Важнейшие концепции описания природы

Представления о строении материи и их отражение в концепциях о дискретности и континуальности. Развитие атомистики в философской мысли. Классическая механика как ее наследие. Создание квантовой теории атомных процессов. Развитие физики микромира.

Рубрика Биология и естествознание
Вид статья
Язык русский
Дата добавления 14.03.2019
Размер файла 21,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Важнейшие концепции описания природы

Одним из наиболее важных из существенных вопросов, как философии, так и естествознания является проблема материи. Представления о строении материи находят своё выражение в борьбе двух концепций: прерывности (дискретности) - корпускулярная концепция, и непрерывности (континуальности) - континуальная концепция. С ними тесно связаны проблемы взаимодействия материальных объектов, которые проявлялись как концепция дальнодействия (?ередача действия без физической среды) и концепция близкодействия (?ередача действия от точки к точке) [1].

Концепция прерывности была создана И. Ньютоном Сэр Исаамк Ньюм тон (или Ньютомн) (англ. Isaac Newton, 25.12.1642 - 20.03.1727 по юлианскому календарю, действовавшему в Англии до 1752 года; или 4.01.1643 года - 31.03.1727 по григорианскому календарю) - английский физик, математик, механик и астроном, один из создателей классической физики. Автор фундаментального труда «Математические начала натуральной философии», в котором он изложил закон всемирного тяготения и три закона механики, ставшие основой классической механики. Разработал дифференциальное и интегральное исчисления, теорию цвета, заложил основы современной физической оптики, создал многие другие математические и физические теории. . Подход Ньютона определил исходное положение атомизма, который основывался на признании дальнодействующих сил.

В натурфилософии подробно выделяется материалистическая направленность выдающихся мыслителей древности. Атомизм, основу которого представляла проблема материи: упоминается в учении о частицах, созданном Анаксагором Анаксагомр (др.-греч. ?нбобгьсбт) из Клазомен (ок. 500 до н.э. - 428 до н.э.) - древнегреческий философ, математик и астроном. Основоположник афинской философской школы. в V в. до н.э; нашёл своё отражение в трудах видных представителей атомизма древности Демокрита Демокримт Абдерский (Дзмьксйфпт; ок. 460 до н.э., Абдеры - ок. 370 до н.э.) - древнегреческий философ, предположительно ученик Левкиппа, один из основателей атомистики и материалистической философии. и Левкиппа Левкипп (др.-греч. Леэкйррпт) из Абдеры или Милета (V век до н.э.) - древнегреческий философ, один из основоположников атомистики, учитель Демокрита. . Из вихря атомов, по Демокриту, образуются как отдельные тела, так и бесчисленные миры; последователями этих учений были Эпикур Эпикумр (греч. ЕрЯкпхспт; 342/341 до н.э., Самос - 271/270 до н.э., Афины) - древнегреческий философ, основатель эпикуреизма в Афинах («Сад Эпикура»). От почти трехсот произведений, которые, как предполагают, написал Эпикур, сохранились только фрагменты. Среди источников знаний об этом философе - сочинение Диогена Лаэртского (Лаэрция) «О жизни, учениях и изречениях знаменитых философов» и «О природе вещей» Лукреция Кара. и Лукреций. Древнегреческий поэт и философ Лукреций Тит Лукремций Кар (лат. Titus Lucretius Carus, очень часто просто Лукремций, ок. 99 до н э. - 55 до н.э.) - римский поэт и философ. Считается одним из ярчайших приверженцев атомистического материализма, , популяризатор учения Эпикура, создал дидактическую поэму «О природе вещей», - единственное полностью сохранившееся систематическое изложение материалистической философии древности. Философия Эпикура явилась высшим этапом развития атомистического материализма и завершением материалистических воззрений древнегреческой философии.

Общая тенденция атомистики выражалась в стремлении свести всё многообразие свойств материальных объектов к ограниченному числу исходных объективных свойств и закономерностей элементарных материальных частиц.

Основополагающими признаками атомистики явились: неизменность атомов (т.е. несотворимость и неуничтожимость материи); противопоставление атомов пустому пространству (признание объективности пространства и движения).

