Объекты микробиологии

Краткая морфологическая характеристика объектов изучения микробиологии. Роль ферментов в жизнедеятельности микробов. Конститутивные, адаптивные ферменты. Использование микробных ферментов в практике. Спиртовое брожение. Значение в природе, в производстве.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 04.01.2018
Размер файла 328,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Объекты изучения микробиологии, их краткая морфологическая характеристика. Размеры

микробиология фермент брожение

Микробиология (от греч. micros- малый, bios- жизнь, logos- учение, т.е. учение о малых формах жизни) - наука, изучающая организмы, неразличимые (невидимые) невооруженным какой- либо оптикой глазом, которые за свои микроскопические размеры называют микроорганизмы (микробы).

Объекты изучения микробиологии: бактерии, некоторые группы грибов, простейшие, а также вирусы. Микробиология соответственно названным объектам подразделена на самостоятельные дисциплины: бактериологию, микологию, протозоологию и вирусологию.

Бактерии (от слова bacterion -- палочка) -- это наиболее широко распространенная в природе группа микроорганизмов, представляющих собой большой и чрезвычайно разнообразный мир микроскопических существ. Клетки наиболее мелких шаровидных бактерий имеют в поперечнике менее 0,1 мкм (т. е. 0,0001 мм). Подавляющее большинство бактерий -- это палочки, толщина которых в среднем составляет 0,5--1 мкм, а длина 2--3 мкм. Очень редко встречаются бактерии-«гиганты», клетки которых имеют в диаметре 5--10 мкм, а в длину достигают 30--100 мкм.

Крайне малые размеры клеток являются характерной, но не главной особенностью бактерий. Все бактерии представлены особым типом клеток, лишенных истинного ядра, окруженного ядерной мембраной. Аналогом ядра у бактерий является нуклеоид -- ДНК-содержащая плазма, не отграниченная от цитоплазмы мембраной. Кроме того, для бактериальных клеток характерны отсутствие митохондрий, хлоропластов, а также особое строение и состав мембранных структур и клеточных стенок. Организмы, в клетках которых отсутствует истинное ядро, называются прокариотами (доядерными) или протоцитами (т, е. организмами с примитивной организацией клеток).

Бактерии, в широком смысле слова,-- это прокариотные организмы. К прокариотам относятся такие группы микроорганизмов, как эубактерии, спирохеты, микоплазмы, миксобактерии, лучистые грибки (актиномицеты) и сине-зеленые водоросли (цианобактерии). Форма клеток у бактерий может быть не только палочковидной (цилиндрической), но и шаровидной (кокки), спиральной (вибрионы, спириллы, спирохеты). Актиномицеты же и родственные им организмы образуют длинные ветвящиеся клетки -- гифы, формирующие мицелий (сплетение гиф). Клетки микоплазм, лишенные плотной оболочки, способны принимать самые причудливые, постоянно изменяющиеся формы.

Палочковидные бактерии (рис. 1, б) различаются друг от друга размерами. Палочковидные бактерии, образующие в определенных условиях споры, называются бациллами. К ним относятся наиболее крупные из палочковидных форм. Не образующие споры палочковидные формы называются бактериями в узком смысле этого слова. Палочковидные бактерии могут быть одиночными или соединенными попарно - диплобактерии, цепочками по три - четыре и более клеток - стрептобактерии. Соотношения между длиной и толщиной палочек бывают самыми различными.

Рис. 1. Форма бактерий: а - шаровидные (1 - микрокки, 2 - стрептококки, 3 - диплококки и тетракокки, 4 - стафилококки, 5 - сарцины); б - палочковидные, в - извитые (8 - вирионы, 9 - спириллы, 10 - спирохеты)

Длина клеток палочковидных бактерий колеблется от десятых долей мкм до 10 - 15 мкм и более; средняя длина палочковидных бактерий 2 - 5 мкм; диаметр клетки от 0,5 до 1 мкм.

Извитые, или изогнутые, бактерии (рис. 1, в) различаются длиной, толщиной и степенью изогнутости. Палочки, слегка изогнутые в виде запятой, называют вибрионами, палочки с одним или несколькими завитками в виде штопора - спириллами, а тонкие палочки с многочисленными завитками - спирохетами.

Грибы (Fungi, Mycetes) -- низшие растительные организмы, не имеющие хлорофилла. Играют важную роль в круговороте веществ в природе, а также в промышленности при изготовлении хлеба, вина, пива. Среди грибов имеются возбудители заболеваний человека и животных. Грибы характеризуются более сложным строением, чем бактерии, и более совершенными способами размножения. Грибы покрыты оболочкой, имеют дифференцированное ядро, различные включения и вакуоли в цитоплазме.

По морфологии различают грибы нитевидные, или плесени, тело которых состоит из длинной нити, разделенной перегородками, или септами, на отдельные клетки (у высших грибов), и грибы-дрожжи -- одноклеточные организмы овальной формы. У грибов наблюдаются явления диморфизма, когда плесени могут образовывать типичные дрожжеподобные формы, а дрожжи -- мицелий.

Грибы размножаются бесполым (вегетативным) и половым способами. При вегетативном размножении образуются споры -- конидии. Они могут располагаться в специальных вместилищах -- спорангиях (эндоспоры) или отшнуровыватъся от плодоносящих грифов (экзоспоры). Иногда внутри гифа образуются споры -- оидии, являющиеся его сегментами. Дрожжи размножаются путем образования и отшнуровывания бокового выроста -- почки. При половом процессе две веточки грибниц соприкасаются концами. На каждой из них образуются клетки, оболочка которых растворяется, а содержимое сливается. Образуется спора, которая после периода покоя прорастает.

Классификация грибов довольно сложна и основана главным образом на способах размножения (половое, бесполое) и на структуре вегетативного мицелия. Различают низшие грибы, куда входят два класса: архимицеты и фикомицеты. Высшие грибы объединяют три класса: аскомицеты, базидиомицеты и несовершенные грибы. Все они имеют значение для человека.

Фикомицеты широко распространены в природе. К ним относится семейство мукоровых грибов -- головчатая плесень (рис. 2.2). Клетка мукора состоит из ветвистого неразделенного мицелия, от которого отходят воздушные гифы. Размножаются спорами, которые находятся в мешках-спорангиях на конце плодоносящих гифов (эндоспоры). Половое размножение происходит обычно при недостатке питательных веществ. У человека могут вызывать заболевания -- мукорозы, сопровождающиеся лихорадкой, поражением легких и среднего уха.

Аскомицеты, или сумчатые грибы, составляют одну из наиболее обширных групп. Размножаются половым путем, образуя в особых сумках -- асках определенное число спор. В группу аскомицетов входят как нитевидные грибы (плесени), так и дрожжи.

