Особенности функционирования живых организмов во Вселенной

Возникновение и строение Вселенной. Рассмотрение концепций эволюции растительного и животного мира. Основные положения теории неодарвинизма. Определение связей между организмами в экосистеме. Рассмотрение структурных уровней организации материи.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 03.01.2018
Размер файла 541,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РФ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Тверской государственный технический университет»

(ФГБОУ ВО “ТвГТУ”)

Кафедра Биотехнологии и химии

КОНТРОЛЬНАЯ РАБОТА

по курсу «Концепции современного естествознания»

вариант № 84

Выполнил: студент 1 курса

Группы: ПСИ-106 Дмитриева Н.С.

Принял: доцент кафедры

БТиХ Демиденко Г.Н.

Тверь 2017

Содержание

растительный животный экосистема материя

1. Возникновение и строение Вселенной

2. Концепции эволюции растительного и животного мира

3. Основные положения теории неодарвинизма

4. Связи между организмами в экосистеме

5. Структурные уровни организации материи

Список использованных источников

1. Возникновение и строение Вселенной

Человечество всегда интересовалось всем, что окутано тайнами, а самым большим вместилищем неизведанного является Вселенная.

Величие и многообразие окружающего мира способно поразить любое воображение. Все объекты и предметы, окружающие человека, другие люди, различные виды растений и животных, частицы, которые можно увидеть только с помощью микроскопа, а также непостижимые звездные скопления: все они объединены понятием «Вселенная». См.Рис.1 [1]

Рис. 1 Вселенная

Вселенная - это самая крупная материальная система; это весь существующий материальный мир, безграничный во времени и пространстве и бесконечно разнообразный по формам, которые принимает материя в процессе своего развития; это другие планеты и звёзды, наша планета Земля, её растения и животные, в том числе и то, что находится за пределами Земли- космическое пространство, планеты, звёзды. Это материя без конца и края, принимающая самые разнообразные формы своего существования.И, естественно, всегда было интересно узнать, с чего же всё началось? Поиск ответа на данный вопрос остаётся актуальным и в наше время, а проблема эволюции Вселенной занимает центральное место в естествознании. Соответственно сложилось множество различных концепций, старающихся объяснить данное явление. [2]

Теории возникновения Вселенной разрабатывались человеком издавна. Несмотря на отсутствие даже начального понятия о религии или науке, в пытливых умах древних людей возникали вопросы о принципах мироустройства и о том, каково положение человека в том пространстве, которое его окружает. Сколько существует теорий возникновения Вселенной сегодня, сложно и сосчитать, некоторые из них изучаются передовыми учеными с мировыми именами, другие - откровенно фантастические.

Используя достижения различных наук, таких, как физика, математика, философия, возникла новая наука - космология. Это совокупность накопленных теоретических положений о строении вещества и структуре Вселенной, как цельного объекта, так и отдельные научные знания охваченного астрономическими наблюдениями мира как части Вселенной. Предметом космологии является весь окружающий нас мегамир, а задача состоит в описании наиболее общих свойств, строения и эволюции вселенной.

Сама Вселенная возникла примерно 20 млрд. лет назад из некоего плотного и горячего протовещества. Сегодня можно только предполагать, каким было это вещество, породившее Вселенную, как оно образовалось, каким законам подчинялось и что за процессы привели его к расширению. Существует точка зрения, что с самого начала протовещество с гигантской скоростью начало расширяться.

На начальной стадии это плотное вещество разлеталось во всех направлениях и представляло собой однородную бурлящую смесь неустойчивых, постоянно распадающихся при столкновениях частиц. Остывая и взаимодействуя на протяжении миллионов лет, вся эта масса рассеянного в пространстве вещества концентрировалась в большие и малые газовые образования, которые в течение сотен миллионов лет, сближаясь и сливаясь, превращались в громадные комплексы. В них в свою очередь возникали более плотные участки -- там впоследствии и образовались звезды и даже целые галактики.

Конечна или бесконечна Вселенная, какая у нее геометрия -- эти и многие другие вопросы связаны с эволюцией Вселенной, в частности с наблюдаемым расширением. Если, как это считают в настоящее время, скорость «разлета » галактик увеличится на 75 км/с на каждый миллион парсек, то экстраполяция к прошлому приводит к удивительному результату: примерно 10-- 20 млрд. лет назад вся Вселенная была сосредоточена в очень маленькой области. Многие ученые считают, что в то время плотность Вселенной была такая же, как у атомного ядра: Вселенная представляла собой одну гигантскую «ядерную каплю». По каким-то причинам эта «капля» пришла в неустойчивое состояние и взорвалась. Последствия этого взрыва мы наблюдаем сейчас как системы галактик. Модель горячей взрывающейся Вселенной(см.рис.2.) была разработана учеником Фридмана Дж. Гамовым в конце 40-х годов, положив начало так называемой теории «Большого взрыва», но широкое распространение эта теория получила лишь в середине 1960-х годов.

Рис. 2 Модель горячей Вселенной [1]

Спрашивать о том, что было до «Большого взрыва», и что находится за пределами этого расширяющегося мира, бессмысленно. Вселенная, согласно теории «Большого взрыва» ограничена в пространстве и времени, по крайней мере, со стороны прошлого. Такая, сложная для понимания, картина следовала из формул Фридмана. Вскоре, однако, американский астроном Э. Хаббл подтвердил факт расширяющегося вокруг нас пространства, измерив скорость этого явления. Благодаря этому стало возможным измерить время существования Вселенной - примерно, 15-20 млрд. лет.

До самого взрыва не существовало ни вещества, ни времени, ни пространства. События в первую секунду протекали стремительно. Вначале образовались излучения (фотоны), затем частицы и вещества (кварки и антикварки). В течение той же секунды из них образовались протоны, антипротоны и нейтроны. При столкновении протона и антипротона, которые, как известно, отличаются друг от друга противоположными зарядами, происходит реакция аннигиляции, в ходе чего обе частицы исчезают, оставляя излучение (фотоны).

Эти реакции стали довольно частыми, т. к. вещество «новорождённой» Вселенной было весьма плотным - частицы постоянно между собой сталкивались. Во Вселенной преобладало излучение.