Классическая механика XVII-XVIII в. явилась дальнейшей разработкой атомистики. И. Ньютон в 1672-1676 г. распространил атомистику на световые явления и создал корпускулярную теорию света. Свет он считал потоком корпускул (частиц), однако на разных этапах рассматривал и возможность существования волновых свойств света, в частности, в 1675 г. предпринял попытку создать компромиссную корпускулярно-волновую природу света. По своему мировоззрению И. Ньютон был вторым после Р. Декарта 7 великим представителем меха???тического материализма в естествознании XVII- XVIII в. Декарт стремился построить общую картину природы, в которой все явления природы объяснялись как результат движения больших и малых частиц, образованных из единой материи.

Недостатки меха???тической атомистики:

- отсутствие достоверного экс?ериментального материала;

- не являлась достаточно обоснованной естественнонаучной теорией;

- атомы рассматривались как частицы, лишённые возможности превращения;

- единственной формой движения принималось механическое движение;

- стремилась все явления природы рассматривать как модификацию механического движения.

На заре зарождения римской философской терминологии Лукреций в своём основном труде - философской поэме «О природе вещей» (лат. De rerum natura) - облёк своё учение в стройную поэтическую форму. Следуя теории эпикуреизма, Лукреций Кар постулировал свободу воли человека, отсутствие влияния богов на жизнь людей (не отвергая, однако, само существование богов). Он считал, что целью жизни человека должна быть атараксия, аргументированно отвергал боязнь смерти, саму смерть и потустороннюю жизнь: по его мнению, материя вечна и бесконечна, а после смерти человека его тело обретает иные формы существования. Для философов-материалистов более позднего времени именно Тит Лукреций Кар является главным пропагандистом и доксографом учения Эпикура. Его философия дала мощнейший толчок развитию материализма в античности и в XVII-XVIII веках. Среди ярких последователей Эпикура и Лукреция - Пьер Гассенди. В 1563 году французский филолог Ламбин издал первое комментированное издание поэмы Лукреция. В 1884 году философ Анри Бергсон перевёл и издал фрагменты поэмы в качестве пособия по курсу риторики и философии.