Нитевидные грибы, или плесени, имеют много-клеточный мицелий с межклеточными перегородками в гифах. При вегетативном размножении от одноклеточного гифа-конидиеносца отшнуровываются цепочки спор -- конидии (экзоспоры). К плесневым грибам относят два рода: Aspergillus -- леечная плесень и Penicillium -- кистевик.

Аспергиллы, или леечная плесень (рис. 2.3), встречаются на хлебе, фруктах и имеют характерный вид конидиеносца -- плодоносящего гифа. От утолщенного конца этого гифа отходят выросты -- стеригмы, напоминающие льющиеся из лейки струйки воды.

Пенициллы, или гриб-кистевик (рис. 2.4), имеют конидиеносец, который разветвляется на конце, напоминая кисть руки. Плесени широко распространены в природе и играют важную роль в минерализации органических веществ. Некоторые виды плесени используются в промышленности для получения лимонной кислоты, приготовления определенных сортов сыра. Пенициллы являются продуцентами мощного антибиотика -- пенициллина. Плесени могут также вызывать заболевания человека.

Рис. 2.5-7

Дрожжи (рис. 2.5-7) - одноклеточные организмы овальной или удлиненной формы, размером 8-10 мкм. Внутри клетки имеются ядро, митохондрии, вакуоли, волютин. Дрожжи размножаются почкованием, образуя на поверхности клеток вырост -- почку. Процесс почкования длится около 2 ч. За это время в почку переходит часть ДНК, место соединения почки с материнской клеткой утончается и почка отшнуровывается. Спорообразование (половой процесс) наступает после нескольких почкований. Часто споры образуются без предварительного оплодотворения, а иногда и после слияния двух клеток. Внутри сумки - аски образуется 4-8 спор.

Несовершенные грибы (Fungi imperfecti) изучены меньше всего. К ним относят грибы, у которых неизвестен половой способ размножения. Несовершенные грибы .образуют многоклеточный мицелий; размножение осуществляется спорами-конидиями. Многие грибы вызывают заболевания человека, животных и растений. Особенно большое значение имеют возбудители дерматомикозов, вызывающие заболевания кожи, волос и ногтей: трихофитон -- возбудитель трихофитии, микроспорон -- возбудитель микроспории, ахорион Шенлейна -- возбудитель парши, или фавуса (рис. 2.9-11). К несовершенным грибам относят также грибы рода Candida, или дрожжеподобные грибы, которые вызывают у человека, особенно у детей, заболевание слизистой оболочки рта -- молочницу (рис. 2.8).

Дрожжеподобные грибы имеют округлую форму, размер 8--20 мкм, размножаются почкованием. В отличие от истинных дрожжей им свойственны диморфизм (иногда образуют мицелий) и отсутствие полового размножения. При нерациональном использовании антибиотиков Candida вызывают поражение всего организма -- висцеральный кандидамикоз.

Простейшие, одноклеточные организмы надцарства эукариот. Систематика простейших служит предметом научных дискуссий. Согласно наиболее обоснованным из всех предлагаемых систем простейшие являются либо самостоятельным царством, либо подцарством в царстве животных и включают в себя типы саркодовых, жгутиковых, споровиков, инфузорий и др. Число современных простейших по разным оценкам составляет от 40 тыс. до 70 тыс. видов.

Размеры простейших различаются в разных группах и составляют от 20 мкм до нескольких сантиметров. Как и у всех эукариот, клетка простейшего имеет ядро с двойной мембранной оболочкой. В ядре содержатся молекулы ДНК, организованные в хромосомы. Клетка простейшего представляет собой самостоятельный организм, способный выполнять все необходимые для его жизнедеятельности функции. Поэтому она содержит разнообразные органеллы, выполняющие жизненно важные функции, в т. ч. митохондрии. нередко - пластиды. Движение простейших обеспечивается жгутиками, ресничками и ложноножками (псевдоподиями). Постоянную форму тела простейшим обеспечивают микротрубочки цитоплазмы, целлюлозные и пектиновые пластины, известковые и кремнезёмные элементы скелета: внутреннего (у радиолярий) или внешнего, в виде раковины (у фораминифер, раковинных амёб). Для захватывания и переваривания пищи служат клеточный рот, клеточная глотка и пищеварительные вакуоли. Регуляцию поступления воды и концентрации растворённых веществ в цитоплазме осуществляют сократительные вакуоли, сохраняющие тем самым объём клетки. Для защиты от врагов и при нападении на добычу у простейших имеются специальные органеллы - трихоцисты, которые при необходимости могут выстреливаться из клетки.

Большинство простейших способно к бесполому размножению, обычно в форме митоза. Некоторые виды размножаются почкованием. Наряду с этим у простейших встречаются различные формы полового процесса. При этом образуются гаметы, называемые мужскими и женскими, либо сливаются обычные активные клетки, либо (у инфузорий) происходит обмен ядрами. Для преодоления неблагоприятных условий простейшие образуют цисты.

Простейшие распространены всесветно. Большинство их представителей относятся к свободноживущим морским и пресноводным формам, есть почвенные, многие - паразиты, вызывающие заболевания человека, животных и растений. Простейших изучает наука протозоология.

Вирусы (лат. virus яд) -- мельчайшие микроорганизмы, не имеющие клеточного строения, белоксинтезирующей системы и способные к воспроизведению лишь в клетках высокоорганизованных форм жизни. Они широко распространены в природе, поражают животных, растения и другие микроорганизмы. Вирусы характеризуются рядом уникальных свойств, отличающих их от простейших, грибков, бактерий -- микроорганизмов, имеющих клеточное строение и генетический материал, представленный двунитчатыми ДНК. Вирусы не имеют рибосом и цитоплазматических органелл, их воспроизводство обеспечивает клетка-хозяин. Молекула вирусного генома наделена необычайной способностью перестраивать жизнедеятельность клетки таким образом, что она перестает узнавать собственную генетическую информацию и функционирует в соответствии с генетической программой вируса, синтезируя вирусоспецифические молекулы. С этой точки зрения вирусы являются генетическими паразитами клетки.

Вирусы содержат нуклеиновую кислоту только одного типа: либо ДНК, либо РНК. РНК-содержащие вирусы - единственные представители в природе, имеющие генетический материал, представленный РНК. Вирусные геномы гаплоидны, т.е. содержат только одну копию генов, за исключением ретровирусов, геном которых является диплоидным. Генетический материал может иметь вид разнообразных структур (двунитчатых, однонитчатых, линейных, кольцевых, фрагментированных молекул). В основе необычного способа воспроизводства вирусов лежит разобщенный во времени и пространстве (на территории клетки) синтез вирусных нуклеиновых кислот и белков, которые затем независимо друг от друга прибывают к местам сборки вирусных частиц.

