Генетика пола

Генетика как одна из важнейших областей биологии. Понятие и сущность наследственности. Важность законов наследственности и ее механизмов. Суть хромосомной теории наследственности. Биологическое значение перекреста хромосом, механизм определения пола.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 21.01.2016
Размер файла 309,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

ВВЕДЕНИЕ

Современная биология - комплексная система знаний, включающая в себя большое количество самостоятельных биологических наук. Познание жизни на различных уровнях ее организации, изучение различных свойств организмов и объектов живого, а также разнообразие используемых методов исследования позволяют выделить большое количество биологических дисциплин. генетика биология наследственность хромосома пол

Генетика по праву может считаться одной из самых важных областей биологии. На протяжении тысячелетий человек пользовался генетическими методами для улучшения домашних животных и возделываемых растений, не имея представления о механизмах, лежащих в основе этих методов. Судя по разнообразным археологическим данным, уже 6000 лет назад люди понимали, что некоторые физические признаки могут передаваться от одного поколения другому. Отбирая определенные организмы из природных популяций и скрещивая их между собой, человек создавал улучшенные сорта растений и породы животных, обладавшие нужными ему свойствами.

Однако лишь в XX в. ученые стали осознавать в полной мере важность законов наследственности и ее механизмов. Хотя успехи микроскопии позволили установить, что наследственные признаки передаются из поколения в поколение через сперматозоиды и яйцеклетки, оставалось неясным, каким образом мельчайшие частицы протоплазмы могут нести в себе "задатки" того огромного множества признаков, из которых слагается каждый отдельный организм.

Наследственность заключается в способности организмов передавать особенности строения, функции, развития своему потомству. Наследственность обеспечивает преемственность между поколениями и обуславливает существование видов. Кроме того, выделяют понятие наследования, подразумевая конкретный способ передачи наследственной информации в ряду поколений, который может быть различен в зависимости от форм размножения, локализации генов в хромосомах и т.п. В основе наследственности лежат структурные и функциональные возможности генетической информации клеток.

Хромосомная теория наследственности, теория, согласно которой хромосомы, заключенные в ядре клетки, являются носителями генов и представляют собой материальную основу наследственности.

СЦЕПЛЕННОЕ НАСЛЕДОВАНИЕ

Независимое распределение генов (второй закон Менделя) основано на том, что гены, относящиеся к разным аллелям, размещены в разных парах гомологичных хромосом. Естественно возникает вопрос: а как же будет происходить распределение разных (неаллельных) генов в ряду поколений, если они лежат в одной и той же паре хромосом? Такое явление должно иметь место, ибо число генов во много раз превосходит число хромосом. Очевидно, к генам, находящимся в одной хромосоме, закон независимого распределения (второй закон Менделя) не применим. Он ограничен лишь теми случаями, когда гены разных аллелей находятся в различных хромосомах.

Закономерность наследования при нахождении генов в одной хромосоме была тщательно изучена Т. Морганом и его школой. Основным объектом исследований служила небольшая плодовая мушка дрозофила

Это насекомое исключительно удобно для генетической работы. Мушка легко разводится в лабораторных условиях, плодовита, каждые 10-15 дней при оптимальной для нее температуре 25-26° С дает новое поколение, обладает многочисленными и разнообразными наследственными признаками, имеет небольшое число хромосом (в диплоидном наборе - 8).

Опыты показали, что гены, локализованные в одной хромосоме, оказываются сцепленными, т. е. наследуются преимущественно вместе, не обнаруживая независимого распределения. Рассмотрим конкретный пример. Если скрестить дрозофилу с серым телом и нормальными крыльями с мушкой, обладающей темной окраской тела и зачаточными крыльями, то в первом поколении гибридов все мушки будут серыми, с нормальными крыльями. Это гетерозигота по двум парам аллелей (серое тело - темное тело и нормальные крылья - зачаточные крылья). Проведем скрещивание. Скрестим самок этих дигетерозиготных мух (серое тело и нормальные крылья) с самцами, обладающими рецессивными признаками - темным телом и зачаточными крыльями. Исходя из второго закона Менделя, можно было бы ожидать получения в потомстве мух четырех фенотипов: 25% серых, с нормальными крыльями; 25% серых, с зачаточными крыльями; 25% темных, с нормальными крыльями; 25% темных, с зачаточными крыльями.

На самом деле в опыте мух с исходной комбинацией признаков (серое тело - нормальные крылья, темное тело - зачаточные крылья) оказывается значительно больше (в данном опыте по 41,5%), чем мух с перекомбинированными признаками (серое тело - зачаточные крылья и темное тело - нормальные крылья).

Их будет всего по 8,5% каждого типа. На этом примере видно, что гены, обусловившие признаки серое тело - нормальные крылья и темное тело - зачаточные крылья, наследуются преимущественно вместе, или, иначе говоря, оказываются сцепленными между собой. Это сцепление является следствием локализации генов в одной и той же хромосоме. Поэтому при мейозе эти гены не расходятся, а наследуются вместе. Явление сцепления генов, локализованных в одной хромосоме, известно под названием закона Моргана.