К концу первой секунды, когда температура упала до 10 млрд. градусов, образовались и новые частицы, в том числе электрон и его античастица - позитрон. К этому же времени большая часть частиц уже аннигилировала. Так получилось, что число частиц было на ничтожную долю процента больше числа античастиц (этот факт до сих пор не объяснён), вследствие чего наша вселенная состоит из вещества, а не из антивещества.

К третьей минуте из четверти всех протонов и нейтронов образовались ядра гелия. Через несколько сотен лет постоянно расширяющаяся Вселенная остыла настолько, что протоны и ядра гелия смогли удерживать возле себя электроны. Так образовались атомы гелия и водорода. Излучение, не сдерживаемое более свободными электронами, смогло теперь распространиться на огромные расстояния. В значительно «остывшей» (за 15 млрд. лет) Вселенной, в наше время мы можем слышать «отголоски» того излучения - оно является микроволновым, и, равномерно приходящее со всех сторон, соответствует излучению тела, нагретого всего до 3 К. Его принято называть реликтовым излучением. Его обнаружение и существование подтверждают теорию «Большого взрыва».

При расширении во Вселенной стали образовываться области скопления вещества, а также и области, где его почти не было. Под воздействием гравитации эти уплотнения росли и на их месте стали образовываться галактики, скопления и сверхскопления галактик.(см.рис.3.) [3]

Рис. 3[1]

Обращая внимание на ночное небо и наблюдая за объектами космоса, люди задавались целью определить, каково строение Вселенной.(рис.4.) Общие представление о строении Вселенной складывались на протяжении всей истории астрономии.

Рис. 4

Изучая строение вселенной, многие ученые сталкиваются со многими неразрешимыми на данный момент проблемами физики и астрономии. Если говорить простым языком, то наша вселенная состоит из неисчислимого множества космических тел, больших и маленьких. Человек, наблюдая за какой-то определенной его частью, изучает отдельную науку и связанные с ней вопросы и факты. В совокупности все эти наблюдения составляют наблюдение за всей вселенной, ведь в понятие о вселенной входят абсолютно все, что нас окружает, видимое и невидимое. В таком представлении вселенная делается уникальной и единственной. Рассматривая в крупных масштабах нашу вселенную, замечено, что мы сталкиваемся с вопросом о расширении вселенной. Исследуя природу этого явления, ученые приходят к выводу о гравитационном взаимодействии объектов (тел), составляющих эту Вселенную. (рис.5)

Рис. 5

Вселенная состоит из галактик, отдельно стоящих звезд, планет, разреженного газа и космической пыли.

Главные составляющие Вселенной - это галактики - огромные звездные системы, содержащие десятки, сотни миллиардов звезд. Солнце вместе с планетной системой входят в галактику, наблюдаемую в форме Млечного пути. По форме и строению различают эллиптические, шаровые и неправильной формы галактики.(рис.6) Млечный путь относится к спиральным галактикам.

Мир звезд необыкновенно разнообразен, в них сосредоточено более 90% наблюдаемого вещества, и хотя все звезды - раскаленные шары, которые светятся собственным светом, их физические характеристики различаются весьма существенно.

В зависимости от размера выделяют звезды-гиганты и сверхгиганты (больше Солнца в миллионы и миллиарды раз); нормальные звезды; звезды-карлики (меньше Солнца и даже Земли; нейтронные звезды (диаметр 20-30 км, но с огромной плотностью вещества; были обнаружены в 1967 г. по необычному импульсному радиоизлучению).

В зависимости от температуры поверхности различают: -3-4 тыс. градусов - красные;

-6 тыс. градусов - желтые;

-12 тыс. градусов - белые и голубоватые.

Но иногда во Вселенной наблюдаются вспышки новых и сверхновых звезд: такие звезды в некоторый момент времени в результате бурных физических процессов неожиданно увеличиваются в объеме, сбрасывают свою газовую оболочку и в течение нескольких земных суток выделяют огромное количество энергии (в миллиарды раз больше, чем излучает Солнце). Затем, исчерпав все свои ресурсы, они постепенно тускнеют, превращаясь в газовую туманность.(рис.7) [4]

Рис. 6 Рис. 7

2. Концепции эволюции растительного и животного мира

Первые клетки, начало биологической эволюции, появились еще в архейскую эру. Следы жизни были незначительны, обнаружены остатки анаэробных автотрофных предшественников сине- зеленых водорослей. Переход к фотосинтезу, длительный, завершился около 1,8 млрд лет назад, изменив нашу планету. Атмосфера стала кислородной, возник озоновый слой, затрудняющий путь ультрафиолетовому излучению к поверхности Земли. Кислотность морской воды, наоборот, уменьшилась. Произошел переход от прокариотов к эукариотам. У них ДНК уже сконцентрирована в хромосомы, сосредоточенные в ядре клетки. Эта клетка воспроизводится почти без изменений, и в неизменной среде эти новые, «дочерние» клетки имеют преимущества при отборе.[5]

В протерозойскую эру (около 1 млрд. лет назад) эволюционный ствол древнейших эукариот разделился на несколько ветвей, от которых возникли многоклеточные растения (зеленые, бурые и красные водоросли), а также грибы. Большинство из первичных растений свободно плавало в морской воде (диатомовые, золотистые водоросли), часть прикреплялась ко дну. Существенным условием дальнейшей эволюции растений было образование почвенного субстрата на поверхности суши в результате взаимодействия бактерий и цианей с минеральными веществами и под влиянием климатических факторов. В конце силурийского периода почвообразовательные процессы подготовили возможность выхода растений на сушу (440 млн. лет назад). Среди растений, первыми освоившими сушу, были псилофиты. От псилофитов возникли другие группы наземных сосудистых растений: плауны, хвощи, папоротники, размножающиеся спорами и предпочитающие водную среду. Примитивные сообщества этих растений широко распространились в девоне. В этот же период появились и первые голосеменные, возникшие от древних папоротников и унаследовавшие от них внешний древовидный облик. Переход к размножению семенами имел большое преимущество, так как освободил половой процесс от необходимости водной среды (как это наблюдается еще у современных папоротников). Эволюция высших наземных растений шла по пути все большей редукции гаплоидного поколения (гаметофита) и преобладания диплоидного поколения (спорофита).