Природу вирусов как генетических паразитов клетки характеризует их способность к интеграции, т.е. к объединению вирусного генома с клеточным. Группа вирусных генов, являющихся частью клеточного генома, называется провирусом. Провирус способен длительное время существовать в виде так называемых молчащих генов, однако в соответствующих условиях он может активироваться, что приводит к развитию болезни. На способности вирусов к интеграции основан механизм персистенции вирусов в организме, с которой связано возникновение персистентных вирусных инфекций. Интеграция характерна для умеренных ДНК-содержащих бактериофагов, онкогенных ДНК-содержащих вирусов, для вируса гепатита В, обязательна для ретровирусов, к которым относятся онкогенные РНК-содержащие вирусы и вирусы иммунодефицита человека. Персистенция вирусов в организме возможна также при существовании их в клетке в виде кольцевых нуклеиновых кислот типа плазмид бактериальной клетки, реплицируемых самой клеткой. Такие кольцевые ДНК, лишенные собственных белков, описаны при персистенции паповавирусов, вируса герпеса.

2. Роль ферментов в жизнедеятельности микробов. Экзо-, эндоферменты. Конститутивные, адаптивные (индуцибельные) ферменты, локализация их в клетке, использование микробных ферментов в практике

Ферменты (от лат. fermentum - закваска) или энзимы (от греч.- внутри) - это специфические белки, входящие в состав всех клеток и тканей живых организмов играющие роль биологических катализаторов. О ферментах люди узнали давно. Еще в начале прошлого века в Петербурге К.С.Кирхгоф выяснил, что проросший ячмень способен превращать полисахарид крахмал в дисахарид мальтозу, а экстракт дрожжей расщеплял свекловичный сахар на моносахариды - глюкозу и фруктозу. Это были первые исследования в ферментологии.

По строению ферменты могут быть однокомпонентными, простыми, и двухкомпонентными, сложными белками. Во втором случае в составе фермента обнаруживается добавочная группа небелковой природы.

Роль ферментов в жизнедеятельности животных, растений и микроорганизмов колоссальна. Благодаря каталитической функции разнообразные ферменты обеспечивают быстрое протекание в организме и вне его огромного числа химических реакций.

В природе под каталитическим воздействием ферментов осуществляются процессы гидролиза, фосфоролиза, переноса различных групп (метильные радикалы, остатки фосфорной кислоты и т. д.), окисления и восстановления, расщепления и синтеза, изомеризации и т. п. В частности они катализируют реакции синтеза и распада нуклеиновых кислот, участвуют в процессе пищеварения, катализируют реакции анаэробного окисления и процесс свертывания крови. Практически все химические преобразования в живом веществе протекают с помощью ферментов. Естественно поэтому, что каталитическая функция ферментов лежит в основе жизнедеятельности любого организма.

Классификация ферментов

В основу классификации ферментов положен тип реакции, подвергающейся каталитическому воздействию. По данному принципу все ферменты делятся на 6 классов.

1. Оксиредуктазы - ускоряют реакции окисления-восстановления.

2. Трансферазы - ускоряют реакции переноса функциональных групп молекулярных остатков.

3. Гидролазы - ускоряют реакции гидролитического распада.

4. Лиазы - ускоряют негидролитическое отщепление от субстратов определенных групп атомов с образованием двойной связи (или присоединяют группы атомов по двойной связи).

5. Изомеразы - ускоряют пространственные или структурные изменения в пределах одной молекулы.

6. Лиазы - ускоряют реакции синтеза, сопряженные с распадом богатых энергией связей.

Свойства ферментов.

1. t по мере возрастания её до 40-50°С , увеличивается скорость ферментативной реакции, затем скорость уменьшается , а при достижении t 80 0C практически все ферменты инактивируются.

2. Активность фермента зависит от кислотности среды, при которой фермент проявляет повышенную активность. Пепсин рН = 1,5-2,5; амилаза рН = 6,8-7,2; липаза рН = 7-8

3. Специфичность ферментов: Фермент катализирует только определенную реакцию или действует только на один тип связи.

4. Существуют определенные активаторы, которые повышают деятельность ферментов и скорость реакции (ионы Na, K, Mg, Ca, анионы Ce - активируют амилазу слюны.)

5. Ферменты присуще данному микроорганизму и входят в число компонентов, его клетки называют конститутивные

6. Автолиз - саморастворение клетки под действием собственных внутреклеточных ферментов.

7. По характеру воздействия:

- экзоферменты (выделяются клеткой во внешней среде);

- эндоферменты (прочно связаны с внутренними структурами клетки и действуют внутри ее).

В пивоварении и винокурении для замены солода используются препараты грибных амилаз. Это удешевляет производство и сокращает расход зерна. Амилазы используются также для получения растворимого крахмала, декстрина и патоки. Продукты из овощей и фруктов, полученные с применением амилаз, содержат больше сахара и лучше усваиваются, особенно детьми. В хлебопечении амилазы ускоряют процесс созревания теста и улучшают качество хлеба.

В кондитерской промышленности используется инвертаза (сахараза) дрожжей, превращающая сахарозу в глюкозу и фруктозу, она предупреждает кристаллизацию сахарозы при высоких концентрациях. Комплекс ферментов (цитаз) грибов, расщепляющих вещества стенок растительных клеток, используют для улучшения экстракции их содержимого (сока, эфирных масел, жиров, крахмала).

Пектиназы грибов применяют для осветления фруктовых и ягодных соков, для повышения выхода виноградного сока в виноделии, при производстве кофе. Применение пектиназ особенно эффективно при производстве сока из плодов и ягод, содержащих много пектина (черная смородина, крыжовник, слива).

Грибная глюкоамилаза применяется в пивоваренной промышленности для удаления остатков декстринов из пива. Глюкозо-изомераза используется для получения глюкозо-фруктозных сиропов, заменяющих сахарозу, что важно для улучшения рационов питания, поскольку использование в большом количестве сахарозы вредно для человека.

Лактаза применяется для получения молока без лактозы. После такой обработки оно приобретает лучшие вкусовые качества. Кроме того, некоторая часть населения не может употреблять молоко именно из-за наличия в нем лактозы, которая вызывает аллергическую реакцию. С помощью лактазы получают также сахара из молочной сыворотки, содержащей большое количество лактозы.

Большое значение имеет глюкозооксида грибов, так как она позволяет пищевым продуктам освобождаться от остатков глюкозы и молекулярного кислорода и этим повышает сроки их хранения. Глюкозооксидазу добавляют к яичному порошку, к майонезу, к пиву при его длительном хранении. С помощью этого фермента замедляется окисление аскорбиновой кислоты при обработке им овощей и фруктов. Применение ферментов облегчает получение глюконовой кислоты. Протеолитические ферменты микробного происхождения заменяют ренин в сыроделии для получения сгустка. Начинают их использовать для размягчения (тендеризации) мяса, ускорения созревания рыбы при посоле, в виноделии и пивоварении. Липазы находят применение в производстве цельного сухого молока, в сыроделии для ускорения созревания сыров и придания им специфического вкуса и аромата.

