справа ).

5. Алгебраическая сумма с. о. молекулы равна нулю, иона - его заряду.

Радикалы - частицы, образующиеся при разрыве химической связи, и (или) содержащие нескомпенсированную валентность:

Особую группу составляют свободные радикалы (СР) - химические частицы, содержащие нескомпенсированную валентность (электрон), они могут быть нейтральными или заряженными (ион-радикалы).

Формульная единица - электронейтральное образование немолекулярного строения . Термин особенно применим к соединениям непостоянного состава.

Классификация атомно-молекулярных частиц и образований приведена на рис. 1.3.

Рисунок 1.3 - Классификация атомно-молекулярных

Электроотрицательность (ЭО) - способность атома оттягивать на себя электрон в химическом соединении.

В основу электроотрицательности положены следущие физические обоснования (шкалы):

Шкала Полинга базируется на энергии связи при образовании сложного вещества из простых.

Шкала Малликена - ЭО пропорциональна полуразности первого потенциала ионизации и сродства к электрону ЭО ~ 0,5 • (I1 + Eср).

Шкала Олреда основана на электростатической силе, действующей на внешний электрон

где Zэф - эффективный заряд ядра атома,

e - заряд электрона;

r - ковалентный радиус.

Разность электроотрицательностей элементов в соединении пропорциональна ионности связи взаимодействующих атомов; нулевая разность соответствует образованию ковалентной связи.

Эмпирическая формула составляется из атомных символов элементов, записываемых в определенном порядке друг за другом с учетом числа атомов каждого элемента (показано нижним индексом при символах соответствующих атомов).

Молекулярная формула соответствует истинному молекулярному составу соединения: S2Cl2, C6H6, а не SCl, CH. При изменении состава молекулы в зависимости от температуры берут самую простую формулу: S, P, NO2 вместо S8, P4, N2O4.

В структурной формуле указываются последовательность соединения атомов в молекуле (плоская структурная формула) и пространственное расположение атомов в соединении (проекционная структурная формула).

Катион в формулах солей всегда ставится на первое место: MgCl2, KMnO4, (NH4)2CO3.

Модель 1.3 - Калькулятор молекулярных масс

Если соль содержит более одного катиона или более одного аниона, то в формуле они записываются в порядке роста электроотрицательности: KCr(SO4)2, PtBr2Cl2.

Кислоты рассматриваются как соли протона H+: HCl, H2SO4, H3PO4.

Основания - соединения, у которых анионом служит гидроксид-ион OH-: KOH, Al(OH)3.

На рис. 1.4 приведены важнейшие классы неорганических соединений.

Рисунок 1.4 - Важнейшие классы неорганических соединений

Моль - количество вещества, содержащее столько же частиц или структурных единиц (атомов, ионов, молекул, радикалов, электронов, эквивалентов и др.), сколько содержится атомов углерода в 12 г изотопа углерода-12 (число Авогадро).

1.3 Номенклатура неорганических соединений

Систематическое название неорганического соединения читается справа налево по изображенной формуле, записанной по определенным правилам, согласно которым на первое место всегда ставится электроположительная, а на второе - электроотрицательная составляющая.

В бинарных соединениях неметаллов на первое место ставится тот элемент, символ которого стоит раньше в следующем ряду:

Rn, Xe, Kr, B, Si, C, Sb, As, P, N, H, Te, Se, S, At, I, Br, Cl, O, F;

например,

XeF4, NH3, H2O, Cl2O, OF2, IF7, SO2, NO, B2O3.

В соединениях металлов друг с другом (интерметаллидах) символы элементов указываются в порядке роста электроотрицательности: FeNi3, MgZn, Al4Cu9.

Количество одинаковых атомов или атомных групп в формуле указывается арабскими цифрами в виде правого нижнего индекса в круглых, квадратных или фигурных скобках; нормальный порядок для скобок - {[( )]}:

Cr2(SO4)3, Ca3(PO4)2, La2(C2O4)3, [Cr(H2O)6]Cl3.

В кристаллогидратах число молекул воды указывается арабскими цифрами:

La2(C2O4)3•10H2O, Na2SO4•10 H2O, CuSO4•5H2O.