Значительного разнообразия достигла наземная флора в каменноугольный период. Среди древовидных широко распространялись плаунообразные (лепидодендроны) и сигилляриевые, достигавшие в высоту 30 м и более. В палеозойских лесах богато были представлены древовидные папоротники и хвощеобразные каламиты. Из первичных голосеменных господствовали разнообразные птеридоспермы и кордаиты, напоминавшие стволами хвойных и имевшие длинные лентовидные листья. Начавшийся в пермский период расцвет голосеменных, в частности хвойных, привел к их господству в мезозойскую эру. К середине пермского периода климат стал засушливее, что во многом отразилось на изменениях в составе флоры. Сошли с арены жизни гигантские папоротники, древовидные плауны, каламиты, и постепенно исчез столь яркий для той эпохи колорит тропических лесов. В меловой период произошел следующий крупный сдвиг в эволюции растений, - появились цветковые (покрытосеменные). Первые представители покрытосеменных были кустарниками или низкорослыми деревьями с мелкими листьями. Затем довольно быстро цветковые достигли огромного разнообразия форм со значительными размерами и крупными листьями (например, возникли семейства магнолиевых, платановых, лавровых). Опыление насекомыми и внутреннее оплодотворение создали значительные преимущества цветковых над голосеменными, что обеспечило их расцвет в кайнозое. В настоящее время число видов покрытосеменных составляет около 250 тыс., т. е. почти половину всех известных ныне видов растений.

Основные особенности эволюции растительного мира:

1. Постепенный переход к преобладанию диплоидного поколения над гаплоидным. У многих водорослей все клетки (кроме зиготы) гаплоидны, у голосеменных и покрытосеменных почти полностью редуцируется гаметофит и значительно удлиняется в жизненном цикле диплоидная фаза.

2. Независимое половое размножение от капельноводной среды. Мощное развитие спорофита, переход от наружного оплодотворения к внутреннему, возникновение двойного оплодотворения и обеспечение зародыша запасами питательных веществ.

3. В связи с прикрепленным образом жизни на суше растение расчленяется на корень, стебель и лист, развиваются сосудистая проводящая система, опорные и защитные ткани.

4. Совершенствование органов размножения и перекрестного опыления у цветковых в сопряженной эволюции с насекомыми. Развитие зародышевого мешка для защиты растительного эмбриона от неблагоприятных влияний внешней среды. Возникновение разнообразных способов распространения семян и плодов физическими и биотическими факторами.

История животных изучена наиболее полно в связи с тем, что они обладают скелетом и поэтому лучше закрепляются в окаменелых остатках. Самые ранние следы животных обнаруживаются в конце докембрия (700 млн. лет). Предполагается, что первые животные произошли либо от общего ствола всех эукариот, либо от одной из групп древнейших водорослей. Наиболее близки к предкам простейших животных одноклеточные зеленые водоросли. Не случайно, например, эвглену и вольвокс, способных и к фотосинтезу, и к гетеротрофному питанию, ботаники относят к типу зеленых водорослей, а зоологи - к типу простейших животных. За всю историю животного мира возникло 35 типов, из которых 9 вымерло, а 26 существуют до сих пор. Разнообразие и количество палеонтологических документов в истории животных резко возрастают в породах, датируемых менее 570 млн. лет. В течение примерно 50 млн. лет довольно быстро появляются почти все типы вторичнополостных животных с прочным скелетом. Широко были распространены в морях силура трилобиты. Возникновение типа хордовых относится ко времени менее 500 млн. лет. Комплексы хорошо сохранившихся ископаемых найдены в сланцах Бергеса (Колумбия), содержащих остатки беспозвоночных, в частности мягкотелых организмов, к которому принадлежат современные дождевые черви.

Начало палеозоя отмечено образованием многих типов животных, из которых примерно треть существует в настоящее время. Причины такой активной эволюции остаются неясными. В позднекембрийское время появляются первые рыбы, представленные бесчелюстными. В дальнейшем они почти все вымерли, из современных потомков сохранились миноги. В девоне возникают челюстные рыбы в результате таких крупных эволюционных преобразований, как превращение передней пары жаберных дуг в челюсти и формирование парных плавников. Первых челюстноротых представляли две группы: лучеперые и лопастеперые. Почти все ныне живущие рыбы - потомки лучеперых.

Лопастеперые представлены сейчас только двоякодышащими и небольшим числом реликтовых морских форм. Лопастеперые имели в плавниках костные опорные элементы, из которых развились конечности первых обитателей суши. Ранее из группы лопастеперых возникли амфибии, следовательно, все четвероногие позвоночные имеют своим далеким предком эту исчезнувшую группу рыб. Наиболее древние представители амфибий - ихтиостеги обнаружены в верхнедевонских отложениях (Гренландия). Эти животные обладали пятипалыми конечностями, с помощью которых они могли переползать по суше. Все же ряд признаков (настоящий хвостовой плавник, покрытое мелкими чешуйками тело) свидетельствует о том, что ихтиостеги обитали преимущественно в водоемах. Конкуренция с кистеперыми рыбами заставляла этих первых земноводных занимать промежуточные между водой и сушей местообитания.

Расцвет древних амфибий приурочен к карбону, где они были представлены большим разнообразием форм, объединяемых под названием «стегоцефалы». Среди них наиболее выделяются лабиринтодонты и крокодилообразные. Два отряда современных амфибий - хвостатые и безногие (или червяки) - произошли, вероятно, от других ветвей стегоцефалов. От примитивных амфибий ведут свое начало рептилии, широко расселившиеся на суше к концу пермского периода благодаря приобретению легочного дыхания и оболочек яиц, защищающих от высыхания.

Среди первых рептилий особенно выделяются котилозавры - небольшие насекомоядные животные и активные хищники - терапсиды, уступившие в триасе место гигантским рептилиям, динозаврам, появившимся 150 млн. лет назад. Вполне вероятно, что последние были теплокровными животными. В связи с теплокровностью динозавры вели активный образ жизни, чем можно объяснить их длительное господство и сосуществование с млекопитающими. Причины вымирания динозавров (примерно 65 млн. лет назад) неизвестны. Предполагают, в частности, что таковое могло быть следствием массового уничтожения яиц динозавров примитивными млекопитающими. Более правдоподобной кажется гипотеза, согласно которой вымирание динозавров связано с резкими колебаниями климата и уменьшением растительной пищи в меловом периоде.

