Гистология, цитология и эмбриология

Содержание дисциплин гистология, цитология и эмбриология, их история развития, описание основных методов исследования. Процесс изготовления и методы микроскопирования гистологических препаратов. Ультрафиолетовая, флуоресцентная, световая микроскопия.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 16.03.2016
Размер файла 24,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Гистология, цитология и эмбриология

гистология микроскопирование флуоресцентный

Содержание дисциплины, история развития, методы исследования

Организм человека и животных представляет собой целостную систему, в которой можно выделить ряд иерархических уровней организации живой материй: клетки -- ткани -- морфофункциональные единицы органов -- органы -- системы органов. Каждый уровень структурной организации имеет морфофункциональные особенности, отличающие его от других уровней.

Гистология (от греч. histos -- ткань, logos -- учение) -- наука о строении, развитии и жизнедеятельности тканей животных организмов.

Ткани представляют собой систему клеток и неклеточных структур, объединившихся и специализировавшихся в процессе эволюции для выполнения важнейших функций в организме. Для каждой из основных тканевых систем характерны присущие именно им особенности строения, развития и жизнедеятельности. Предметом общей гистологии, или собственно учения о тканях, являются общие закономерности, присущие тканевому уровню организации и отличительные особенности конкретных тканей; предметомчастной гистологии -- закономерности жизнедеятельности и взаимодействия различных тканей в органах на более высоких уровнях организации. Частная гистология служит основой для изучения микроскопического строения морфофункциональных единиц органов и органов в целом.

Курс гистологии включает в себя также цитологию -- учение о клетке и эмбриологию-- учение о зародыше. Эти самостоятельные курсы предшествуют общей и частной гистологии.

Цитология (от греч. kytos -- клетка, logos -- учение) -- наука о развитии, строении и жизнедеятельности клеток.

Цитология составляет необходимую часть гистологии, так как клетки являются основой развития и строения тканей. Цитология в последние годы обогатилась многими научными открытиями, внесшими существенный вклад в развитие биологических и медицинских наук и практику здравоохранения. Новые данные о структуре ядра, его хромосомного аппарата легли в основу цитодиагностики наследственных заболеваний, опухолей, болезней крови и многих других болезней. Раскрытие особенностей ультраструктуры и химического состава клеточных мембран является основой для понимания закономерностей взаимодействия клеток в тканевых системах, защитных реакциях и др. В медицинской практике широко используется цитодиагностика. Клетки здорового и больного организма изучаются в мазках крови и костного мозга, спинномозговой жидкости, слюны, мочи, в образцах различных органов, взятых при биопсии.

Эмбриология (от греч. embryon -- зародыш, logos -- учение) -- учение о зародыше, о закономерностях его развития.

В курсе эмбриологии, преподаваемом в медицинском вузе, основное внимание обращается на закономерности эмбрионального развития человека. Особое внимание в обращается на источники развития и механизмы образования тканей (т.е. гистогенез) на определенном этапе эмбриогенеза. Закономерности гистогенеза определяют морфофункциональные особенности тканевых структур в постнатальном развитии, в частности их способность к регенерации. Поэтому изучение основных этапов эмбрионального развития предшествует изучению тканей. Таким образом, объединение гистологии, цитологии и эмбриологии в один предмет не формально, а отражает внутренние естественные связи между ними.

Гистология с цитологией и эмбриологией, как и другие фундаментальные биологические науки, решает главную задачу -- выяснение структурной организации процессов жизнедеятельности и в связи с этим -- возможности целенаправленного воздействия на них.

Познание закономерностей строения клеток, тканей и органов должно вестись в связи с их функциями (ср. Вл.Карпов - Начальный курсъ гистологіи, 1913г). Взаимоотношения между структурой и функцией рассматриваются с позиций закона диалектического материализма о единстве материи и ее движения. Поэтому структура включает в себя понятия и морфологического строения и функции.

Изучение каждой структуры должно проводиться с исторических позиций, основывающихся на эволюционном учении Ч. Дарвина, согласно которому все составные части человеческого организма рассматриваются как результат филогенетического развития. Теории развития тканей (параллельных рядов А.А. Заварзина и дивергентного развития Н.Г. Хлопина) устанавливают основные закономерности формирования тканей в филогенезе.

