Биологическое значение митоза и мейоза

Характеристика механизма клеточного деления. Описание фаз мейоза у животных. Роль митоза в копировании генетической информации. Особенности мейотического деления. Эукариотические клетки и их хромосомы. Определение признаков потомства по закону Менделя.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 02.06.2020
Размер файла 25,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://allbest.ru

ЧАСТНОЕ ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «МЕДИЦИНСКИЙ КОЛЛЕДЖ ИМЕНИ БАШЛАРОВА»

ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

Биологическое значение митоза и мейоза

по дисциплине: ОУД.11 Биология

Выполнила: студентка 1 курса

Магомедова Патимат Жаапаровна

Специальность: 34.02.01 Сестринское дело

Руководитель: Иминова С. И.

Махачкала

2020

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ГЛАВА I. МЕЙОЗ

1.1 Эукариотические клетки и их хромосомы

1.2 Фазы мейоза

ГЛАВА II. МИТОЗ

2.1 Типы и классификация митозов

2.2 Значение митоза

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ И ЛИТЕРАТУРЫ

ВВЕДЕНИЕ

Понимание того факта, что половые клетки гаплоидны и поэтому должны формироваться с помощью особого механизма клеточного деления, пришло в результате наблюдений, которые к тому же едва ли не впервые навели на мысль, что хромосомы содержат генетическую информацию. В 1883 г. было обнаружено, что ядра яйца и спермия определенного вида червей содержат лишь по две хромосомы, в то время как в оплодотворенном яйце их уже четыре.

Хромосомная теория наследственности могла, таким образом, объяснить давний парадокс, состоящий в том, что роль отца и матери в определении признаков потомства часто кажется одинаковой, несмотря на огромную разницу в размерах яйцеклетки и сперматозоида.

Еще один важный смысл этого открытия состоял в том, что половые клетки должны формироваться в результате ядерного деления особого типа, при котором весь набор хромосом делится точно пополам. Деление такого типа носит название мейоз (слово греческого происхождения, означающее "уменьшение". Именно мейоз лежит в основе законов наследования Менделя и хромосомной теории наследственности.

Название другого вида деления клеток - митоз - происходит от греческого слова, означающего "нить", в основе такого выбора названия лежит нитеподобный вид хромосом при их конденсации во время деления ядра - данный процесс происходит и при митозе, и при мейозе). Поведение хромосом во время мейоза, когда происходит редукция их числа, оказалось более сложным, чем предполагали раньше. Поэтому важнейшие особенности мейотического деления удалось установить только к началу 30-х годов XХ в. в итоге огромного числа тщательных исследований.

Интерес к мейозу резко возрос в конце 60-х годов, когда выяснилось, что одни и те же контролируемые генами ферменты могут принимать участие в процессах воспроизведения ДНК, обмене ее участками, ее чувствительности к повреждающим воздействиям.

Наконец, в последнее время ряд биологов развивает оригинальную идею: мейоз у высших организмов служит гарантом стабильности генетического кода, ибо в процессе мейоза, когда пары хромосом-гомологов тесно соприкасаются, происходит проверка нитей ДНК на точность и восстановление повреждений, затрагивающих сразу обе нити [2, 3].

Изучение мейоза тесно связало методы и интересы двух наук: цитологии и генетики. Это привело к рождению новой ветви знания - цитогенетики, тесно соприкасающейся ныне с молекулярной биологией и генной инженерией.

Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений - Э. Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900). Изучение мейоза продолжается до сих пор.

ГЛАВА 1. МЕЙОЗ

1.1 Эукариотические клетки и их хромосомы

Исходя из относительной сложности их клеток, все живые организмы широко классифицируются как прокариоты или эукариоты. Прокариоты, такие как бактерии, состоят из одной клетки с простой внутренней структурой. Их ДНК свободно плавает в клетке в виде искривленной нитевидной массы, называемой нуклеоидом. Животные, растения и грибы -- все эукариоты.

Эукариотические клетки имеют специализированные компоненты, называемые органеллами, такие как митохондрии, хлоропласты и эндоплазматическая сеть. Каждый из них выполняет определенную функцию. В отличие от прокариот, эукариотическая ДНК упакована в центральный компартмент, называемый ядром.

Внутри эукариотического ядра длинные двойные спиральные нити ДНК плотно обернуты вокруг белков, называемых гистонами. Это формирует стержнеобразную структуру, называемую хромосомой.