Уже в период господства динозавров существовала предковая группа млекопитающих - небольших по размеру с шерстным покровом животных, возникших от одной из линий хищных терапсид. Млекопитающие выходят на передний край эволюции благодаря таким прогрессивным адаптациям, как плацента, вскармливание потомства молоком, более развитый мозг и связанная с этим большая активность, теплокровность. Значительного разнообразия млекопитающие достигли в кайнозое, появились приматы. Третичный период был временем расцвета млекопитающих, но многие из них вскоре вымерли (например, ирландский олень, саблезубый тигр, пещерный медведь). Прогрессивная эволюция приматов оказалась уникальным явлением в истории жизни, в итоге она привела к возникновению человека.

Наиболее существенные черты эволюции животного мира заключались в следующем:

1. Прогрессивное развитие многоклеточности и связанная с ним специализация тканей и всех систем органов. Свободный образ жизни (способность к перемещению) в значительной мере определил совершенствование форм поведения, а также автономизацию онтогенеза - относительную независимость индивидуального развития от колебаний факторов среды на основе развития внутренних регуляторных систем.

2. Возникновение твердого скелета: наружного - у членистоногих, внутреннего - у позвоночных. Такое разделение определило разные пути эволюции этих типов животных. Наружный скелет членистоногих препятствовал увеличению размеров тела, именно поэтому все насекомые представлены мелкими формами. Внутренний скелет позвоночных не ограничивал увеличение размеров тела, достигших максимальной величины у мезозойских рептилий - динозавров, ихтиозавров.

3. Возникновение и совершенствование централизованно-дифференцированной стадии органинополостных до млекопитающих. На этой стадии произошло разделение насекомых и позвоночных. Развитие центральной нервной системы у насекомых характеризуется совершенствованием форм поведения по типу наследственного закрепления инстинктов. У позвоночных развился головной мозг и система условных рефлексов, наблюдается ярко выраженная тенденция к повышению средней выживаемости отдельных особей. Этот путь эволюции позвоночных привел к развитию форм группового адаптивного поведения, финальным событием которого стало возникновение биосоциального существа - человека.

Под эволюцией понимают необратимое историческое развитие органического мира с постепенным его усложнением. Формы животных так же менялись на Земле, как формы растений и других организмов.

Это яркое воплощение эволюционного непрерывного процесса, в ходе которого появилось богатейшее разнообразие растительного и животного мира.[6]

3. Основные положения теории неодарвинизма

Профессор зоологии из немецкого города Фрейбурга Август Вейсман большую часть жизни посвятил исследованиям в области цитологии, что вполне понятно: во второй половине XIX в. к клетке было приковано внимание большинства биологов.

Вейсмана больше всего в клетке интересовали хромосомы. Поведение хромосом при делении клеток натолкнуло Вейсмана на мысль, что именно они являются материальным субстратом наследственности, передаваясь от клетки к клетке, из поколения в поколение. Вейеман подметил, что даже в тех случаях, когда размеры и форма хромосом в разных клетках организма меняются, в зародышевых клетках, из которых образуются половые клетки, хромосомы стабильны. Это и обеспечивает, по мнению Вейсмана, передачу наследственных свойств от родителей к потомкам.

Вейсман считается основателем неодарвинизма, существенно углубившего основы теории Ч. Дарвина. Во времена Дарвина и много позже ученые полагали, что приобретенные при жизни признаки передаются по наследству.

Многие из теоретических положений Вейсмана не выдержали испытания временем. Но главные его идеи до сих пор являются основой современной генетики и теории эволюции.

Основными положениями Вейсмана являются следующие:

1) отрицание наследования приобретенных свойств в духе Ламарка, т. е. затрагивающих лишь сому и не доходящих (как это имеет место в большинстве случаев) до наследственного вещества половых клеток;

2) отрицание какого бы то ни было принципа развития под влиянием чисто внутренних причин, т. е. автогенеза;

3) признание главным фактором эволюции естественного подбора, на помощь которому приходит амфимиксис, или смешение родительских зародышевых плазм, тогда как корень всех новых изменений кроется в изменении детерминантов под влиянием доходящих до них воздействий внешней среды.

Неодарвинизм - эволюционная концепция, созданная в 80-90-х гг. ХIХ в. А. Вейсманом; основана на его гипотезе о зачатковом отборе. Отбор расположенных в хромосомах единиц наследственности - детерминант - и их неравномерное распределение, вытекающие, по Вейсману, из борьбы между ними в половой клетке, ведут к образованию новых жизненных форм. Концепция неодарвинизма, пытавшаяся увязать данные цитологии об оплодотворении с эволюционной теорией и дополнить дарвиновское представление о естественном отборе, противостояла неоламаркизму и содержала плодотворные идеи (роль хромосом в наследственности, отрицание наследования приобретенных признаков), но в целом не подтвердилась. [7]

Дарвин сформулировал свою теорию эволюции путем применения понятия естественного отбора, не зная, что является источником изменчивости в популяции. После того, как законы Менделя были "открыты" заново, дарвинизм и менделизм послужили в качестве основы того, что сейчас принято называть СИНТЕТИЧЕСКОЙ ТЕОРИЕЙ ЭВОЛЮЦИИ или НЕОДАРВИНИЗМОМ. Согласно этой теории, хотя за мутациями признается роль первоначального источника генетической изменчивости, естественному отбору принадлежит главенствующая роль в формировании генетического состава популяции и в процессе замещения аллелей. [8]

Неодарвинизм -- это основанная Чарлзом Дарвином теория эволюции методом естественного отбора, согласованная с современной теорией генетики, которая берет начало в работах Грегора Менделя, и усовершенствованная в соответствии с исследованиями современных генетиков. Эти исследования ответили на многие вопросы, которые были в свое время поставлены до теории Дарвина и на которые без знания генетики ответить было просто невозможно. Суть неодарвинизма заключается в том, что приспособление организмов к среде обитания совершается благодаря естественному отбору, который действует на основе наследования изменяющихся мелких признаков, большинство из которых изначально неадаптивны. Основной источник изменчивости -- мутации, которые сохраняются и передаются посредством механизма дискретной наследственности. Изменения в генном наборе различных популяций, при условии географической изоляции и ограничения дрейфа генов, в конечном итоге приводят к образованию нового вида.