Методы исследования

В современной гистологии, цитологии и эмбриологии применяются разнообразные методы исследования, позволяющие всесторонне изучать процессы развития, строения и функции клеток, тканей и органов.

Главными этапами цитологического и гистологического анализа являются выбор объекта исследования, подготовка его для изучения в микроскопе, применение методов микроскопирования, а также качественный и количественный анализ изображений.

Объектами исследования служат живые и мертвые (фиксированные) клетки и ткани, и их изображения, полученные в световых и электронных микроскопах.

Основным объектом исследования являются гистологические препараты, приготовленные из фиксированных структур. Препарат может представлять собой мазок(например, мазок крови, костного мозга, слюны, спинномозговой жидкости и др.),отпечаток (например, селезенки, тимуса, печени), пленку из ткани (например, соединительной или брюшины, плевры, мягкой мозговой оболочки), тонкий срез. Наиболее часто для изучения используется срез ткани или органа. Гистологические препараты могут изучаться без специальной обработки. Например, приготовленный мазок крови, отпечаток, пленка или срез органа могут сразу рассматриваться под микроскопом. Но вследствие того, что структуры имеют слабый контраст, они плохо выявляются в обычном световом микроскопе и требуется использование специальных микроскопов (фазово-контрастные и др.). Поэтому чаще применяют специально обработанные препараты: фиксированные, заключенные в твердую среду и окрашенные.

Процесс изготовления гистологического препарата для световой и электронной микроскопии включает следующие основные этапы:

1. взятие материала и его фиксация,

2. уплотнение материала,

3. приготовление срезов,

4. окрашивание или контрастирование срезов.

Для световой микроскопии необходим еще один этап -- заключение срезов в бальзам или другие прозрачные среды.

Фиксация обеспечивает предотвращение процессов разложения, что способствует сохранению целостности структур. Это достигается тем, что взятый из органа маленький образец либо погружают в фиксатор (спирт, формалин, растворы солей тяжелых металлов, осмиевая кислота, специальные фиксирующие смеси), либо подвергают термической обработке. Под действием фиксатора в тканях и органах происходят сложные физико-химические изменения. Наиболее существенным из них является процесс необратимой коагуляции белков, вследствие которого жизнедеятельность прекращается, а структуры становятся мертвыми, фиксированными. Фиксация приводит к уплотнению и уменьшению объема кусочков, а также к улучшению последующей окраски клеток и тканей.

Уплотнение материала, необходимое для приготовления срезов, производится путем пропитывания предварительно обезвоженного материала парафином, целлоидином, органическими смолами. Более быстрое уплотнение достигается применением метода замораживания кусочков, например, в жидкой углекислоте.

Приготовление срезов происходит на специальных приборах -- микротомах (для световой микроскопии) и ультрамикротомах (для электронной микроскопии). Смотри ссылку - приборы для изготовления срезов.

Окрашивание срезов (в световой микроскопии) или напыление их солями металлов (в электронной микроскопии) применяют для увеличения контрастности изображения отдельных структур при рассматривании их в микроскопе. Методы окраски гистологических структур очень разнообразны и выбираются в зависимости от задач исследования. См. форум гистологические методики.

Гистологические красители (по химической природе) подразделяют на кислые, основные и нейтральные. В качестве примера можно привести наиболее употребительный краситель гематоксилин, который окрашивает ядра клеток в фиолетовый цвет, и кислый краситель -- эозин, окрашивающий цитоплазму в розово-желтый цвет. Избирательное сродство структур к определенным красителям обусловлено их химическим составом и физическими свойствами. Структуры, хорошо окрашивающиеся кислыми красителями, называются оксифильными, а окрашивающиеся основными --базофильными. Например, цитоплазма клеток чаще всего окрашивается оксифильно, а ядра клеток - окрашиваются базофильно.