Сокрушительный удар по принципам механицизма был нанесён открытиями XIX-XX в.: открытием рентгеновских лучей и радиоактивного излучения в 1896 г. А. Беккерелем8 и исследованием его в 1898 г. П. Кюри и М. Склодовской-Кюри9. Радиоактивный распад показал, что радиоактивность не связана с внешними, механическими воздействиями, а определяется внутренними процессами, проявляющимися в виде статистических закономерностей; созданием теории электромагнитного поля Дж. Максвеллом Джеймс Клерк Мамксвелл (англ. James Clerk Maxwell; 13.06.1831, Эдинбург, Шотландия - 5.11.1879, Кембридж, Англия) - британский физик, математик и механик. Шотландец по происхождению. Член Лондонского королевского общества (1861). Максвелл заложил основы современной классической электродинамики (уравнения Максвелла), ввёл в физику понятия тока смещения и электромагнитного поля, получил ряд следствий из своей теории (предсказание электромагнитных волн, электромагнитная природа света, давление света и другие). Один из основателей кинетической теории газов (установил распределение молекул газа по скоростям). Одним из первых ввёл в физику статистические представления, показал статистическую природу второго начала термодинамики («демон Максвелла»), получил ряд важных результатов в молекулярной физике и термодинамике (термодинамические соотношения Максвелла, правило Максвелла для фазового перехода жидкость - газ и другие). Пионер количественной теории цветов; автор трёхцветного принципа цветной фотографии. Среди других работ Максвелла - исследования по механике (фотоупругость, теорема Максвелла в теории упругости, работы в области теории устойчивости движения, анализ устойчивости колец Сатурна), оптике, математике. Он подготовил к публикации рукописи работ Генри Кавендиша, много внимания уделял популяризации науки, сконструировал ряд научных приборов. (1860-1865 г.); открытием явления электромагнитной индукции М. Фарадеем Майкл Фарадемй (англ. Michael Faraday, 22.09.1791, Лондон - 25.08.1867, Лондон) - английский физик-экспериментатор и химик. Член Лондонского королевского общества (1824) и множества других научных организаций, в том числе иностранный почётный член Петербургской академии наук (1830). Открыл электромагнитную индукцию, лежащую в основе современного промышленного производства электричества и многих его применений. Создал первую модель электродвигателя. Среди других его открытий - первый трансформатор, химическое действие тока, законы электролиза, действие магнитного поля на свет, диамагнетизм. Первым предсказал электромагнитные волны. Фарадей ввёл в научный обиход термины ион, катод, анод, электролит, диэлектрик, диамагнетизм, парамагнетизм и др. Фарадей - основоположник учения об электромагнитном поле, которое затем математически оформил и развил Максвелл. Основной идейный вклад Фарадея в физику электромагнитных явлений заключался в отказе от ньютонова принципа дальнодействия и во введении понятия физического поля - непрерывной области пространства, сплошь заполненной силовыми линиями и взаимодействующей с веществом. (1831 г.). Ньютоновская теория дальнодействия и его схема мира господствовали до начала XX в. М. Фарадей и Дж. Максвелл в?ервые обнаружили её непригодность и неприменимость к электромагнитным явлениям; экс?ериментальным доказательством делимости атомов и открытием электрона английским физиком Дж. Дж. Томсоном12 (1897 г.), за что он был удостоен Нобелевской премии в 1906 г. В 1903 г. им была предложена одна из ?ервых моделей атома, согласно которой атом представлял собой положительно заряженную сферу с вкрапленными в неё электронами (подобно булке с изюмом). В 1911 г. английский физик Э. Резерфорд13, проводил опыты по рассеянию альфа-частиц атомами различных элементов, установил наличие в атоме плотного ядра диаметром около 10-12 см, заряженного положительно, и предложил для объяснения этих экс?ериментов планетарную модель атома. Модель подчинялась классической механике (движение ядра и электронов) и классической электродинамике (взаимодействие частиц). Электроны в этой модели, подобно планетам Солнечной системы, вращались вокруг ядра. Состояние атомов в классической физике определяется заданием координаты и скорости его составных частиц, т.е. можно получить мгновенный снимок его строения. Однако это противоречило экс?ериментальным данным.

Все это относится к теории Бора14, так как она создала предпосылки для создания нового, более высокого уровня развития атомизма - квантовой теории атомных процессов.

Квантовая теория строения атома - это определённый раздел квантовой механики, объясняющий разнообразие свойств мельчайших частиц вещества. Основоположники её - австрийский физик-теоретик Э. Шрёдингер 15 ,

Французский физик Л. де Бройль16 и немецкий физик-теоретик В. Гейзенберг17 - показали наличие у микрочастиц ряда новых особенностей, которые определяли характер современного атомизма:

- корпускулярно-волновой природы элементарных частиц;

- то, что волновые характеристики - это различные проявления единого материального образования.

Исследования Л. де Бройля показали, что квантово-механическая [2] природа есть у всех видов материи. Классическая механика исключала возможность дифракции электрона, протона, нейтрона, а экс?ериментальные данные подтвердили гипотезу де Бройля и определили новый подход к пониманию процессов микромира.

Совершенно новыми оказались и свойства объектов современной атомистики. Принятые в классической механике понятия, характеризующие положение частицы в пространстве и ее движение, теряют те?ерь всякий смысл. В классической физике траектория давала возможность описать путь, она могла быть представлена в виде линии. В современном атомизме частицы не имеют траектории: можно лишь указать область пространства, в котором имеется определённая вероятность обнаружить частицу.

К существенным особенностям атомизма XX в. можно отнести следующие:

- состояние частицы не может быть определено классическими понятиями;

- вводится волновая функция, дающая полное квантово-механическое описание физического состояния частицы;

В книге «Что такое жизнь?» Шрёдингер обратился к проблемам генетики, взглянув на феномен жизни с точки зрения физики. Он уделял большое внимание философским аспектам науки, античным и восточным философским концепциям, вопросам этики и религии.