3. Микроорганизмы и окружающая среда. Приспособительные возможности микробов к воздействию неблагоприятных условий среды

Жизнедеятельность микробов находится в зависимости от окружающей среды. Создавая те или иные условия в среде, где развиваются микробы, можно способствовать развитию полезных и подавлять жизнедеятельность вредных микробов.

Основными факторами, влияющими на жизнедеятельность микробов являются:

1. Температура. Все микробы имеют максимальную, оптимальную и минимальную температуру своего развития. Оптимальная температура для большинства микробов 25-35 °С. Поэтому продукты в этих условиях быстро портятся.

Минимальный температурный предел от -6 до -20 °С. Но при такой температуре микробы не гибнут, а лишь замедляют свое развитие. При разморозке вновь начинают свою деятельность.

Максимальная температура (45 - 50 °С) также приостанавливает размножение микробов. Дальнейшее повышение ведет к гибели.

2. Влажность. Повышенная влажность увеличивает количество растворимых питательных веществ, следовательно, способствует питанию и развитию микробов. Поэтому пищевые продукты, содержащие большое количество влаги (молоко, мясо, рыба, овощи, плоды), быстро портятся. Поэтому надежным способом сохранения продуктов от порчи является сушка.

3. Свет. Прямой солнечный луч губит микробы, в том числе и болезнетворные. Губительны ультрафиолетовые лучи солнца и специальных ламп БУВ, используемых для дезинфекции воды, воздуха.

4. Химические вещества. Многие химические соединения губительно действуют на микробы и используются для их уничтожения. Так хлорную известь применяют для дезинфекции рук.

5. Биологические факторы. Микробы в процессе жизнедеятельности могут влиять друг на друга, способствуя развитию или угнетению. Многие бактерии, плесневелые грибы выделяют в окружающую среду вещества - антибиотики, губительно действующие на развитие других микробов. Другими веществами, близкими к антибиотикам по характеру действия на микробы, являются фитонциды. Это вещества, выделяемые многими растениями (луком, чесноком, хреном, цитрусовыми), убивают болезнетворные микробы дизентерии, гнилостную палочку.

Микробы широко распространены в природе: в почве, в воде, воздухе. Самой благоприятной средой для развития микробов является почва, в 1 г которой находится до нескольких миллиардов микробов. Развитию микробов в почве способствует имеющиеся в ней питательные вещества, постоянная влажность, температура, отсутствие солнечного света. Больше всего микробов содержится на глубине от 1 до 30 см. В песчаной почве их меньше, чем в черноземе.

Для некоторых микроорганизмов вода является естественной средой обитания, особенно в открытых водоемах: реках, морях, озерах. Со сточными водами могут попадать болезнетворные микробы. Такую воду следует подвергать тщательной очистке - отстаивать, фильтровать, озонировать, обрабатывать ультрафиолетовыми лучами.

Воздух - неблагоприятная среда для жизни микроорганизмов и чистота его зависит от степени запыленности и загрязнения выбросами промышленных предприятий. Воздух чище зимой, чем летом; над океанами и морями чище, чем над сушей; над лесными массивами чище, чем над распаханной землей, в сельской местности чище, чем в городе.

4. Рекомбинация прокариот: трансформация, трансдукция, конъюгация

К рекомбинативной изменчивости приводят конъюгация, трансфомация и трансдукция.

Конъюгация - способ передачи генетического материала в результате полового скрещивания. Это явление описано у 2 штаммов E. Coli в 1946 г. Ледербергом и Татумом.

1-ый штамм был ауксотрофен к биотину, фенилаланину и цистину. 2-ой штамм нуждался в треонине, лейцине и вит. В1.

При совместном выращивании E. Coli на питательной среде выросли колонии не нуждающиеся в указанных веществах. Конъюгация начинается с того, что клетки 2-х штаммов E. Coli сближаются и между ними возникает цитоплазматический мостик. В образовании которого участвуют F+-пили. Фрагмент F-пили (мужской) проникает в клетку реципиента (F-женская), где происходит ее рекомбинация.

Конъюгация встречается у р. Shigella, Salmonella, Escherichia, Pseudomonas, Nocardia.

Трансформация - изменение генома, а следовательно и свойств бактерий в результате переноса информации при проникновении фрагмента свободной ДНК из среды в клетку. Явление трансформации было описано Гриффитом в 1928 г. при изучении природы вирулентности пневмококков. Он обнаружил, если в организм мышей ввести убитые нагреванием капсульные пневмококки (Str. Pneumonia), а затем живые, бескапсульные штаммы, то все мыши погибают. Т. е. бескапсульные штаммы пневмококков приобретают способность образовывать капсулу. Трансформирующее вещество выделили из убитых клеток капсульных пневмококков, им является ДНК, чувствительная к ДНК-полимеразе.

Этапы трансформации:

1. адсорбция трансформирующей ДНК на поверхности клетки-реципиента.

2. ферментативное расщепление и проникновение ДНК в клетку.

3. взаимодействие фрагмента ДНК-донора с ДНК-реципиента. Одна нить ДНК находит свой гомолог в составе ДНК клетки и реплицируется с ней и передает всем поколениям бактериальной клетки.

Встречается у пневмококков, стафилококков, гонококков, бацилл, клубеньковых бактерий, E. Coli.

Этим способом можно передавать признаки бактерий: устойчивость к лекарственным и ядовитым веществам, синтез капсульных полисахаридов, ферментов, аминокислот и определенных метаболитов.

Трансдукция - перенос генетической информации из одной клетки в другую вирусной частицей (бактериофагом). Это явление открыли в 1952 г. Н. Циндер и Дж. Ледерберг на примере 2-х штаммов Salmonella.

У бактерий различают 3 типа трансдукции:

- специфическая;

- общая;

- абортивная.

Специфическая - наблюдается у лизогенного бактериофага, который не переходит к немедленной репродукции, ДНК фага включается в определенный участок хромосомы клетки-хозяина переходя в состояние профага.

Общая отличается от специфической тем, что в состав ДНК фага включается фрагмент ДНК бактерии донора контролирующие различные признаки. При абортивной трансдукции фрагмент хромосомы клетки-донора, привнесенный трансдуцирующим фагом в клетку-реципиента, не включается в ее хромосому, а локализуется в цитоплазме и при делении клетки передается одной из образующихся клеток.