Клетки в организме человека имеют 23 пары хромосом или 46 в общей сложности. Это включает две половые хромосомы: две Х-хромосомы для женщин и одну Х и одну Y-хромосому для мужчин. Поскольку каждая хромосома имеет пару, эти клетки называются «диплоидными» клетками. С другой стороны, сперматозоиды и яйцеклетки человека имеют только 23 хромосомы, или половину хромосом диплоидной клетки. Таким образом, они называются «гаплоидными» клетками.

Когда сперма и яйцеклетка объединяются во время оплодотворения, общее количество хромосом восстанавливается. Это потому, что сексуально размножающиеся организмы получают набор хромосом от каждого родителя: набор по материнской и отцовской линии. Каждая хромосома имеет соответствующую пару оромологов.

Сущность процесса оплодотворения состоит в слиянии сперматозоида с яйцеклеткой с образованием диплоидной клетки Ї зиготы.

Если бы в процессе мейоза не происходило уменьшение числа хромосом, то в каждом следующем поколении в результате оплодотворения число хромосом увеличивалось бы вдвое. Благодаря мейозу зрелые половые клетки получают гаплоидное число хромосом, а при оплодотворении восстанавливается характерное для данного вида диплоидное (2n) число хромосом.

В ходе мейоза происходит перекрест и обмен участками гомологичных хромосом. Кроме того, материнские и отцовские хромосомы случайно распределяются между гаметами (гомологичные хромосомы каждой пары расходятся в стороны случайным образом независимо от других пар). Все эти процессы обеспечивают большое разнообразие гамет и увеличивают наследственную изменчивость организмов, что имеет большое значение для эволюции.

1.2 Фазы мейоза

Мейоз состоит из 2 последовательных делений с короткой интерфазой между ними.

1. Профаза I -- профаза первого деления очень сложная и состоит из 5 стадий:

2. Лептотена или лептонема -- упаковка хромосом, конденсация ДНК с образованием хромосом в виде тонких нитей (хромосомы укорачиваются).

3. Зиготена или зигонема -- происходит конъюгация -- соединение гомологичных хромосом с образованием структур, состоящих из двух соединённых хромосом, называемых тетрадами или бивалентами и их дальнейшая компактизация.

4. Пахитена или пахинема -- (самая длительная стадия) -- в некоторых местах гомологичные хромосомы плотно соединяются, образуя хиазмы. В них происходит кроссинговер -- обмен участками между гомологичными хромосомами.

5. Диплотена или диплонема -- происходит частичная деконденсация хромосом, при этом часть генома может работать, происходят процессы транскрипции (образование РНК), трансляции (синтез белка); гомологичные хромосомы остаются соединёнными между собой. У некоторых животных в ооцитах хромосомы на этой стадии профазы мейоза приобретают характерную форму хромосом типа ламповых щёток.

6. Диакинез -- ДНК снова максимально конденсируется, синтетические процессы прекращаются, растворяется ядерная оболочка; центриоли расходятся к полюсам; гомологичные хромосомы остаются соединёнными между собой.

Во время профазы I мейоза двойные хромосомы хорошо заметны в световой микроскоп. Каждая хромосома состоит из двух хроматид, соединенных между собой в области центромеры. Гомологичные хромосомы сближаются и конъюгируют, т. е, продольно тесно соединяются друг с другом (хроматида к хроматиде). При этом хроматиды часто перекручиваются или перекрещиваются. К концу профазы гомологичные хромосомы отталкиваются друг от друга. В местах перекреста хроматид происходят разрывы и обмены их участками. Это явление называется кроссинговером -- перекрестом хромосом. Затем, как и в профазе митоза, растворяется ядерная оболочка, исчезает ядрышко, образуются нити веретена.

В метафазе I хромосомы располагаются в экваториальной плоскости. В анафазе 1 гомологичные хромосомы, каждая из которых состоит из двух хроматид, расходятся к противоположным полюсам клетки. В телофазе из каждой пары гомологичных хромосом в дочерних клетках оказывается по одной. Число хромосом уменьшается в 2 раза, хромосомный набор становится гаплоидным. Однако каждая хромосома состоит из двух хроматид, т. е. по- прежнему содержит удвоенное количество ДНК. Поэтому во время интерфазы между первым и вторым делениями мейоза удвоения (редупликации) ДНК не происходит.