Фигурные скобки обычно используются в формулах координационных соединений, поскольку комплексный ион или нейтральное координационное соединение непременно заключается в квадратные скобки; рекомендуемый порядок скобок [( )], [{( )}], [{[( )]}], например,

[Co(NH3)6]Cl3, [Zn{NH2-CH2CH(NH2)CH2NH2}2]SO4.

Одноатомные катионы называют по русскому названию элемента в родительном падеже и указанием степени окисления в скобках в виде арабской (+n) или римской цифры: Au+ - катион золота (+I), Au3+ - катион золота (+III), P5+ - катион фосфора (+V).

Указание степени окисления опускают, если возможен только один катион: K+ - катион калия, Ba2+ - катион бария.

Сложные катионы, образованные присоединением протона к нейтральной молекуле, называются с прибавлением окончания «-оний» или «-ий»: - катион оксония (оксоний), - катион аммония (аммоний), - катион пиридиния (пиридиний).

Сложные катионы многозарядных ионов металлов, содержащие кислород, называются с прибавлением окончания «-ил» к корню русского названия элемента: - уранил, - молибденил, - ванадил.

Анионы, состоящие из одного атома или нескольких одинаковых атомов, называют по элементу с окончанием «-ид»:

- гидрид, - хлорид, - оксид, - арсенид, - антимонид, - силицид, - пероксид, - азид.

Некоторые многоатомные анионы имеют собственное название: - гидроксид, - азид, - цианид, - ацетиленид.

Сложные гетероатомные анионы элементов в высшей степени окисления оканчивается на «-ат» ( - сульфат, - нитрат, - фосфат); окончание «-ит» указывает на более низкую степень окисления ( - сульфит, - нитрит, - арсенит).

Название соли начинается с аниона в именительном падеже с соответсвующим окончанием (-ид, -ат, -ит) и катиона в родительном падеже (NaCl - хлорид натрия, MgSO4 - сульфат магния, AgNO3 - нитрат серебра).

Неорганические соединения с полиатомными анионами называют по правилам координационных соединений. При этом характеристический (центральный) атом координирует оксо- или другие ионы, а анион всегда оканчивается на -ат независимо от степени окисления характеристического атома: MgSO4 - тетраоксосульфат магния, AgNO3 - триоксонитрат серебра, Na2S2O3 - триоксодисульфат динатрия, Na3PO4 - тетраоксофосфат тринатрия.

1.4 Законы стехиометрии

Основные законы стехиометрии, включающие законы количественных соотношений между реагирующими веществами с помощью уравнений химических реакций, вывод формул химических соединений, составляют раздел химии, называемый стехиометрией. Стехиометрия включает в себя законы Авогадро, постоянства состава, кратных отношений, Гей-Люссака, эквивалентов и сохранения массы.

В основу составления химических уравнений положен метод материального баланса, основанный на законе сохранения массы (М. В. Ломоносов, 1748, А. Лавуазье, 1789).

Закон сохранения массы веществ: Масса реагирующих веществ равна массе продуктов реакции.

Модель 1.4 - Стехиометрические коэффициенты

В химической реакции число взаимодействующих атомов остается неизменным, происходит только их перегруппировка с разрушением исходных веществ. Взаимодействие водорода и кислорода с образованием воды может быть записано с помощью уравнения химической реакции

Коэффициенты перед формулами химических соединений называются стехиометрическими.

Закон постоянства состава (Ж. Пруст): Химическое соединение, имеющее молекулярное строение, независимо от метода получения характеризуется постоянным составом.

Такие соединения называют дальтонидами или стехиометрическими в отличие от бертолидов, состав которых зависит от способа получения. Такие соединения состоят не из молекул, а из атомов или ионов.

Закон кратных отношений (Д. Дальтон): Если два элемента образуют между собой несколько молекулярных соединений, то масса одного элемента, приходящаяся на одну и ту же массу другого, относятся между собой как небольшие целые числа.

При взаимодействии азота с кислородом образуются пять оксидов. На 1 грамм азота в образующихся молекулах приходится 0,57, 1,14, 1,71, 2,28, 2,85 грамм кислорода, что соответствует отношением 2:1, 1:1, 2:3, 1:2, 2:5 в этих оксидах; их составы N2O, NO, N2O3, NO2, N2O5.

Закон эквивалентов (И. Рихтер): В молекулярных соединениях массы составляющих их элементов относятся между собой как их эквиваленты.