Структуры, воспринимающие как кислые, так и основные красители, являются нейтрофильными (гетерофильными). Окрашенные препараты обычно обезвоживают в спиртах возрастающей крепости и просветляют в ксилоле, бензоле, толуоле или некоторых маслах. Для длительного сохранения обезвоженный гистологический срез заключают между предметным и покровным стеклами в канадский бальзам или другие вещества. Готовый гистологический препарат может быть использован для изучения под микроскопом в течение многих лет.

Для электронной микроскопии срезы, полученные на ультрамикротоме, помещают на специальные сетки, контрастируют солями урана, свинца и других металлов, после чего просматривают в микроскопе и фотографируют. Полученные микрофотографии служат объектом изучения наряду с гистологическими препаратами.

Методы микроскопирования гистологических препаратов

Микроскопия может быть световая (с использованием светового микроскопа) иэлектронная (с использованием электронного микроскопа). Световая микроскопия может осуществляться в проходящем свете, когда свет проходит через тонкий прозрачный гистологический препарат, или же в отраженном свете, когда исследуют, например, толстый или непрозрачный объект. Аналогичным образом, электронная микроскопия может быть трансмиссионной, когда пучок электронов проходит сквозь изучаемый ультратонкий срез, или же растровой, или сканирующей, когда пучок электронов отражается от поверхности исследуемого объекта. В первом случае электронный микроскоп называется трансмиссионным (ТЭМ), а во втором - сканирующим (СЭМ).

Световая микроскопия

Микроскопирование -- основной метод изучения препаратов -- используется в биологии уже более 300 лет. Современные микроскопы представляют собой разнообразные сложные оптические системы, обладающие высокой разрешающей способностью и позволяющие изучать очень тонкие детали строения клеток и тканей. Размер самой маленькой структуры, которую можно видеть в микроскопе, определяется наименьшим разрешаемым расстоянием (d0). В основном оно зависит от длины световой волны л, и эта зависимость приближенно выражается формулой d0 = л / 2. Таким образом, чем меньше длина световой волны, тем меньше разрешаемое расстояние и тем меньшие по размерам структуры можно видеть в препарате (т.е. выше «разрешение» микроскопа). Понятие «увеличение микроскопа» относится к его оптической системе и выражается в произведении увеличений объектива и окуляра. Однако «разрешение» микроскопа зависит от характеристик объектива и не зависит от окуляра.

Для изучения гистологических препаратов чаще применяют обычные световые микроскопы различных марок, когда в качестве источника освещения используют естественный или искусственный свет. Минимальная длина волны видимой части спектра света соответствует примерно 0,4 мкм (фиолетовый спектр). Следовательно, для обычного светового микроскопа разрешаемое расстояние равно приблизительно 0,2 мкм, а общее увеличение (произведение увеличения объектива на увеличение окуляра) достигает 2000 раз.

Ультрафиолетовая микроскопия

Это разновидность световой микроскопии. В ультрафиолетовом микроскопе используют более короткие ультрафиолетовые лучи с длиной волны около 0,2 мкм. Разрешаемое расстояние здесь составляет приблизительно 0,1 мкм. Полученное в ультрафиолетовых лучах невидимое глазом изображение преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специальных устройств (т.к. люминесцентный экран, или электронно-оптический преобразователь).

Флюоресцентная (люминесцентная) микроскопия

Явления флюоресценции заключаются в том, что атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Обратный переход из возбужденного состояния в нормальное происходит с испусканием света, но с другой, большей длиной волны. В флюоресцентном микроскопе в качестве источников света для возбуждения флюоресценции применяют ртутные или ксеноновые лампы сверхвысокого давления, обладающие высокой яркостью в области спектра 0,25--0,4 мкм (ближние ультрафиолетовые лучи) и 0,4--0,5 мкм (сине-фиолетовые лучи). Длина световой волны вызванной флюоресценции всегда больше длины волны возбуждающего света, поэтому их разделяют с помощью светофильтров и изучают изображение объекта только в свете флюоресценции. Различают собственную, или первичную, и наведенную, или вторичную, флюоресценцию. Любая клетка живого организма обладает собственной флюоресценцией, однако она часто бывает чрезвычайно слабой. Вторичная флюоресценция возникает при обработке препаратов специальными красителями --флюорохромами. Например, при обработке препаратов чаще всего употребляется флюорохром акридиновый оранжевый. В этом случае ДНК и ее соединения в клетках имеют ярко-зеленое, а РНК и ее производные -- ярко-красное свечение. Таким образом, спектральный состав излучения несет информацию о внутреннем строении объекта, его химическом составе. Вариант метода флюоресцентной микроскопии, при котором и возбуждение, и излучение флюоресценции происходят в ультрафиолетовой области спектра, получил название метода ультрафиолетовой флюоресцентной микроскопии.