Хотя давление отбора всегда, как правило, очень велико, образование новых видов -- процесс чрезвычайно медленный.[9]

С ходом времени неодарвинизм в эволюционной биологии стал догмой и естественный отбор стал рассматриваться как единственная движущая сила эволюционного процесса. Другие факторы, такие как мутационный процесс и случайный дрейф генов, в лучшем случае рассматривались как минорные составляющие. Эта разновидность неодарвинизма получила название СЕЛЕКЦИОНИЗМА.

Согласно селекционистской или неодарвинистской концепции эволюционного процесса, замены аллелей происходят в ходе отбора в пользу благоприятной мутации. Полиморфизм, с другой стороны, поддерживается стабилизирующим отбором. Таким образом, неодарвинизм рассматривает генные замены и полиморфизм как два различных явления, вызываемых различными эволюционными силами. Замены аллелей являются конечным результатом позитивного адаптивного процесса, посредством которого новый аллель начинает преобладать в последующих поколениях тогда и только тогда, если он улучшает приспособленность организма. Полиморфизм же, в свою очередь, поддерживается тогда, когда сосуществование двух или более аллелей в локусе благоприятно для популяции. Неодарвинистская теория подразумевает, что генетический полиморфизм в природе большей частью носит стабильный характер.

Конец 60-х годов ознаменовался революцией в популяционной генетике. Ставшее доступным большое число аминокислотных последовательностей удалило видовые границы в популяционно - генетических исследованиях и на первое время обеспечило адекватные эмпирические данные для изучения теорий, касающихся процесса генных замен. В 1968 году Мотоо Кимура постулировал, что большинство изменений на молекулярном уровне в ходе эволюции происходят за счет случайной фиксации нейтральных или почти нейтральных (слабодефектных или слабоадаптивных) мутаций. Эта гипотеза, широко известная сейчас как НЕЙТРАЛЬНАЯ ТЕОРИЯ МОЛЕКУЛЯРНОЙ ЭВОЛЮЦИИ, утверждает, что подавляющая часть изменений на молекулярном уровне и большая часть изменчивости внутри видов не вызываются ни позитивным отбором в пользу благоприятных аллелей, ни стабилизирующим отбором, а случайным дрейфом мутантных аллелей, которые нейтральны или почти нейтральны. На ее основных положениях следует остановиться подробнее, поскольку в последнее время она является наиболее "цитируемой" биологической теорией.

Согласно теории нейтральности, частота аллеля определяется случайными правилами, и картина, которую мы получаем в любой данный момент времени, является не более чем кратковременным состоянием, представляющим временную картину развивающегося динамичного процесса. Следовательно, полиморфные локусы состоят из аллелей, которые или находятся на "пути" к фиксации, или вот-вот элиминируются из популяции. С этой точки зрения, все молекулярные проявления, относящиеся к эволюционному процессу, должны рассматриваться как результаты непрерывного мутационного процесса и сопутствующей ему случайной элиминации или фиксации аллелей. Таким образом, теория нейтральности рассматривает замещение аллелей и полиморфизм как два аспекта одного и того же явления. Замещение - это длительный и последовательный процесс, в ходе которого частоты мутантных аллелей возрастают или уменьшаются случайным образом до тех пор, пока они по воле случая либо не потеряются, либо не зафиксируются в популяции.

Смысл спора между нейтралистами и селекционистами в основном касается приспособленности мутантных аллелей. Обе теории согласны с тем, что большинство новых мутаций дефектны и что эти мутации быстро удаляются из популяции. Различие состоит в подходе к доле нейтральных мутаций среди всех недефектных замен. Селекционисты утверждают, что селективно - нейтральных мутаций очень мало, нейтралисты же говорят о том, что их большинство.

Бурная дискуссия по поводу теории нейтральности оказала сильное влияние на представления о процессе молекулярной эволюции. Во-первых, она привела к пониманию того, что влиянием случайного генетического дрейфа нельзя пренебрегать при рассмотрении эволюционной динамики изменений на молекулярном уровне. Во-вторых, взаимопроникновение популяционной генетики и молекулярной биологии было значительно усилено появлением концепции того, что молекулярная эволюция и генетический полиморфизм являются двумя сторонами одного и того же феномена.

И, хотя спор продолжается до сих пор, сейчас уже ясно, что любая претендующая на адекватность эволюционная теория должна включать в себя оба эти аспекта эволюционного процесса на молекулярном уровне.[8]

4. Связи между организмами в экосистеме

Биосфера -- совокупность всех живых организмов вместе со средой обитания. Эту среду составляют вода, нижняя часть атмосферы и верхняя часть земной коры, населенная микроорганизмами. Живые организмы и среда непрерывно взаимодействуют и находятся в тесном единстве, образуя целостную систему. Как самая глобальная система на Земле биосфера состоит из ряда подсистем. Вернадский впервые в своих лекциях в Сорбонне в 1923 -- 24 гг. указал на геологические функции живого вещества, разработал представление о совокупности всего органического мира как единого целого. Эти лекции вдохновили двух молодых людей -- Тейяра де Шардена и Ле Руа -- на раздумья о месте и назначении человека в природе. Фактором, объединяющим все уровни организации живого в единое целое -- биосферу, -- является биотический обмен веществ.

Биосфера -- единство живого и минеральных элементов, вовлеченных в сферу жизни. Она -- иерархически построенное единство, включающее разные уровни жизни: особь, популяция, биоценоз. В процессе исторического развития сложились различные группы организмов -- сообщества, взаимодействующие со своей средой обитания. Крупнейшие наземные сообщества, тесно связанные с определенными природными зонами и поясами, называются биомами.

Растения и животные существуют в тесной зависимости от окружающей неживой природы и от других организмов, испытывают на себе их воздействие и приспосабливаются к ним. Биоценоз, или сообщество, -- это совокупность растений или животных, населяющих участок среды обитания. Биогеоценоз, или экосистема, -- это совокупность сообщества и среды его обитания. Биоценоз -- живая часть биогеоценоза -- состоит из популяций организмов разных видов, в них сосуществуют популяции видов с разной историей (как и наблюдаемые звезды, каждая из которых имеет свой возраст и свою историю).