Луи де Бройль является автором работ по фундаментальным проблемам квантовой теории. Ему принадлежит гипотеза о волновых свойствах материальных частиц (волны де Бройля, или волны материи), положившая начало развитию волновой механики. Он предложил оригинальную интерпретацию квантовой механики (теория волны-пилота, теория двойного решения), развивал релятивистскую теорию частиц с произвольным спином, в частности фотонов (нейтринная теория света), занимался вопросами радиофизики, классической и квантовой теориями поля, термодинамики и других разделов физики.

Гейзенберг является автором ряда фундаментальных результатов в квантовой теории: он заложил основы матричной механики, сформулировал соотношение неопределённостей, применил формализм квантовой механики к проблемам ферромагнетизма, аномального эффекта Зеемана и прочим. В дальнейшем активно участвовал в развитии квантовой электродинамики (теория Гейзенберга - Паули) и квантовой теории поля (теория S-матрицы), в последние десятилетия жизни предпринимал попытки создания единой теории поля. Гейзенбергу принадлежит одна из первых квантово-механических теорий ядерных сил; во время Второй мировой войны он был ведущим теоретиком немецкого ядерного проекта. Ряд работ посвящён также физике космических лучей, теории турбулентности, философским проблемам естествознания. Гейзенберг сыграл большую роль в организации научных исследований в послевоенной Германии.

- обнаруживается всеобщая взаимопревращаемость элементарных частиц, обоснованная огромным экс?ериментальным материалом, которая выражает взаимную связь и взаимопревращение объектов микромира и свидетельствует о качественном многообразии форм материи и их взаимообусловленности.

Итак, открытие квантово-механических свойств привело к ?ереосмыслению соотношения дискретности и непрерывности.

Сложившиеся к началу XIX в. представления о строении материи были односторонними и не давали возможности объяснить ряд экс?ериментальных факторов. Разработанная М. Фарадеем и Дж. Максвеллом в XIX в. теория электромагнитного поля показала, что признанная концепция не может быть единственной для объяснения структуры материи. В своих работах М. Фарадей и Дж. Максвелл показали, что поле - это самостоятельная физическая реальность.

Итак, в науке произошла определённая ?ереоценка основополагающих принципов, в результате которой обоснованное И. Ньютоном дальнодействие заменялось близкодействием, а вместо представлений о дискретности выдвигалась идея непрерывности, получившая свое выражение в электромагнитных полях.

Вся обстановка в науке в начале XX в. складывалась так, что представления о дискретности и непрерывности материи получили своё чёткое выражение в двух видах материи: веществе и поле, различие между которыми явно фиксировалось на уровне явлений микромира. Однако дальнейшее развитие науки в 20-е г. показало, что такое противопоставление является весьма условным.

В 1900 г. М. Планк Макс Карл Эрнст Людвиг Планк (нем. Max Karl Ernst Ludwig Planck; 23 апреля 1858, Киль - 4 октября 1947, Гёттинген) - немецкий физик-теоретик, основоположник квантовой физики. Лауреат Нобелевской премии по физике (1918) и других наград, член Прусской академии наук (1894), ряда иностранных научных обществ и академий наук. На протяжении многих лет один из руководителей немецкой науки. Научные труды Планка посвящены термодинамике, теории теплового излучения, квантовой теории, специальной теории относительности, оптике. Он сформулировал второе начало термодинамики в виде принципа возрастания энтропии и использовал его для решения различных задач физической химии. Применив к проблеме равновесного теплового излучения методы электродинамики и термодинамики, Планк получил закон распределения энергии в спектре абсолютно чёрного тела (формула Планка) и обосновал этот закон, введя представление о квантах энергии и кванте действия. Это достижение положило начало развитию квантовой физики, разработкой различных аспектов которой он много занимался в последующие годы («вторая теория» Планка, проблема структуры фазового пространства, статистическая механика квантовых систем и так далее). Планк впервые вывел уравнения динамики релятивистской частицы и заложил основы релятивистской термодинамики. Ряд работ Планка посвящён историческим, методологическим и философским аспектам науки. показал, что энергия излучения или поглощения электромагнитных волн не может иметь произвольные значения, а кратна энергии кванта, т.е. волновой процесс приобретает окраску дискретности. Идея Планка о дискретной природе света получили своё подтверждение в области фотоэффекта. Де Бройль открыл примерно в это же время у частиц волновые свойства (дифракция электрона).