Химический эквивалент - реальная или условная частица вещества, способная соединиться и заместить 1 моль атомов водорода в реакциях присоединения и замещения или принять (отдать) 1 моль электронов в окислительно-восстановительных реакциях.

Химический эквивалент

Закон простых объемных отношений (Ж. Гей-Люссак): При равных условиях объемы вступающих в реакцию газов относятся друг к другу и к объемам образующихся газообразных продуктов как небольшие целые числа.

Так, в реакции образования аммиака из простых веществ отношение объемов водорода, азота и аммиака составляет 3:1:2.

Закон Авогадро: В равных объемах любых газов, взятых при одинаковых условиях, содержится одинаковое число молекул.

Из закона Авогадро вытекают два следствия:

1. Одинаковое число молекул любых газов при одинаковых условиях занимают одинаковый объем.

2. Относительная плотность одного газа по другому равна отношению их молярных масс.

Число Авогадро - число частиц в моле любого вещества; NA = 6,02•1023 моль-1.

Молярный объем - объем моля любого газа при нормальных условиях(температура 273 К, давление 101,3 кПа); равен 22,4 л•моль-1.

Молярная масса (M) - масса одного моля вещества, численно совпадающая с относительными массами атомов, ионов, молекул, радикалов и других частиц, выраженных в г•моль-1.


Подобные документы

  • Типы химической связи: ковалентная, ионная и металлическая. Донорно-акцепторный механизм образования и характеристики ковалентной связи. Валентность и степень окисления элементов. Молекулы химических соединений. Размеры и масса атомов и молекул.

    контрольная работа [45,3 K], добавлен 16.11.2010

  • Рассмотрение внутренней и внешней сфер комплексных соединений: целостный ион, простые анионы и катионы. Исследование механизма донорно-акцепторной связи лиганды с центральным атомом. Номенклатура, изомерия, химическая связь и диссоциация комплексов.

    лабораторная работа [655,6 K], добавлен 14.12.2011

  • Сравнительная характеристика органических и неорганических химических соединений: классификация, строение молекулярной кристаллической решетки; наличие и тип химической связи между атомами; относительная молекулярная масса, распространение на планете.

    презентация [92,5 K], добавлен 11.05.2014

  • Основные положения координационной теории. Комплексообразователи: положительные ионы неметаллов, ионы металлов, нейтральные атомы. Номенклатура комплексных соединений и порядок перечисления ионов и лигандов. Понятие константы нестойкости комплекса.

    реферат [142,9 K], добавлен 08.08.2015

  • Молекулярная масса (ММ) как одна из характеристик полимеров, ее виды и методы определения. Молекулярно-массовое распределение полимеров. Методы осмометрический, ультрацентрифугирования, светорассеяния и вискозиметрии. Определение ММ по концевым группам.

    курсовая работа [852,9 K], добавлен 16.10.2011

  • Классификация и закономерности протекания химических реакций. Переходы между классами неорганических веществ. Основные классы бинарных соединений. Оксиды, их классификация и химические свойства. Соли, их классификация, номенклатура и химические свойства.

    лекция [316,0 K], добавлен 18.10.2013

  • Примеры важнейших оксидов. Сравнение качественного и количественного состава в молекулах HCl, H2O, NH3, CH4. Эволюция понятия "валентность". Последовательность действий при определении валентности атомов элементов в соединениях, составление формулы.

    презентация [1,6 M], добавлен 02.10.2012

  • Составление формул соединений кальция с водородом, фтором и азотом. Определение степени окисления атома углерода и его валентности. Термохимические уравнения реакций, теплота образования. Вычисление молярной концентрации эквивалента раствора кислоты.

    контрольная работа [46,9 K], добавлен 01.11.2009

  • Протоны и нейтроны как составляющие атомного ядра. Атомный номер элемента. Изотопы, ядерная и квантово-механическая модели атома. Волновые свойства электрона. Одноэлектронные и многоэлектронные атомы, квантовые числа. Электронная конфигурация атома.

    реферат [1,3 M], добавлен 26.07.2009

  • Комплексные соединения как обширный класс химических веществ, количество которых значительно превышает число обычных неорганических соединений. Роль геометрической изомерии в становлении и утверждении координационной теории, анализ разновидностей.

    контрольная работа [393,5 K], добавлен 12.03.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.