5. Спиртовое брожение. Значение в природе, в производстве

Спиртовое брожение -- это процесс окисления углеводов, в результате которого образуются этиловый спирт, углекислота и выделяется энергия. Этот вид брожения имеет наибольшее народнохозяйственное значение. Спиртовое брожение есть процесс разложения сахара на спирт и углекислый газ. Оно протекает под действием микроорганизмов в виде следующей реакции:

С6Н12О6 = 2С2Н5ОН + 2СО2 + 27 ккал

Сахар этиловый углекислый энергия

спирт газ

Кроме этилового спирта и углекислого газа, при этом получаются также побочные продукты: уксусный альдегид, глицерин, сивушные масла (бутиловый, изобутиловый, амиловый и изоамиловый спирты), уксусная и янтарная кислоты и др.

Спиртовое брожение углеводов вызывается дрожжами, отдельными представителями мукоровых грибов и некоторыми бактериями. Однако грибы и бактерии вырабатывают спирта значительно меньше, чем дрожжи. Сбраживаться могут лишь углеводы, и притом весьма избирательно. Дрожжи сбраживают только некоторые 6-углеродные сахара (глюкозу, фруктозу, маннозу).

Схематично спиртовое брожение может быть изображено уравнением

С6Н12О6 > 2С2Н5ОН + 2СO2 + 23,5 + 104 дж

глюкоза > этиловый спирт + углекислота + энергия.

Процесс спиртового брожения -- многоступенчатый, состоящий из цепи химических реакций. Превращения глюкозы до образования пировиноградной кислоты происходят так же, как и при дыхании. Эти реакции происходят без участия кислорода (анаэробно). Далее пути дыхания и брожения расходятся. При спиртовом брожении пировиноградная кислота превращается в спирт и углекислоту. Эти реакции протекают в две стадии. Сначала от пирувата отщепляется С02 и образуется уксусный альдегид; затем уксусный альдегид присоединяет водород, восстанавливаясь в этиловый спирт. Все реакции катализируются ферментами. В восстановлении альдегида участвует НАД-H2. Обычно при спиртовом брожении, кроме главных продуктов, образуются побочные. Они довольно разнообразны, но присутствуют в небольшом количестве: амиловый, бутиловый и другие спирты, смесь которых называется сивушным маслом -- соединение, от которого зависит специфический аромат вина. Образование побочных веществ связано с тем, что превращение глюкозы частично идет другими путями. Биологический смысл спиртового брожения заключается в том, что образуется определенное количество энергии, которая запасается в форме АТФ, а затем расходуется на все жизненно необходимые процессы клетки.

Спиртовое брожение используется человеком с глубокой древности при изготовлении вина, пива, браги и др. Причина же брожения стала известна лишь в середине XIX в., после того, как Пастер установил, что разложение сахара на спирт и углекислый газ связано с дыханием дрожжей в анаэробных условиях. Сбраживание сахара представляет собой сложный биохимический процесс, поэтому приведенное выше уравнение выражает его лишь в общем суммарном виде.

Дрожжи в зависимости от условий брожения образуют разные количества продуктов брожения, среди них могут преобладать либо этиловый спирт и углекислота, либо глицерин и уксусная кислота. Причем сбраживают они не все сахара, а только моносахариды (например, глюкозу) и дисахариды (например, мальтозу). Полисахариды (крахмал) дрожжи сбраживать не способны, так как они не имеют нужного для расщепления полисахаридов фермента (амилазы).

Брожение зависит не только от условий, в которых оно протекает, но также от вида и расы применяющихся дрожжей. К числу этих условий относятся концентрация сахара, кислотность среды, температура и количество накопившегося спирта. Наиболее благоприятная концентрация сахара в сбраживаемом субстрате для большинства дрожжей составляет около 15%, при более высоких концентрациях брожение замедляется, а затем прекращается вовсе. Однако некоторые дрожжи могут вызывать брожение и при содержании в среде сахара свыше 60%. При концентрации сахара в субстрате в количестве менее 10% брожение протекает очень вяло. Нормальной для спиртового брожения является кислая среда с рН, равным 4 или 4,5. В щелочной среде брожение протекает с образованием глицерина и уксусной кислоты.

Наилучшая температура брожения находится в пределах 28-32°С. При более высоких температурах брожение замедляется, а при 50°С оно прекращается. Понижение температуры снижает энергию брожения, хотя полностью оно не останавливается даже при 0°С. На практике процессы брожения ведут при температуре в пределах 20-28°С при верховом брожении и в пределах 5-10°С при низовом брожении.

Верховое брожение протекает очень энергично, с образованием на поверхности субстрата большого количества пены и с бурным выделением углекислого газа, потоками которого дрожжи выносятся в верхние слои субстрата. Дрожжи, вызывающие такое брожение, называются верховыми дрожжами. После окончания брожения они оседают на дно бродильных сосудов.

Низовое брожение, вызываемое низовыми дрожжами, идет значительно спокойнее, с образованием небольшого количества пены. Углекислый газ выделяется постепенно и дрожжи остаются в нижнем слое сбраживаемого субстрата.

Верховые дрожжи применяют для получения спирта и пекарских дрожжей, низовые - для производства вина и пива. Для получения вина и пива иногда используют и верховые дрожжи.

Образующийся в процессе брожения спирт оказывает вредное воздействие на дрожжи. При накоплении в субстрате спирта более 16% к объему самого субстрата брожение прекращается, а угнетающее действие образовавшегося спирта начинает проявляться уже при концентрации 2-5%. Некоторые же расы специально приученных дрожжей способны выдерживать весьма высокие концентрации спирта - до 20-25%.

Спиртовое брожение нормально протекает в анаэробных условиях, создающихся в процессе самого брожения. Но поскольку дрожжи являются факультативными анаэробами, они могут разлагать сахар и в аэробных условиях с образованием углекислого газа и воды. Замечено, что в условиях хорошей аэрации дрожжи усиленно размножаются. Поэтому при производстве пекарских дрожжей бродящий субстрат продувают воздухом.

Для промышленного получения спирта в качестве сырья используют крахмалосодержащие продукты - картофель, зерновые культуры, а также отходы сахарного производства. В связи с тем, что дрожжи не способны сбраживать крахмал, его предварительно осахаривают с помощью солода, содержащего фермент амилазу. Солод получают из проросших зерен ячменя. В настоящее время для осахаривания применяют также грибной солод (грибы рода аспергиллус), который во многих отношениях является выгоднее ячменного солода. В результате осахаривания крахмала образуется дисахарид мальтоза - солодовый сахар.

Для производства пива чаще всего используют ячмень, из которого получают солод, а из солода приготавливают сусло-сахаристую жидкость, подвергаемую брожению. Вкусовые особенности пива зависят от качества сырья, технологии и применяемых дрожжей. Низовые дрожжи, используемые в пивоварении, ведут медленное брожение, не вызывают значительного помутнения сусла, а по окончании брожения образуют на дне плотный осадок. Среди низовых дрожжей имеются сильнобродящие и слабобродящие дрожжи.