Жизнь распределена по земной поверхности крайне неравномерно и в различных природных условиях принимает вид относительно независимых комплексов -- биогеоценозов (или экосистем). Каждый из уровней относительно независим от других, давая возможность эволюционировать всей макросистеме. Биогеоценозы могут включать в разных биомах представителей от многих сотен до многих тысяч видов живых организмов.

Экология -- особый раздел биологии, который занимается изучением взаимоотношений совместно живущих организмов и их зависимости от внешней среды. Этот термин предложил немецкий биолог-эволюционист Э.Геккель (1866). В буквальном смысле этот термин означает науку о «доме», «месте обитания». Но эта наука стала активно развиваться только через столетие. В зависимости от уровня организации живого различают аутоэкологию, которая изучает взаимодействие отдельных видов со средой, и синэкологию, изучающую сообщества.

Принцип устойчивости -- один из главных в экологии. Многокомпонентные системы не всегда отличаются от малокомпонентных по степени устойчивости, вероятно, устойчивость экосистемы определяется не числом видов, а их экологическими особенностями. Для понимания функциональной структуры биосферы важны экологические ниши, определяющие положение вида в цепях питания. Строится пирамида питания, состоящая из нескольких трофических уровней. Низший уровень занимают автотрофные организмы, получающие питание из косного вещества. Это -- в большинстве своем растения. Выше располагаются гетеротрофные организмы, питающиеся биомассой растений (травоядные). Затем -- гетеротрофы более высокого порядка, питающиеся травоядными животными и т.д. Эта пирамида связана с круговоротом веществ в биосфере. Круг замыкают бактерии и грибы, способные разлагать органические вещества. Пирамида более устойчива, если трофических уровней больше. Но чем больше трофических уровней, тем выше потери энергии в системе. Было установлено, что два вида, занимающих одну нишу, не могут существовать неограниченно долго в одном месте.

Различные виды организмов образуют друг с другом связи, многие из которых жизненно необходимы, а источником энергии для них служит излучение Солнца. Каждый биоценоз является трансформатором солнечной энергии в свою собственную. Сложная структура экосистем -- необходимая предпосылка поддержания устойчивости. Вернадский выделил несколько условий существенности взаимосвязей в экосистемах: а)каждый организм может существовать только при условии постоянной связи с внешней средой (в том числе и с неживой природой, и с другими организмами);

б) жизнь изменила нашу планету, при этом организмы все шире распространились по ней, стимулируя перераспределение энергии и веществ; в) размеры популяции растут до тех пор, пока среда может поддерживать их дальнейшее увеличение, после чего наступит равновесие; численность популяции всегда почти равновесна, колеблется около равновесного значения.

Принцип равновесия для живых систем играет огромную роль. Общее равновесие в биосфере поддерживает множество равновесий между разными ее компонентами. Равновесие в живой природе динамично, это колебания около точки устойчивости. Если они не изменяются, говорят о гомеостазе. Гомеостатический механизм поддерживает в живом организме параметры внутренней среды таковыми, чтобы препятствовать воздействиям внешней среды, например температура, кровяное давление, частота пульса поддерживаются такими механизмами. Естественные биоценозы могут сохраняться долгое время, а могут изменяться, например заболачивается озеро, образуется торфяник, на месте болота вырастает лес. Таким образом развиваются не только организмы и виды, но и экосистемы. Постоянное взаимодействие всех компонентов биогеоценоза может стать причиной его изменения, а толчком к этому может служить небольшое изменение.

Экологические сукцессии (от лат. successio-- преемственность) -- закономерные изменения биоценоза, связанные с его эволюцией. В результате ряда процессов биоценоз приобретает новые возможности для увеличения разнообразия. Экологи называют сукцессию переходом биоценоза из стадии развития и стабилизации в состояние климакса. Биоценоз развивается по схеме развития своих компонент. Численность разных компонентов периодически чередуется.

Пример: песчаная дюна -- трава -- сухой дубовый лес -- влажный лес из дуба -- климаксовый лес из бука и клена. Относительная независимость биоценозов, связи между которыми ограничиваются посредниками из неживых компонентов биосферы -- минеральными солями, газами атмосферы, водой, обеспечивает устойчивость всей биосферы и ее способность к эволюции.

При этом оказалось, что при развитии систем в направлении повышения устойчивости увеличивается разнообразие. Раньше казалось, что менее сложные виды дают дорогу более сложным и становятся ненужными, но это неверно. Снижение разнообразия, имеющее место в современных условиях, стало опасным для устойчивости биосферы.

Распространенность видов в биоценозах закономерна -- чем меньше масса организма (и выделяемая им теплота), тем больше численность особей, причем наибольшим распространением отличается сравнительно небольшое число видов. В растительности высокотравной степи Оклахомы Э. Райс (1952) отметил, что 84 % трав составляли 9 видов, а на долю остальных 20 видов приходилось только 16 %. При изменении условий жизни первыми начинают вымирать специализированные к данным условиям виды, а виды с более широким спектром возможностей выживают.[5 ]

5. Структурные уровни организации материи

Понятие «материя» многозначно. Его используют для обозначения той или иной ткани. Иногда ему придают иронический смысл, говоря о «высокой материи». У всех предметов и явлений, окружающих человека (животных и растений, машин и инструментов, произведений искусства, явлений природы, звездных туманностей и других небесных тел и т.п.), несмотря на их разнообразие, есть общая черта: все они существуют вне сознания человека и независимо от него, т.е. являются материальными. Люди постоянно открывают все новые и новые свойства природных тел, производят множество не существующих в природе вещей, следовательно, материя неисчерпаема.

Материя несотворима и неуничтожима, существует вечно и бесконечно разнообразна по форме своих проявлений. Материальный мир един. Все его части - от неодушевленных предметов до живых существ, от небесных тел до человека как члена общества - так или иначе связаны. То есть все явления в мире обусловлены естественными материальными связями и взаимодействиями, причинными отношениями и законами природы. В этом смысле в мире нет ничего сверхъестественного и противостоящего материи. Человеческая психика и сознание тоже определяются материальными процессами, происходящими в мозгу человека, и являются высшей формой отражения внешнего мира. [10]

В классическом естествознании, и, прежде всего в естествознании прошлого века, учение о принципах структурной организации материи было представлено классическим атомизмом. Именно на атомизме замыкались теоретические обобщения, берущие начало в каждой из наук. Идеи атомизма служили основой для синтеза знаний и его своеобразной точкой опоры. В наши дни под воздействием бурного развития всех областей естествознания классический атомизм подвергается интенсивным преобразованиям. Наиболее существенными и широко значимыми изменениями в наших представлениях о принципах структурной организации материи являются те изменения, которые выражаются в нынешнем развитии системных представлений.