Итак, частицы неотделимы от создаваемых ими полей [3] и каждое поле вносит свой вклад в структуру частиц, обуславливая их свойства. В этой неразрывной связи частиц и полей можно видеть одно из наиболее важных проявлений единства прерывности и непрерывности в структуре материи.

Для характеристики прерывного и непрерывного в структуре материи следует также упомянуть единство корпускулярных и волновых свойств всех частиц и фотонов. Единство корпускулярных и волновых свойств материальных объектов представляет собой одно из фундаментальных противоречий современной физики и конкретизируется в процессе дальнейшего познания микроявлений. Изучение процессов макромира показали, что прерывность и непрерывность существуют в виде единого взаимосвязанного процесса. При определённых условиях макромира микрообъект может трансформироваться в частицу или поле и проявлять соответствующие им свойства.

В соответствии с достижениями квантовой физики основополагающим понятием современного атомизма является понятие элементарной частицы, но им присущи такие свойства, которые не имели ничего общего с атомизмом древности.

Развитие физики микромира показало неисчерпаемость свойств элементарных частиц [4] и их взаимодействий. Все частицы, имеющие достаточно большую энергию, способны к взаимопревращениям, но при соблюдении ряда законов сохранения. Число известных элементарных частиц постоянно растёт и превышает уже 300 разновидностей, включая неустойчивые резонансные состояния. Важнейшим свойством частицы является её масса покоя. По этому свойству частицы делятся на 4 группы:

1. Лёгкие частицы - лептоны (фотон, электрон, позитрон). Фотоны не имеют массы покоя.

2. Частицы средней массы - мезоны (мю-мезон, пи-мезон).

3. Тяжёлые частицы - барионы. К ним относятся нуклоны - составные части ядра: протоны и нейтроны. Протон - самый легкий барион.

4. Сверхтяжелые - ги?ероны. Устойчивых разновидностей немного: фотоны (кванты электромагнитного излучения); гравитоны (гипотетические кванты гравитационного поля); электроны; позитроны (античастицы электронов); протоны и антипротоны; нейтроны; нейтрино Нейтримно (итал. neutrino - нейтрончик, уменьшительное от neutrone - нейтрон) - нейтральная фундаментальная частица с полуцелым спином, участвующая только в слабом и гравитационном взаимодействиях и относящаяся к классу лептонов.Нейтрино малой энергии чрезвычайно слабо взаимодействуют с веществом: так, нейтрино с энергией порядка 3-10 МэВ имеют в воде длину свободного пробега порядка 1018 м (около 100 св. лет). Каждую секунду через площадку на Земле площадью в 1 смІ проходит около 6Ч1010 нейтрино, испущенных Солнцем, однако их влияние на вещество практически никак не ощущается. В то же время нейтрино высоких энергий успешно обнаруживаются по их взаимодействию с мишенями. Такааки Кадзита и Артур Макдональд получили Нобелевскую премию по физике 2015 года «за открытие нейтринных осцилляций, показывающих, что нейтрино имеют массу». - самая загадочная из всех элементарных частиц.

Нейтрино было открыто в 1956 г., тогда как название его было дано в 1933 г. Э. Ферми 20 , а гипотезу о его существовании высказал в 1930 г. швейцарский физик В. Паули21. Нейтрино играет большую роль в космических процессах во всей эволюции материи во Вселенной. Время их жизни практически бесконечно. По подсчётам учёных, нейтрино уносят значительную долю излучаемой звездами энергии. Наше Солнце теряет за счёт излучения нейтрино примерно 7 % энергии, на каждый квадратный сантиметр Земли ?ер?ендикулярно солнечным лучам ежесекундно падает примерно 300 миллионов нейтрино. Однако они не регистрируются нашими органами чувств и приборами ввиду их слабого взаимодействия с веществом. Дальнейшая судьба этого излучения неизвестна, но, вполне понятно, нейтрино должно вновь включиться в круговорот материи в природе. Скорость распространения нейтрино равна скорости света в вакууме.