В виноделии до последнего времени дрожжи не играли той преимущественной роли, которая падает на их долю в производстве пива. Основная масса вина получалась путем самосбраживания сусла с помощью случайных дрожжей, находящихся на ягодах винограда. Применение чистых культур в виноделии дает возможность быстрее и полнее осуществить сбраживание виноградного сусла и получить вино с хорошим букетом. Отдельные расы винных дрожжей при сбраживании виноградного сусла способны накапливать до 10-14% спирта. Каждый винодельческий район имеет расы дрожжей, специфические для данной местности, поэтому сорт получаемого вина определяется не только сортом винограда и технологией, но и биологическими особенностями используемых дрожжей.

Чистые культуры дрожжей обязательно применяются при изготовлении шипучих вин. При производстве плодовоягодных вин для каждого вида плодов или ягод подбирают соответствующие расы винных дрожжей, что позволяет получать сорта вин высокого качества. Для получения хлебного теста используют пекарские дрожжи, обладающие хорошей подъемной силой и способностью быстро размножаться. Образующиеся в процессе брожения спирт и углекислый газ разрыхляют и поднимают тесто, а побочные продукты брожения придают хлебу особый вкус и аромат.

В производстве хлеба применяют прессованные и жидкие дрожжи, а также закваски. Прессованные дрожжи являются скоропортящимся продуктом и потому должны храниться при низких температурах. Примесь в прессованных дрожжах диких дрожжей и бактерий свидетельствует о их низком качестве.

Жидкие дрожжи изготавливаются непосредственно на хлебозаводах. В отличие от прессованных дрожжей они содержат и молочнокислые бактерии. Вырабатывая молочную кислоту, молочнокислые бактерии препятствуют развитию в тесте картофельной палочки, вызывающей тягучую болезнь хлеба.

Закваски представляют собой тесто, оставляемое от предыдущей выпечки. Их используют для разрыхления ржаного теста. Закваски содержат дрожжи и молочнокислые бактерии. В среду культурных дрожжей, которые применяются в производстве, могут попадать посторонние микроорганизмы, вызывающие порчу продуктов. Так, дикие дрожжи нередко являются вредителями производства вина и пива. Они изменяют вкус и запах этих продуктов, вызывают их помутнение. Особенно опасны пленчатые дрожжи микодерма. Развиваясь в вине и пиве, они окисляют спирт до углекислоты и воды и придают напиткам неприятный вкус.

Микодерма причиняет вред также при производстве пекарских дрожжей. Процесс получения пекарских дрожжей ведут с продуванием субстрата воздухом, так как это способствует их быстрому размножению. Микодерма в таких условиях развивается быстрее, чем настоящие дрожжи. Поскольку микодерма не обладает способностью поднимать тесто, то присутствие ее в культурных дрожжах резко снижает их пекарские свойства.

Вредителями бродильных производств являются также некоторые виды молочнокислых бактерий, вызывающие помутнение вина и пива. Отдельные представители шаровидных бактерий (педиококки) способны придавать пиву особый привкус и мутность, а иногда ослизнять его. Уксуснокислые бактерии могут вызвать порчу вина в результате окисления спирта в уксусную кислоту.

6. Представьте рисунки морфологии микроскопических грибов разных классов (зигомицеты, аскомицеты, дейтеромицеты), шаровидные, палочковидные бактерии, микоплазм, риккетсий

Рис. 1. Зигомицеты

Рис. 2. Аскомицеты

Рис. 3. Дейтеромицеты

Рис. 4. Шаровидная бактерия Стафилококк золотистый (лат. Staphylococcus aureus)

Рис. 5. Палочковидные бактерии

Рис. 6. Микоплазм

Рис. 7. Риккетсии

7. Взаимодействие антигена с иммуноглобулинами, значение этого взаимодействия для диагностики и профилактики инфекции

Основными формами иммунного ответа на попадание антигена в организм являются: биосинтез антител, образование клеток иммунной памяти, реакция гиперчувствительности немедленного типа, реакция гиперчувствительности замедленного типа, иммунологическая толерантность, идиотип- антиидиотипические отношения.

Для гуморального иммунитета характерна выработка специфических антител (иммуноглобулинов).

Антитела -- специфические белки гамма- глобулиновой природы, образующиеся в организме в ответ на антигенную стимуляцию и способные специфически взаимодействовать с антигеном (in vivo, in vitro). В соответствии с международной классификацией совокупность сывороточных белков, обладающих свойствами антител, называют иммуноглобулинами.

Уникальность антител заключается в том, что они способны специфически взаимодействовать только с тем антигеном, который вызвал их образование.

Иммуноглобулины (Ig) разделены в зависимости от локализации на три группы:

- сывороточные (в крови);

- секреторные (в секретах- содержимом желудочно- кишечного тракта, слезном секрете, слюне, особенно- в грудном молоке) обеспечивают местный иммунитет (иммунитет слизистых);

- поверхностные (на поверхности иммунокомпетентных клеток, особенно В- лимфоцитов).

Любая молекула антител имеет сходное строение (Y- образную форму) и состоит из двух тяжелых (Н) и двух легких (L) цепей, связанных дисульфидными мостиками. Каждая молекула антител имеет два одинаковых антигенсвязывающих фрагмента Fab (fragment antigen binding), определяющих антительную специфичность, и один Fc (fragment constant) фрагмент, который не связывает антиген, но обладает эффекторными биологическими функциями. Он взаимодействует со «своим» рецептором в мембране различных типов клеток (макрофаг, тучная клетка, нейтрофил).

Концевые участки легких и тяжелых цепей молекулы иммуноглобулина вариабельны по составу (аминокислотным последовательностям) и обозначаются как VL и VH области. В их составе выделяют гипервариабельные участки, которые определяют структуру активного центра антител (антигенсвязывающий центр или паратоп). Именно с ним взаимодействует антигенная детерминанта (эпитоп) антигена. Антигенсвязывающий центр антител комплементарен эпитопу антигена по принципу «ключ -- замок» и образован гипервариабельными областями L- и Н- цепей. Антитело свяжется антигеном (ключ попадет в замок) только в том случае, если детерминантная группа антигена полностью вместится в щель активного центра антител.

Легкие и тяжелые цепи состоят из отдельных блоков- доменов. В легких (L) цепях -- два домена- один вариабельный (V) и один константный (C), в тяжелых (H) цепях- один V и 3 или 4 (в зависимости от класса иммуноглобулина) C домена.

Существуют легкие цепи двух типов- каппа и лямбда, они встречаются в различных пропорциях в составе различных (всех) классов иммуноглобулинов. Выявлено пять классов тяжелых цепей- альфа (с двумя подклассами), гамма ( с четырьмя подклассами), эксилон, мю и дельта. Соответственно обозначению тяжелой цепи обозначается и класс молекул иммуноглобулинов- А, G, E, M и D. Именно константные области тяжелых цепей, различаясь по аминокислотному составу у различных классов иммуноглобулинов, в конечном результате и определяют специфические свойства иммуноглобулинов каждого класса.