Фазово-контрастная микроскопия

Этот метод служит для получения контрастных изображений прозрачных и бесцветных объектов, невидимых при обычных методах микроскопирования. Для изучения препаратов в обычном световом микроскопе необходимая контрастность структур достигается с помощью окрашивания. Метод фазового контраста обеспечивает необходимую контрастность изучаемых неокрашенных структур за счет специальнойкольцевой диафрагмы, помещаемой в конденсоре, и так называемой фазовой пластинки, находящейся в объективе. (См. описание устройства для наблюдения методом фазового контраста КФ-4) Такая конструкция оптики микроскопа дает возможность преобразовать не воспринимаемые глазом фазовые изменения прошедшего через неокрашенный препарат света в изменение его амплитуды, т.е. яркости получаемого изображения. Повышение контраста позволяет видеть все структуры, различающиеся по показателю преломления. Разновидностью метода фазового контраста является метод фазово-темнопольного контраста, дающий негативное по сравнению с позитивным фазовым контрастом изображение.

Кроме перечисленных методов, для специальных целей применяются микроскопия в темном поле при изучении живых объектов, в падающем (отраженном) свете для рассмотрения толстых объектов, поляризационная микроскопия для изучения архитектоники гистологических структур - в поляризованном свете. Описание этих методов и соответствующих приборов приводится в специальных руководствах.

Электронная микроскопия

В электронном микроскопе используется поток электронов с более короткими, чем в световом микроскопе, длинами волн. При напряжении 50 000 В длина волны электромагнитных колебаний, возникающих при движении потока электронов в вакууме, равна 0,0056 нм. Теоретически рассчитано, что разрешаемое расстояние в этих условиях может быть около 0,002 нм, или 0,000002 мкм, т.е. в 100 000 раз меньше, чем в световом микроскопе. Практически в современных электронных микроскопах разрешаемое расстояние составляет 0,1…0,7 нм.

С помощью просвечивающего (трансмиссионного) электронного микроскопа можно получить лишь плоскостное изображение изучаемого объекта (среза). Для получения пространственного представления о структурах используют растровые (сканирующие) электронные микроскопы, способные создавать трехмерные изображения. Растровый электронный микроскоп работает по принципу сканирования электронным микрозондом исследуемого объекта, т.е. последовательно «ощупывает» остро сфокусированным электронным пучком отдельные точки поверхности. Для исследования выбранного участка микрозонд двигается по его поверхности под действием отклоняющих электромагнитных катушек (принцип телевизионной развертки). Такое исследование объекта называется сканированием (считыванием), а рисунок, по которому движется микрозонд, --растром.

Главными достоинствами электронной микроскопии являются большая глубина резкости (в 100--1000 раз больше, чем у световых микроскопов), широкий диапазон непрерывного изменения увеличения (от десятков до десятков тысяч раз) и высокая разрешающая способность.

Методы исследования

Методы исследования в гистологии включают приготовление гистологических препаратов с последующим их изучением с помощью светового или электронного микроскопа. Гистологические препараты представляют собой мазки, отпечатки органов, тонкие срезы кусочков органов, возможно, окрашенные специальным красителем, помещенные на предметное стекло микроскопа, заключенные в консервирующую среду и покрытые покровным стеклом.

Приготовление гистологического препарата

После забора материала выполняется его подготовка к исследованию, включающая в себя ряд этапов.