Особенностью элементарных частиц является то, что большинство из них могут возникать при столкновении с другими частицами достаточно высокой энергии: протон большой энергии превращается в нейтрон с испусканием пимезона. При этом элементарные частицы распадаются на другие: нейтрон - на электрон, протон и антинейтрино, а нейтральный пи-мезон - на два фотона. Пимезоны, таким образом, являются квантами ядерного поля, объединяющими нуклоны и ядра.

В ходе развития науки открываются все новые свойства элементарных частиц. Взаимная обусловленность свойств частиц свидетельствует о сложной их природе, наличии многогранных связей и отношений. В зависимости от с?ецифики элементарной частицы может появиться тот или иной вид взаимодействия: сильное, электромагнитное, слабое.

Сильное взаимодействие обуславливается ядерными силами, оно обес?ечивает устойчивость атомных ядер.

Электромагнитные взаимодействия - слабые взаимодействия - в процессах распада нейтронов, радиоактивных ядер и предполагают участие в этих взаимодействиях нейтрино.

Слабые взаимодействия в 1010-1012 раз слабее сильных взаимодействий. Этот вид взаимодействий сегодня достаточно хорошо изучен.

У большинства элементарных частиц есть античастицы, отличающиеся противоположными знаками электрических зарядов и магнитных моментов:

Энрико Ферми (итал. Enrico Fermi; 29 сентября 1901, Рим, Италия - 28 ноября 1954, Чикаго, США) - итальянский физик, наиболее известный благодаря созданию первого в мире ядерного реактора, внёсший большой вклад в развитие ядерной физики, физики элементарных частиц, квантовой и статистической механики. Считается одним из «отцов атомной бомбы». За свою жизнь он получил несколько патентов, связанных с использованием атомной энергии. Лауреат Нобелевской премии по физике 1938 года «за доказательство существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами». Ферми был одним из немногих физиков, преуспевших как в теоретической физике, так и в экспериментальной. Член Национальной академии деи Линчеи (1935), иностранный член-корреспондент АН СССР (1929). Он создал теории бетараспада, замедления нейтронов. В 1939 году ввёл понятие цепной реакции и позже принял участие в атомном проекте. В его честь названы распределение Ферми - Дирака, модель Томаса - Ферми, химический элемент фермий и др.

Из античастиц могут быть образованы устойчивые атомные ядра и антивещество, подчиняющееся тем же законам движения, что и обычное вещество. В больших количествах антивещество в космосе не обнаружено, в связи с этим существование «антимира», т.е. галактик из антивещества является проблематичным.

Итак, с каждым новым открытием строение микромира уточняется и оказывается всё более сложным. Чем глубже мы уходим в него, тем больше новых свойств обнаруживает наука.

Литература

атомистика классический механика квантовый

1. Дальнодействие и близкодействие [Интернет-ресурс]: https://ru.wikipedia.org/wiki/%D0%94%D0%B0%D0%BB%D1%8C%D0%BD%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5_%D0%B8_%D0%BA%D0%BE%D1%80%D0%BE%D1%82%D0%BA%D0%BE%D0%B4%D0%B5%D0%B9%D1%81%D1%82%D0%B2%D0%B8%D0%B5

2. Квантовая механика [Интернет-ресурс]: https://ru.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%BE%D0%B2%D0%B0%D1%8F_%D0%BC%D0%B5%D1%85%D0%B0%D0% BD%D0%B8%D0%BA%D0%B0