Второе мейотическое деление идет по типу митоза. В анафазе 2 к полюсам расходятся хроматиды, которые и становятся дочерними хромосомами. Из каждой исходной клетки в результате мейоза образуется четыре клетки с гаплоидным набором хромосом.

К концу Профазы I центриоли мигрируют к полюсам клетки, формируются нити веретена деления, разрушаются ядерная мембрана и ядрышки

1. Метафаза I -- бивалентные хромосомы выстраиваются вдоль экватора клетки.

2. Анафаза I -- микротрубочки сокращаются, биваленты делятся и хромосомы расходятся к полюсам. Важно отметить, что, из-за конъюгации хромосом в зиготене, к полюсам расходятся целые хромосомы, состоящие из двух хроматид каждая, а не отдельные хроматиды, как в митозе.

3. Телофаза I -- хромосомы деспирализуются и появляется ядерная оболочка.

Второе деление мейоза следует непосредственно за первым, без выраженной интерфазы: S-период отсутствует, поскольку перед вторым делением не происходит репликации ДНК.

1. Профаза II -- происходит конденсация хромосом, клеточный центр делится и продукты его деления расходятся к полюсам ядра, разрушается ядерная оболочка, образуется веретено деления, перпендикулярное первому веретену.

2. Метафаза II -- унивалентные хромосомы (состоящие из двух хроматид каждая) располагаются на «экваторе» (на равном расстоянии от «полюсов» ядра) в одной плоскости, образуя так называемую метафазную пластинку.

3. Анафаза II -- униваленты делятся и хроматиды расходятся к полюсам.

4. Телофаза II -- хромосомы деспирализуются и появляется ядерная оболочка.

В результате из одной диплоидной клетки образуется четыре гаплоидных клетки. В тех случаях, когда мейоз сопряжён с гаметогенезом (например, у многоклеточных животных), при развитии яйцеклеток первое и второе деления мейоза резко неравномерны. В результате формируется одна гаплоидная яйцеклетка и три так называемых редукционных тельца (абортивные дериваты первого и второго делений).

ГЛАВА 2. МИТОЗ

2.1 Типы и классификация митозов

Выработка единой типологии и классификации митозов осложняется целым спектром признаков, которые в различных комбинациях создают разнообразие и неоднородность картин митотического деления. При этом отдельные варианты классификации, разработанные применительно к одним таксонам, являются неприемлемыми в отношении других, поскольку не учитывают специфики их митозов. Например, отдельные варианты классификации митозов, свойственных животным или растительным организмам, оказываются неприемлемыми для водорослей.

Одним из ключевых признаков, лежащих в основе различных типологий и классификаций митотического деления, является поведение ядерной оболочки. Если образование веретена и само митотическое деление протекает внутри ядра без разрушения ядерной оболочки, то такой тип митоза называют закрытым. Митоз с распадом ядерной оболочки, соответственно, называется открытым, а митоз с распадом оболочки только на полюсах веретена, с образованием «полярных окон» -- полузакрытым.

Ещё одним характерным признаком является тип симметрии митотического веретена. При плевромитозе веретено деления билатерально симметрично либо асимметрично и состоит, как правило, из двух полуверетён, располагающихся в метафазе-анафазе под углом друг к другу. Для категории ортомитозов характерна биполярная симметрия веретена деления, а в метафазе зачастую наблюдается различимая экваториальная пластинка. хромосома митоз генетический мендель

В рамках обозначенных признаков наиболее многочисленным является типичный открытый ортомитоз, на примере которого ниже рассматриваются принципы и стадии митотического деления. Данный тип митоза характерен для животных, высших растений и некоторых простейших.

7 типов митоза простейших:

· Открытый ортомитоз (эумитоз)

· Полузакрытый ортомитоз

· Полузакрытый плевромитоз

· Закрытый внутриядерный ортомитоз

· Закрытый внутриядерный плевромитоз

· Закрытый эвгленоидный митоз

· Закрытый внеядерный плевромитоз

6 типов митоза водорослей[13]:

· Закрытый центрический

· Закрытый ацентрический

· Полузакрытый центрический

· Полузакрытый ацентрический

· Открытый центрический

· Открытый ацентрический

6 типов митоза водорослей:

· Закрытый центрический

· Закрытый ацентрический

· Полузакрытый центрический

· Полузакрытый ацентрический

· Открытый центрический

Митомз (др.-греч. мЯфпт -- нить) -- непрямое деление клетки, наиболее распространенный способ репродукции эукариотических клеток. Биологическое значение митоза состоит в строго одинаковом распределении хромосом между дочерними ядрами, что обеспечивает образование генетически идентичных дочерних клеток и сохраняет преемственность в ряду клеточных поколений.