1. Фиксация (от лат. fixatio -- закрепление) -- фрагмент ткани обрабатывают с помощью жидкости-фиксатора, в роли которого чаще всего выступает формалин, реже -- спирты, пикриновая кислота и др. Такая обработка предотвращает распад клеток и разрушение структуры ткани под действием собственных ферментов клеток и процессов гниения, таким образом сохраняя прижизненную структуру и делая возможным изучение ткани. Принцип действия фиксирующих жидкостей основан на быстрой гибели клеток и коагуляции белка. Наиболее распространенный тип фиксации -- иммерсионная фиксация (от лат. immersio -- погружение), при которой фрагмент ткани целиком погружается в раствор; в экспериментальных условиях также используют перфузионную фиксацию (от лат. perfusio -- вливание), при которой фиксатор вводят через сосудистую систему.[1]При этом используют как технический формалин (марка ФМ ГОСТ 1625-89), так и подготовленный («забуференный» формалин), который отличается большей стабильностью -- не образуется белый осадок, свойственный техническому формалину при температуре ниже 40 °С.

2. Проводка -- процесс дегидратации (обезвоживания) фрагмента ткани и пропитки его парафином. Этот этап обеспечивает уплотнение ткани, которое, в свою очередь, необходимо для получения срезов (если ткань будет излишне мягкой, то при микротомировании она будет «сминаться», образуя складки, разрывы и другие артефакты, делающие её непригодной к изучению). Традиционно проводку осуществляли путем последовательного погружения ткани в растворы ксилола и этилового спирта, однако такой метод имеет ряд существенных недостатков, как-то: трудоемкость, длительность (до четырёх суток), испарение реагентов в воздух лаборатории (что небезопасно для сотрудников лаборатории, так как ксилолы образуют взрывоопасные паровоздушные смеси, вызывают острые и хронические поражения кроветворных органов, при контакте с кожей -- дерматиты), а также нестабильное качество получаемой ткани, зависящее от человеческого фактора, а именно действий лаборанта. Для решения проблем такого рода лаборатории используют альтернативные реагенты, такие как изопропанол, являющийся нетоксичным, а также аппараты -- гистопроцессоры, имеющие закрытый контур и таким образом не допускающие испарений в воздух лаборатории. Путем использования гистопроцессоров также можно значительно уменьшить время проводки по сравнению с ручным методом (до одного часа при использовании гистопроцессора Xpress 120) за счет применения вакуум-инфильтрационной и микроволновой методик.

3. Заливка -- процесс создания блока, достаточно твердого, чтобы быть пригодным для резки (микротомирования). Выполняется путем заливания фрагмента ткани жидкимпарафином, целлоидином, пластмассой или специальными средами для заливки. Затем залитую ткань остужают до затвердевания блока. Целлоидин в настоящее время практически не используется; чистый парафин также обладает рядом недостатков, делающих его непригодным для исследования -- при его затвердевании образуются кристаллы, уменьшающие его объём на 5-10 %, что, в свою очередь, ведет к деформации ткани, а также из-за кристаллической структуры он легко крошится при резке. Поэтому чаще всего для изготовления блоков пользуются специальными заливочными средами, представляющими собой смесь парафинов с присадками в виде рисового, пчелиного воска или полимеров. Эти присадки придают парафину эластичность, что не дает ему крошиться при резке. Чтобы создать гомогенную среду для заливки, воск и парафин расплавляют, охлаждают и тщательно перемешивают, повторяя всю процедуру 5-10 раз. Это достаточно трудоемкий процесс, качество получаемой среды нестабильно, поэтому некоторые лаборатории пользуются готовыми средами для заливки, изготовленными в заводских условиях и не требующих дополнительной гомогенизации.

4. Резка, или микротомирование, представляет собой изготовление тонких срезов на специальном приборе -- микротоме. Толщина срезов, предназначенных для световой микроскопии, не должна превышать 4 -- 5 мкм, для электронной -- 50 -- 60 нм.