Известно пять классов иммуноглобулинов, отличающихся по строению тяжелых цепей, молекулярной массе, физико- химическим и биологическим характеристикам: IgG, IgM, IgA, IgE, IgD. В составе IgG выделяют 4 подкласса ( IgG1, IgG2, IgG3, IgG4 ), в составе IgA- два подкласса (IgA1, IgA2 ).

Структурной единицей антител является мономер, состоящий из двух легких и двух тяжелых цепей. Мономерами являются IgG, IgA ( сывороточный), IgD и IgE. IgM- пентамер (полимерный Ig). У полимерных иммуноглобулинов имеется дополнительная j ( joint) полипептидная цепь, которая объединяет ( полимеризует) отдельные субъединицы (в составе пентамера IgM, ди- и тримера секреторного IgA).

Основные биологические характеристики антител.

1. Специфичность -- способность взаимодействия с определенным (своим) антигеном (соответствие эпитопа антигена и активного центра антител).

2. Валентность- количество способных реагировать с антигеном активных центров ( это связано с молекулярной организацией- моно- или полимер). Иммуноглобулины могут быть двухвалентными ( IgG ) илиполивалентными (пентамер IgM имеет 10 активных центров). Двух- и более валентные антитела навываютполными антителами. Неполные антитела имеют только один участвующий во взаимодействии с антигеном активный центр ( блокирующий эффект на иммунологические реакции, например, на агглютинационные тесты). Их выявляют в антиглобулиновой пробе Кумбса, реакции угнетения связывания комплемента.

3. Афинность -- прочность связи между эпитопом антигена и активным центром антител, зависит от их пространственного соответствия.

4. Авидность -- интегральная характеристика силы связи между антигеном и антителами, с учетом взаимодействия всех активных центров антител с эпитопами. Поскольку антигены часто поливалентны, связь между отдельными молекулами антигена осуществляется с помощью нескольких антител.

5. Гетерогенность -- обусловлена антигенными свойствами антител, наличием у них трех видов антигенных детерминант:

- изотипические -- принадлежность антител к определенному классу иммуноглобулинов;

- аллотипические- обусловлены аллельными различиями иммуноглобулинов, кодируемых соответствующими аллелями Ig гена;

- идиотипические- отражают индивидуальные особенности иммуноглобулина, определяемые характеристиками активных центров молекул антител. Даже тогда, когда антитела к конкретному антигену относятся к одному классу, субклассу и даже аллотипу, они характеризуются специфическими отличиями друг от друга (идиотипом). Это зависит от особенностей строения V- участков H- и L- цепей, множества различных вариантов их аминокислотных последовательностей.

Понятие о поликлональных и моноклональных антителах будет дано в следующих разделах.

Характеристика основных классов иммуноглобулинов.

Ig G. Мономеры, включают четыре субкласса. Концентрация в крови- от 8 до 17 г/л, период полураспада- около 3- 4 недель. Это основной класс иммуноглобулинов, защищающих организм от бактерий, токсинов и вирусов. В наибольшем количестве IgG- антитела вырабатываются на стадии выздоровления после инфекционного заболевания (поздние или 7S антитела), при вторичном иммунном ответе. IgG1 и IgG4 специфически (через Fab- фрагменты) связывают возбудителей (опсонизация), благодаря Fc- фрагментам IgG взаимодействуют с Fc- рецепторам фагоцитов, способствуя фагоцитозу и лизису микроорганизмов. IgG способны нейтрализовать бактериальные экзотоксины, связывать комплемент. Только IgG способны транспортироваться через плаценту от матери к плоду (проходить через плацентарный барьер) и обеспечивать защиту материнскими антителами плода и новорожденного. В отличие от IgM- антител, IgG- антитела относятся к категории поздних- появляются позже и более длительно выявляются в крови.

IgM. Молекула этого иммуноглобулина представляет собой полимерный Ig из пяти субъединиц, соединенных дисульфидными связями и дополнительной J- цепью, имеет 10 антиген- связывающих центров. Филогенетически это наиболее древний иммуноглобулин. IgM- наиболее ранний класс антител, образующихся при первичном попадании антигена в организм. Наличие IgM- антител к соответствующему возбудителю свидетельствует о свежем инфицировании (текущем инфекционном процессе). Антитела к антигенам грамотрицательных бактерий, жгутиковым антигенам- преимущественно IgM- антитела. IgM- основной класс иммуноглобулинов, синтезируемых у новорожденных и младенцев. IgM у новорожденных- это показатель внутриутробного заражения (краснуха, ЦМВ, токсоплазмоз и другие внутриутробные инфекции), поскольку материнские IgM через плаценту не проходят. Концентрация IgM в крови ниже, чем IgG- 0,5- 2,0 г/л, период полураспада- около недели. IgM способны агглютинировать бактерии, нейтрализовать вирусы, активировать комплемент, активизировать фагоцитоз, связывать эндотоксины грамотрицательных бактерий. IgM обладают большей, чем IgG авидностью (10 активных центров), аффинность (сродство к антигену) меньше, чем у IgG.

IgA. Выделяют сывороточные IgA (мономер) и секреторные IgA (IgAs). Сывороточные IgA составляют 1,4- 4,2 г/л. Секреторные IgAs находятся в слюне, пищеварительных соках, секрете слизистой носа, в молозиве. Они являются первой линией защиты слизистых, обеспечивая их местный иммунитет. IgAs состоят из Ig мономера, J-цепи и гликопротеина (секреторного компонента). Выделяют два изотипа- IgA1 преобладает в сыворотке, субкласс IgA2 -- в экстраваскулярных секретах.

Секреторный компонент вырабатывается эпителиальными клетками слизистых оболочек и присоединяется к молекуле IgA в момент прохождения последней через эпителиальные клетки. Секреторный компонент повышает устойчивость молекул IgAs к действию протеолитических ферментов. Основная роль IgA- обеспечение местного иммунитета слизистых. Они препятствуют прикреплению бактерий к слизистым, обеспечивают транспорт полимерных иммунных комплексов с IgA, нейтрализуют энтеротоксин, активируют фагоцитоз и систему комплемента.

IgE. Представляет мономер, в сыворотке крови находится в низких концентрациях. Основная роль- своими Fc- фрагментами прикрепляется к тучным клеткам (мастоцитам) и базофилам и опосредует реакции гиперчувствительности немедленного типа. К IgE относятся “антитела аллергии”- реагины. Уровень IgE повышается при аллергических состояниях, гельминтозах. Антигенсвязывающие Fab- фрагменты молекулы IgE специфически взаимодействует с антигеном (аллергеном), сформировавшийся иммунный комплекс взаимодействует с рецепторами Fc- фрагментов IgE, встроенных в клеточную мембрану базофила или тучной клетки. Это является сигналом для выделения гистамина, других биологически активных веществ и развертывания острой аллергической реакции.