Митоз -- один из фундаментальных процессов онтогенеза. Митотическое деление обеспечивает рост многоклеточных эукариот за счёт увеличения популяций клеток тканей. В результате митотического деления клеток меристем увеличивается количество клеток тканей растений. Дробление оплодотворённого яйца и рост большинства тканей у животных также происходит путём митотических делений.

На основании морфологических особенностей митоз условно подразделяется на стадии: профазу, прометафазу, метафазу, анафазу, телофазу. Первые описания фаз митоза и установление их последовательности были предприняты в 70--80-х годах XIX века. В конце 1870-х -- начале 1880-х годов немецкий гистолог Вальтер Флемминг для обозначения процесса непрямого деления клетки ввёл термин «митоз».

Продолжительность митоза в среднем составляет 1--2 часа. Митоз клеток животных, как правило, длится 30--60 минут, а растений -- 2--3 часа. За 70 лет в теле человека суммарно осуществляется порядка 1014 клеточных делений.

2.2 Значение митоза

Митоз является важным средством поддержания постоянства хромосомного набора. В результате митоза осуществляется идентичное воспроизведение клетки. Следовательно, ключевая роль митоза -- копирование генетической информации.

Митоз происходит в следующих случаях:

1. Рост и развитие. Количество клеток в организме в процессе роста увеличивается благодаря митозу. Это лежит в развитии многоклеточного организма из единственной клетки -- зиготы, а также роста многоклеточного организма.

2. Перемещение клеток. В некоторых органах организма, например, коже и пищеварительном тракте, клетки постоянно отшелушиваются и заменяются новыми. Новые клетки образуются путём митоза, а потому являются точными копиями своих предшественников. Схожим путём происходит замена красных кровяных клеток -- эритроцитов, имеющих короткую продолжительность жизни -- 4 месяца, а новые эритроциты формируются путём митоза.

3. Регенерация. Некоторые организмы способны восстанавливать утраченные части тела. В этих случаях образование новых клеток часто идёт путём митоза. Например, благодаря митозу морская звезда восстанавливает утраченные лучи.

4. Бесполое размножение. Некоторые организмы образуют генетически идентичное потомство путём бесполого размножения. Например, гидра размножается бесполым способом при помощи почкования. Поверхностные клетки гидры подвергаются митозу и образуют скопления клеток, называемые почками. Митоз продолжается и в клетках почки, и она вырастает во взрослую особь. Сходное клеточное деление происходит при вегетативном размножении растений.

ЗАКЛЮЧЕНИЕ

Биологическое значение мейоза заключается в поддержании постоянства кариотипа в ряду поколений организмов данного вида и обеспечении возможности рекомбинации хромосом и генов при половом процессе. Мейоз - один из ключевых механизмов наследственности и наследственной изменчивости. Поведение хромосом при мейозе обеспечивает выполнение основных законов наследственности. Мейоз обеспечивает также комбинативную изменчивость - появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Значение:

1. У организмов, размножающихся половым путем, предотвращается удвоение числа хромосом в каждом поколении, так как при образовании половых клеток мейозом происходит редукция числа хромосом.

2. Мейоз создает возможность для возникновения новых комбинаций генов (комбинативная изменчивость), так как происходит образование генетически различных гамет.

3. Редукция числа хромосом приводит к образованию «чистых гамет», несущих только один аллель соответствующего локуса.

4. Расположение бивалентов экваториальной пластинки веретена деления в метафазе 1 и хромосом в метафазе 2 определяется случайным образом. Последующее расхождение хромосом в анафазе приводит к образованию новых комбинаций аллелей в гаметах. Независимое расхождение хромосом лежит в основе третьего закона Менделя.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1. Алов И. А. Цитофизиология и патология митоза. -- М.: «Медицина», 1972. -- 264 с.