Общая схема иерархического ступенчатого строения материи, связанная с признанием существования относительно самостоятельных и устойчивых уровней, узловых точек в ряду делений материи, сохраняет свою силу и эвристические значения. Согласно этой схеме дискретные объекты определенного уровня материи, вступая в специфические взаимодействия, служат исходными при образовании и развитии принципиально новых типов объектов с иными свойствами и формами взаимодействия.

При этом большая устойчивость и самостоятельность исходных, относительно элементарных объектов обусловливает повторяющиеся и сохраняющиеся свойства, отношения и закономерности объектов более высокого уровня. Это положение едино для систем различной природы.

Структурность и системная организация материи относятся к числу ее важнейших атрибутов, выражают упорядоченность существования материи и те конкретные формы, в которых она проявляется.

Под структурой материи обычно понимают ее строение в макромире, т.е. существование в виде молекул, атомов, элементарных частиц и т.д. Это связано с тем, что человек является макроскопическим существом и для него привычными являются макроскопические масштабы, поэтому понятие структуры ассоциируется обычно с различными микрообъектами.

Но если рассматривать материю в целом, то понятие структуры материи будет охватывать также макроскопические тела, все космические системы мегамира, причем в любых сколь угодно больших пространственно-временных масштабах. С этой точки зрения, понятие «структура» проявляется в том, что она существует в виде бесконечного многообразия целостных систем, тесно взаимосвязанных между собой, а также в упорядоченности строения каждой системы. Такая структура бесконечна в количественном и качественном отношениях.

Проявлениями структурной бесконечности материи выступают:

- неисчерпаемость объектов и процессов микромира;

- бесконечность пространства и времени;

- бесконечность изменений и развития процессов.

Из всего многообразия форм объективной реальности эмпирически доступной всегда остается лишь конечная область материального мира, которая ныне простирается в масштабах от 10 -15 до 1028 см, а во времени -- до 2Ч109 лет.

Структурность и системная организация материи относятся к числу важнейших ее атрибутов. Они выражают упорядоченность существования материи и те ее конкретные формы, в которых она проявляется.

Материальный мир един: мы подразумеваем, что все его части -- от неодушевленных предметов до живых существ, от небесных тел до человека как члена общества -- так или иначе связаны.

Системой является то, что определенным образом связано между собой и подчинено соответствующим законам.

Упорядоченность множества подразумевает наличие закономерных отношений между элементами системы, которое проявляется в виде законов структурной организации. Внутренняя упорядоченность имеется у всех природных систем, возникающих в результате взаимодействия тел и естественного саморазвития материи. Внешняя характерна для созданных человеком искусственных систем: технических, производственных, концептуальных и т.п.

Структурные уровни материи образованы из определенного множества объектов какого-либо класса и характеризуются особым типом взаимодействия между составляющими их элементами.

Критерием для выделения различных структурных уровней служат следующие признаки:

- пространственно-временные масштабы;

- совокупность важнейших свойств;

- специфические законы движения;

- степень относительной сложности, возникающей в процессе исторического развития материи в данной области мира;

- некоторые другие признаки.

Известные в настоящее время структурные уровни материи могут быть выделены по вышеперечисленным признакам в следующие области.

1. Микромир. Сюда относятся:

- частицы элементарные и ядра атомов -- область порядка 10 - 15 см;

- атомы и молекулы 10-8--10-7 см.

Микромир - это молекулы, атомы, элементарные частицы -- мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10--8 до 10--16 см, а время жизни -- от бесконечности до 10-24 с.

2. Макромир: макроскопические тела 10-6--107 см.

Макромир -- мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время -- в секундах, минутах, часах, годах.

Мегамир -- это планеты, звездные комплексы, галактики, метагалактики - мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов -- миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро -- и мегамиры теснейшим образом взаимосвязаны.

3. Мегамир: космические системы и неограниченные масштабы до 1028 см.

Разные уровни материи характеризуются разными типами связей.

1. В масштабах 10-13 см -- сильные взаимодействия, целостность ядра обеспечивается ядерными силами.

2.Целостность атомов, молекул, макротел обеспечивают электромагнитные силы.

3.В космических масштабах -- гравитационные силы.

С увеличением размеров объектов уменьшается энергия взаимодействия. Если принять энергию гравитационного взаимодействия за единицу, то электромагнитное взаимодействие в атоме будет в 1039 больше, а взаимодействие между нуклонами -- составляющими ядро частицами -- в 1041 раз больше. Чем меньше размеры материальных систем, тем более прочно связаны между собой их элементы.

Деление материи на структурные уровни носит относительный характер. В доступных пространственно-временных масштабах структурность материи проявляется в ее системной организации, существовании в виде множества иерархически взаимодействующих систем, начиная от элементарных частиц и кончая Метагалактикой.

Говоря о структурности -- внутренней расчлененности материального бытия, можно отметить, что сколь бы ни был широк диапазон мировидения науки, он тесно связан с обнаружением все новых и новых структурных образований. Например, если раньше взгляд на Вселенную замыкался Галактикой, затем расширился до системы галактик, то теперь изучается Метагалактика как особая система со специфическими законами, внутренними и внешними взаимодействиями.

В современной науке широко используется метод структурного анализа, при котором учитывается системность исследуемых объектов. Ведь структурность -- это внутренняя расчлененность материального бытия, способ существования материи. Структурные уровни материи образованы из определенного множества объектов какого-либо вида и характеризуются особым способом взаимодействия между составляющими их элементами, применительно к трем основным сферам объективной действительности эти уровни выглядят следующим образом (табл. 1).