IgD. Мономеры IgD обнаруживают на поверхности развивающихся В- лимфоцитов, в сыворотке находятся в крайне низких концентрациях. Их биологическая роль точно не установлена. Полагают, что IgD участвуют в дифференциации В-клеток, способствуют развитию антиидиотипического ответа, участвуют в аутоиммунных процессах.

С целью определения концентраций иммуноглобулинов отдельных классов применяют несколько методов, чаще используют метод радиальной иммунодиффузии в геле (по Манчини)- разновидность реакции преципитации и ИФА.

Определение антител различных классов имеет важное значение для диагностики инфекционных заболеваний. Обнаружение антител к антигенам микроорганизмов в сыворотках крови- важный критерий при постановке диагноза- серологический метод диагностики. Антитела класса IgM появляются в остром периоде заболевания и относительно быстро исчезают, антитела класса IgG выявляются в более поздние сроки и более длительно (иногда- годами) сохраняются в сыворотках крови переболевших, их в этом случае называют анамнестическими антителами.

Выделяют понятия: титр антител, диагностический титр, исследования парных сывороток. Наибольшее значение имеет выявление IgM- антител и четырехкратное повышение титров антител (или сероконверсия- антитела выявляют во второй пробе при отрицательных результатах с первой сывороткой крови) при исследовании парных- взятых в динамике инфекционного процесса с интервалом в несколько дней- недель проб.

Реакции взаимодействия антител с возбудителями и их антигенами (реакция «антиген-антитело») проявляется в виде ряда феноменов- агглютинации, преципитации, нейтрализации, лизиса, связывания комплемента, опсонизации, цитотоксичности и могут быть выявлены различными серологическими реакциями.

Динамика выработки антител. Первичный и вторичный иммунный ответ. Первичный ответ - при первичном контакте с возбудителем (антигеном), вторичный- при повторном контакте. Основные отличия:

- продолжительность скрытого периода (больше- при первичном);

- скорость нарастания антител (быстрее- при вторичном);

- количество синтезируемых антител (больше- при повторном контакте);

- последовательность синтеза антител различных классов (при первичном более длительно преобладают IgM, при вторичном- быстро синтезируются и преобладают IgG- антитела).

Вторичный иммунный ответ обусловлен формированием клеток иммунной памяти. Пример вторичного иммунного ответа- встреча с возбудителем после вакцинации.

Роль антител в формировании иммунитета.

Антитела имеют важное значение в формировании приобретенного постинфекционного и поствакцинального иммунитета.

1. Связываясь с токсинами, антитела нейтрализуют их, обеспечивая антитоксический иммунитет.

2. Блокируя рецепторы вирусов, антитела препятствуют адсорбции вирусов на клетках, участвуют в противовирусном иммунитете.

3. Комплекс антиген- антитело запускает классический путь активации комплемента с его эффекторными функциями (лизис бактерий, опсонизация, воспаление, стимуляция макрофагов).

4. Антитела принимают участие в опсонизации бактерий, способствуя более эффективному фагоцитозу.

5. Антитела способствуют выведению из организма (с мочой, желчью) растворимых антигенов в виде циркулирующих иммунных комплексов.

IgG принадлежит наибольшая роль в антитоксическом иммунитете, IgM- в антимикробном иммунитете (фагоцитоз корпускулярных антигенов), особенно в отношении грамотрицательных бактерий, IgA- в противовирусном иммунитете (нейтрализация вирусов), IgAs- в местном иммунитете слизистых оболочек, IgE- в реакциях гиперчувствительности немедленного типа.


Подобные документы

  • История развития микробиологии как науки о строении, биологии, экологии микробов. Науки, входящие в комплекс микробиологии, классификация бактерий как живых организмов. Принцип вакцинации, методы, повышающие резистентность человека к микроорганизмам.

    презентация [10,9 M], добавлен 18.04.2019

  • Характеристика ферментов, органических катализаторов белковой природы, которые ускоряют реакции, необходимые для функционирования живых организмов. Условия действия, получение и применение ферментов. Болезни, связанные с нарушением выработки ферментов.

    презентация [2,6 M], добавлен 19.10.2013

  • Ферменты (энзимы) – каталитические белки. Характеристика, функция и принципы строения ферментов. Условия максимальной активности, кофакторы и коферменты. Распределение ферментов в организме. Диагностическое значение маркерных, секреторных и изоферментов.

    презентация [27,2 K], добавлен 28.11.2015

  • Возникновение микробиологии как науки. Изобретение микроскопа Левенгуком. Изучение природы брожения. Заслуги Р. Коха в изучении микроорганизмов как возбудителей заразных болезней. Исследование инфекции и иммунитета. Развитие ветеринарной микробиологии.

    презентация [967,8 K], добавлен 27.05.2015

  • История развития микробиологии. Эвристический, морфологический, физиологический, иммунологический и молекулярно-генетический этапы развития микробиологии. Диссертация Луи Пастера. Работы в области химии, брожения. Изучение инфекционных заболеваний.

    презентация [1,5 M], добавлен 21.12.2016

  • Биологическое значение, классификация, изучение и регуляция каталитической активности ферментов биологической мембраны, их отличия от растворимых ферментов. Методы реконструкции белка. Функции липидов и методы изучения их влияния на мембранные ферменты.

    курсовая работа [21,9 K], добавлен 13.04.2009

  • История развития микробиологии, задачи и связь с другими науками. Роль микробов в народном хозяйстве и патологии животных. Изучение плесеней и дрожжей. Микрофлора животных, почвы и кормов. Понятие и значение антибиотиков, стерилизации и пастеризации.

    шпаргалка [249,1 K], добавлен 04.05.2014

  • Этапы развития микробиологии как науки. Анатоксины: определение и практическое применение. Морфологические и культуральные свойства стрептококков. Работы Пастера, их значение в развитии и становлении микробиологии. Эволюция микробного паразитизма.

    шпаргалка [813,1 K], добавлен 13.01.2012

  • Классификация ферментов, их функции. Соглашения о наименовании ферментов, структура и механизм их действия. Описание кинетики односубстратных ферментативных реакций. Модели "ключ-замок", индуцированного соответствия. Модификации, кофакторы ферментов.

    презентация [294,1 K], добавлен 17.10.2012

  • Наука, изучающая микроорганизмы, их систематику, морфологию, физиологию, наследственность и изменчивость. Методы и цели микробиологии, этапы становления. Ученые, внесшие существенный вклад в развитии микробиологии, ее практическое значение и достижения.

    презентация [3,1 M], добавлен 14.12.2017

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.