5. Окрашивание срезов позволяет выявить структуру ткани за счет неодинакового химического сродства различных элементов ткани к гистологическим красителям. Например,окраска гематоксилином и эозином позволяет выявить кислые структуры ткани, такие как ДНК и РНК, за счет их связывания с гематоксилином, имеющим щелочную реакцию, и цитоплазму клеток, которая связывается с эозином (Основная статья -- окраска гематоксилином и эозином). Перед окрашиванием выполняется монтирование среза на предметное стекло. Для избежания формирования складок срез после микротомирования помещают на поверхность подогретой воды, где он расправляется, а потом уже на стекло. Окрашивание, как и все остальные стадии процесса изготовления гистологического препарата, может выполняться вручную и автоматически. Различают традиционное окрашивание и иммуногистохимическое.

6. Заключение срезов представляет собой помещение окрашенного среза, монтированного на предметном стекле, под покровное стекло с использованием среды для заключения, имеющий коэффициент преломления, близкий к таковому у стекла -- канадский бальзам, полистирол, специальные среды для заключения. Заключенный препарат можно хранить достаточно длительное количество времени (исключение -- при использовании полистирола препарат постепенно теряет прозрачность, а сам полистирол трескается. Данные изменения при заключении полистеролом значительно уменьшаются если в полистерол добавить пластификатор например дибутилфталат, при таком условии срок годности гистопрепарата увеличивается до 10 лет даже без покровного стекла, в течение 3 лет изменений практически не происходит).

Размещено на Allbest.ru


Подобные документы

  • Гистология — наука о строении, развитии и жизнедеятельности тканей животных организмов и общих закономерностях тканевой организации; понятие цитологии и эмбриологии. Основные методы гистологического исследования; приготовление гистологического препарата.

    презентация [1,5 M], добавлен 23.03.2013

  • Гистология как наука о происхождении, строении, функции и регенерации тканей живых организмов. Эволюционная эмбриология, развитие на примере млекопитающих. Критический период как период повышенной чувствительности организма к действию внешних факторов.

    реферат [20,3 K], добавлен 18.01.2010

  • История зарождения гистологии как науки. Гистологические препараты и методы их исследования. Характеристика этапов приготовления гистологических препаратов: фиксация, проводка, заливка, резка, окрашивание и заключение срезов. Типология тканей человека.

    презентация [1,6 M], добавлен 20.11.2014

  • Основы гистологической техники. Цитохимические методы исследования клеток и тканей. Наружная цитоплазматическая мембрана, типы и происхождение пластид, их строение и функции. Мейоз (редукционное деление клетки), его фазы и биологический смысл.

    контрольная работа [22,7 K], добавлен 07.06.2010

  • Гистология - учение о развитии, строении, жизнедеятельности и регенерации тканей животных организмов и организма человека. Методы ее исследования, этапы развития, задачи. Основы сравнительной эмбриологии, науки о развитии и строении зародыша человека.

    реферат [9,9 K], добавлен 01.12.2011

  • Методы изучения клетки: микроспектромериз, цитофотометрия, флуоресцентная и ультрафиолетовая микроскопия. Способы деления клеток, их сходство и различия. Функции биологических мембран, диффузия (пассивная и облегченная) и активный транспорт молекул.

    контрольная работа [39,9 K], добавлен 01.06.2010

  • Основной предмет изучения гистологии. Главные этапы гистологического анализа, объекты его исследования. Процесс изготовления гистологического препарата для световой и электронной микроскопии. Флюоресцентная (люминесцентная) микроскопия, сущность метода.

    курсовая работа [32,3 K], добавлен 12.01.2015

  • История гистологии - раздела биологии, изучающего строение тканей живых организмов. Методы исследования в гистологии, приготовление гистологического препарата. Гистология ткани - филогенетически сложившейся системы клеток и неклеточных структур.

    реферат [24,3 K], добавлен 07.01.2012

  • Техника приготовления гистологических препаратов для световой микроскопии, основные этапы данного процесса и требования к условиям его реализации. Методы исследования в гистологии и цитологии. Примерная схема окраски препаратов гематоксилин – эозином.

    контрольная работа [20,4 K], добавлен 08.10.2013

  • История развития науки "цитология". Определение понятия "клетка" и ее положение среди других форм структурной организации живой материи. Сравнительная характеристика прокариотов и эукариотов. Методы исследования клетки, ее морфология, химия и физиология.

    учебное пособие [90,1 K], добавлен 12.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.