Таблица1

Структурные уровни материи

Неорганическая природа

Живая природа

Общество

Субмикроэле-ментарный

Биологический макромолекулярный

Индивид

<

Микроэлементарный

Клеточный

Семья

Ядерный

Микроорганический

Коллективы

Атомарный

Органы и ткани

Большие социальные группы (классы, нации)

Молекулярный

Организм в целом

Государство (гражданское общество)

Макроуровень

Популяции

Системы государств

Мегауровень (планеты, звездно-планетные системы, галактики)

Биоценоз

Человечество в целом

Мегауровень (метагалактики)

Биосфера

Ноосфера

Каждая из сфер объективной действительности включает в себя ряд взаимосвязанных структурных уровней. Внутри этих уровней доминирующими являются координационные отношения, а между уровнями -- субординационные.

Системное исследование материальных объектов предполагает не только установление способов описания отношений, связей и структуры множества элементов, но и выделение тех из них, которые являются системообразующими, т.е. обеспечивают обособленное функционирование и развитие системы. Системный подход к материальным образованиям предполагает возможность понимания рассматриваемой системы более высокого уровня. Для системы обычно характерна иерархичность строения, т.е. последовательное включение системы более низкого уровня в систему более высокого уровня.

Таким образом, в структуру материи на уровне неживой природы (неорганической) входят элементарные частицы, атомы, молекулы (объекты микромира, макротела и объекты мегамира: планеты, галактики, системы метагалактик и т.д.). Метагалактику часто отождествляют со всей Вселенной, но Вселенная понимается в предельно широком смысле этого слова, она тождественна всему материальному миру и движущейся материи, которая может включать в себя множество метагалактик и других космических систем.

Живая природа также структурирована. В ней выделены уровень биологический и уровень социальный. Биологический уровень включает подуровни:

- макромолекул (нуклеиновые кислоты, ДНК, РНК, белки);

- клеточный уровень;

- микроорганический (одноклеточные организмы);

- органов и тканей организма в целом;

- популяционный;

- биоценозный;

- биосферный.

Основными понятиями данного уровня на последних трех подуровнях являются понятия биотоп, биоценоз, биосфера, требующие пояснения.

Биотоп -- совокупность (сообщество) особей одного и того же вида (например, стая волков), которые могут скрещиваться и воспроизводить себе подобных (популяции).

Биоценоз -- совокупность популяций организмов, при которых продукты жизнедеятельности одних являются условиями существования других организмов, населяющих участок суши или воды.

Биосфера - глобальная система жизни, та часть географической среды (нижняя часть атмосферы, верхняя часть литосферы и гидросферы), которая является средой обитания живых организмов, обеспечивая необходимые для их выживания условия (температуру, почву и т.п.), образованная в результате взаимодействия биоценозов.

Общая основа жизни на биологическом уровне -- органический метаболизм (обмен веществом, энергией и информацией с окружающей средой) -- проявляется на любом из выделенных подуровней:

- на уровне организмов обмен веществ означает ассимиляцию и диссимиляцию при посредстве внутриклеточных превращений;

- на уровне экосистем (биоценоза) он состоит из цепи превращений вещества, первоначально ассимилированного организмами-производителями при посредстве организмов-потребителей и организмов-разрушителей, относящихся к разным видам;

- на уровне биосферы происходит глобальный круговорот вещества и энергии при непосредственном участи факторов космического масштаба.


Подобные документы

  • Формирование основных положений космологической теории - науки о строении и эволюции Вселенной. Характеристика теорий происхождения Вселенной. Теория Большого взрыва и эволюция Вселенной. Строение Вселенной и её модели. Сущность концепции креационизма.

    презентация [1,1 M], добавлен 12.11.2012

  • Теории планетарной причинности зарождения жизни. Основные разновидности материи и связи между ними. Природа реликтового излучения - космического электромагнитного излучения с высокой степенью изотропности. Материалистическая природа эволюции Дарвина.

    контрольная работа [23,3 K], добавлен 10.06.2011

  • Гипотетические представления о Вселенной. Основные принципы познания в естествознании. Развитие Вселенной после Большого Взрыва. Космологическая модель Птолемея. Особенности теории Большого Взрыва. Этапы эволюции и изменение температуры Вселенной.

    курсовая работа [1,8 M], добавлен 28.04.2014

  • Основы эволюции Вселенной. Анализ сценария образования Вселенной в соответствии с концепцией Большого взрыва. Характеристика моделей расширяющейся и пульсирующей Вселенной. Эволюция концепции единства мира применительно к концепции Большого взрыва.

    презентация [204,8 K], добавлен 03.12.2014

  • Концепция структурных уровней живого. Иерархическая соподчиненность структурных уровней, системность и органическая целостность живых организмов. Закономерность функционирования структурных уровней. Обмен веществ, метаболизм клеток. Клеточная теория.

    контрольная работа [20,6 K], добавлен 26.01.2009

  • Первая классификация живых организмов, предложенная Карлом Линнеем. Три этапа Великих биологических объединений. Концепция эволюции органического мира Жан-Батиста Ламарка. Основные предпосылки возникновения теории Дарвина. Понятие естественного отбора.

    реферат [762,6 K], добавлен 06.09.2013

  • Специфика живого вещества и проблемы изучения живой природы в естествознании. Концепции происхождения жизни на планете и эволюции живых организмов. Зарождение и развитие Солнечной системы. Теория структурных уровней организации биотической материи.

    контрольная работа [49,2 K], добавлен 06.10.2012

  • Современная космологическая картина мира и модели Вселенной. теории начет ее возникновения и развития, результаты соответствующих исследований и экспериментов. Проблема существования и поиска жизни во Вселенной, методы и направления ее разрешения.

    контрольная работа [20,4 K], добавлен 11.02.2011

  • Идея тепловой смерти Вселенной. Закон возрастания энтропии. Возможность энтропии во Вселенной. Тепловая смерть Вселенной в научной картине мира. Термодинамический парадокс в релятивистских космологических моделях. Постнеклассическая картина мира.

    курсовая работа [101,8 K], добавлен 04.03.2011

  • Определение возраста Солнца, звезд, Вселенной. Диапазон временных интервалов во Вселенной. Представление о научной методологии и формировании критерия истины. Отличие современной научной картины мира от классической. Преемственность идей и концепций.

    контрольная работа [28,1 K], добавлен 16.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.