2. Албертс Б., Брей Д., Льюис Дж., Рэфф М., Робертс К., Уотсон Дж. Молекулярная биология клетки: В 3-х т.. -- 2-ое, переработанное. -- М.: «Мир», 1993. -- Т. 2. -- 539 с.

3. Биологический энциклопедический словарь / Гл. редактор Гиляров М. С.. -- М.: «Советская энциклопедия», 1986. -- 831 с.

4. Булдаков Л. А., Калистратова В. С. Радиоактивное излучение и здоровье.-- М.: Информ-Атом, 2003. -- 165 с.

5. Гилберт С. Биология развития: в 3-х томах. -- М.: «Мир», 1995. -- Т. 3. -- 352 с.

6. История биологии с древнейших времён до начала XX века / Под редакцией С. Р. Микулинского. -- М.: «Наука», 1972. -- 564 с.

7. Райков И. Б. Ядро простейших. Морфология и эволюция. -- Л.: «Наука», 1978. -- 328 с.

8. Седова Т. В. Кариология водорослей. -- СПб.: «Наука», 1996. -- 386 с.

9. Ченцов Ю. С. Введение в клеточную биологию: Учебник для вузов. -- 4-ое, переработанное и дополненное. -- М.: ИКЦ «Академкнига», 2004. -- 495 с.

Размещено на Allbest.ru


Подобные документы

  • Клеточный цикл как период существования клетки от момента ее образования путем деления материнской клетки до собственного деления или гибели. Принципы и методы его регуляции. Этапы и биологическое значение митоза, мейоза, обоснование данных процессов.

    презентация [1,1 M], добавлен 07.12.2014

  • Характеристика жизненного цикла клетки, особенности периодов ее существования от деления до следующего деления или смерти. Стадии митоза, их продолжительность, сущность и роль амитоза. Биологическое значение мейоза, его основные этапы и разновидности.

    лекция [169,6 K], добавлен 27.07.2013

  • Изучение процесса митоза как непрямого деления клетки и распространенного способа репродукции эукариотических клеток, его биологическое значение. Мейоз как редукционное деление клетки. Интерфаза, профаза, метафаза, анафаза и телофаза мейоза и митоза.

    презентация [7,6 M], добавлен 21.02.2013

  • Система зашифровки наследственной информации в молекулах нуклеиновых кислот в виде генетического кода. Сущность процессов деления клеток: митоза и мейоза, их фазы. Передача генетической информации. Строение хромосом ДНК, РНК. Хромосомные заболевания.

    контрольная работа [28,4 K], добавлен 23.04.2013

  • Сущность клеточного цикла - периода жизни клетки от одного деления до другого или от деления до смерти. Биологическое значение митоза, его основные регуляторные механизмы. Два периода митотического деления. Схема активации циклинзависимой киназы.

    презентация [823,0 K], добавлен 28.10.2014

  • Структура ДНК. Образование связей в молекуле ДНК. Открытие хромосом эукариот. Понятие, фазы и роль митоза. Понятие и стадии мейоза. Понятие и элементы кариотипа. Наследственность и изменчивость. Передача генетической информации от родителей к потомкам.

    реферат [31,4 K], добавлен 23.10.2008

  • Основные фазы клеточного цикла: интерфаза и митоз. Определение понятия "митоз" как непрямого деления клетки, наиболее распространенного способа репродукции эукариотических клеток. Характеристика и особенности процессов деления: амитоза и мейоза.

    презентация [799,4 K], добавлен 25.10.2011

  • Мейоз - способ деления клеток, приводящий к уменьшению в них числа хромосом вдвое. Биологическое и генетическое значение мейоза. Строение и значение пищеварительной системы. Экологическая система и потоки энергии и вещества в ней. Трофические сети и цепи.

    контрольная работа [594,5 K], добавлен 15.02.2011

  • Основные механизмы клеточного деления. Микротрубочки, образование веретена деления и метафаза. Правильное присоединение микротрубочек к кинетохорам. Обзор противоопухолевых препаратов. Использование особенностей механизма деления клетки в медицине.

    курсовая работа [1,7 M], добавлен 15.02.2016

  • Сущность и значение митоза - процесса распределения скопированных хромосом между дочерними клетками. Общая характеристика основных стадий митоза – профазы, метафазы, анафазы и телофазы, а также описание особенностей разделения клеточных хромосом в них.

    презентация [321,9 K], добавлен 04.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.