3. Фундаментальные поля [Интернет-ресурс]: https://ru.wikipedia.org/wiki/%D0%9F%D0%BE%D0%BB%D0%B5_(%D1%84% 0%B8%D0%B7%D0%B8%D0%BA%D0%B0)#.D0.A4.D1.83.D0.BD.D0.B4.D0.B0.D0.BC.D0.B5.D0.BD.D1.82.D0.B0.D0.BB.D1.8C.D0.BD.D1.8B.D0.B5_.D0.BF.D0.BE.D0.BB.D1.8F

4. Элементарные частицы [Интернет-ресурс] https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%B5%D0%BC%D0%B5%D0%BD%D1%82%D0%B0%D1%80%D0%BD%D0%B0%D1%8F_%D1%87%D0%B0%D1%81%D1%82%D0%B8%D1%86%D0%B0

5. Френкель Е.Н. Концепции современного естествознания: Физические, химические и биологические концепции: учеб. пособие. - 3-е изд., испр. - Вольск: ВВИМО, 2013. - 236 с.

6. Карпенков С.Х. Концепции современного естествознания. Учебник для студентов вузов. - 11-е изд., перераб. и доп.- М.: КНОРУС, 2012. - 670 с.


Подобные документы

  • Представления о строении материи. Борьба концепций прерывности (дискретности) — корпускулярная концепция, и непрерывности. Основополагающие признаки атомистики, квантовая теория строения атома, переосмысление соотношения дискретности и непрерывности.

    реферат [14,1 K], добавлен 29.11.2009

  • Обзор современных представлений о структурности, системности, материи в пространстве и времени, основных идей и принципов квантовой физики. Анализ закономерностей существования неорганической материи, оснований целостности и многообразия явлений природы.

    реферат [29,8 K], добавлен 04.04.2012

  • Классическая механика как фундамент естественнонаучной теории. Возникновение и развитие классического естествознания. Система Коперника. Галлилео Галлилей. Исаак Ньютон. Формирование основ классической механики. Метод флюксий.

    контрольная работа [99,8 K], добавлен 10.06.2007

  • Предмет квантовой механики. Описание явлений микромира. Понятие кванта и корпускулярно-волновой дуализм света. Принцип дополнительности Бора. Отличие квантовой механики от классической. Термин "физическая реальность" в методологии физического познания.

    реферат [38,8 K], добавлен 06.09.2015

  • Физика и естествознание. Формирование квантовой механики и квантовой физики, специфика их законов и принципов. Основные понятия "элементарность", "простое-сложное", "деление". Многообразие и единство элементарных частиц, проблема их классификации.

    реферат [533,5 K], добавлен 02.01.2008

  • Естественнонаучная и гуманитарная культура. Дифференциация, интеграция и математизация в современной науке. Культурный уровень организации материи. Квантовомеханическая концепция описания микромира. Пространство и время в общей теории относительности.

    курс лекций [47,9 K], добавлен 16.11.2009

  • Научная революция и работы Коперника, Кеплера, Галилея и Декарта. Механика Ньютона, атомы микромира и лапласовский детерминизм, теории газов. Электромагнитная картина мира в работах Фарадея, Максвелла и Лоренца. Теория относительности Эйнштейна.

    реферат [599,1 K], добавлен 25.03.2016

  • Идея о существовании атомов, опыты Резерфорда. Создание физических теорий, описывающих поведение и внутреннюю структуру элементарных частиц. Основные положения квантовой механики: частицы и кванты. Ядерная энергия, ее мирное и военное применение.

    реферат [2,6 M], добавлен 20.08.2015

  • Модели атома Джозефа Д. Томсона и Э. Резерфорда. Важнейшие постулаты квантовой физики Н. Бора. Общая характеристика и свойства атомного ядра. Электронная оболочка атома. Понятие о квантовых числах. Периодический закон Менделеева в свете квантовой теории.

    реферат [50,4 K], добавлен 17.05.2011

  • Классическая механика Ньютона - ядро классической физики. Работа ученых-физиков с идеальными моделями реальных объектов. Основные положения "лапласовского детерминизма". Пространство и время в классической физике. Типы естественнонаучной рациональности.

    реферат [25,0 K], добавлен 25.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.