Почему же все-таки среди гибридов второго поколения появляется небольшое число особей с перекомбинацией родительских признаков? Почему сцепление генов не является абсолютным? Исследования показали, что эта перекомбинация генов обусловлена тем, что в процессе мейоза при конъюгации гомологичных хромосом они иногда обмениваются своими участками, или, иначе говоря, между ними происходит перекрест.

Ясно, что при этом гены, находившиеся первоначально в одной из двух гомологичных хромосом, окажутся в разных гомологичных хромосомах. Между ними произойдет перекомбинация. Частота перекреста для разных генов оказывается различной. Это зависит от расстояния между ними. Чем ближе в хромосоме расположены гены, тем реже они разделяются при перекресте. Это происходит потому, что хромосомы обмениваются различными участками, и близко расположенные гены имеют больше вероятности оказаться вместе. Исходя из этой закономерности удалось для хорошо изученных в генетическом отношении организмов построить генетические карты хромосом, на которых нанесено относительное расстояние между генами.

Биологическое значение перекреста хромосом очень велико. Благодаря ему создаются новые наследственные комбинации генов, повышается наследственная изменчивость, которая поставляет материал для естественного отбора.

ГЕНЕТИКА ПОЛА

Хорошо известно, что у раздельнополых организмов (в том числе и у человека) соотношение полов обычно составляет 1:1. Какие причины определяют пол развивающегося организма? Вопрос этот издавна интересовал человечество ввиду его большого теоретического и практического значения. Хромосомный набор самцов и самок у большинства раздельнополых организмов неодинаков. Познакомимся с этими различиями на примере набора хромосом у дрозофилы.

По трем парам хромосом самцы и самки не отличаются друг от друга. Но в отношении одной пары имеются существенные различия. У самки две одинаковые (парные) палочковидные хромосомы; у самца только одна такая хромосома, пару которой составляет особая, двуплечая хромосома. Те хромосомы, в отношении которых между самцами и самками нет различий, называют аутосомами. Хромосомы, по которым самцы и самки отличаются друг от друга, называют половыми. Таким образом, хромосомный набор дрозофилы слагается из шести аутосом и двух половых хромосом. Половую, палочковидную хромосому, присутствующую у самки в двойном числе, а у самца - в единичном, называют X-хромосомой; вторую, половую (двуплечую хромосому самца, отсутствующую у самки) - У-хромосомой.

Каким образом рассмотренные половые различия в хромосомных наборах самцов и самок поддерживаются в процессе размножения? Для ответа на этот вопрос необходимо выяснить поведение хромосом в мейозе и при оплодотворении. Сущность этого процесса представлена на рисунке.

При созревании половых клеток у самки каждая яйцеклетка в результате мейоза получает гаплоидный набор из четырех хромосом: три аутосомы и одну Х-хромосому. У самцов в равных количествах образуются сперматозоиды двух сортов. Одни несут три аутосомы и Х-хромосому, другие - три аутосомы и У-хромосому. При оплодотворении возможны две комбинации. Яйцеклетка с равной вероятностью может быть оплодотворена спермием с Х- или У-хромосомой. В первом случае из оплодотворенного яйца разовьется самка, а во втором - самец. Пол организма определяется в момент оплодотворения и зависит от хромосомного набора зиготы.

У человека хромосомный механизм определения пола тот же, что и у дрозофилы. Диплоидное число хромосом человека - 46. В это число входят 22 пары аутосом и 2 половые хромосомы. У женщин это две Х-хромосомы, у мужчин - одна Х- и одна У-хромосома.

Соответственно у мужчин образуются сперматозоиды двух сортов - с Х- и У-хромосомами.

У некоторых раздельнополых организмов (например, некоторых насекомых) У-хромосома вообще отсутствует. В этих случаях у самца оказывается на одну хромосому меньше: вместо Х- и У- у него имеется одна Х-хромосома. Тогда при образовании мужских гамет в процессе мейоза Х-хромосома не имеет партнера для конъюгации и отходит в одну из клеток. В результате половина всех сперматозоидов имеет Х-хромосому, а другая половина лишена ее. При оплодотворении яйца спермием с Х-хромосомой получается комплекс с двумя X-хромосомами, и из такого яйца развивается самка. Если яйцеклетка будет оплодотворена спермием без Х-хромосомы, то разовьется организм с одной Х-хромосомой (полученной через яйцеклетку от самки), который будет самцом.

Во всех рассмотренных выше примерах развиваются спермин двух категорий: либо с Х- и У-хромосомами (дрозофила, человек), либо половина спермиев несет Х-хромосому, а другая совсем лишена половой хромосомы. Яйцеклетки в отношении половых хромосом все одинаковы. Во всех этих случаях мы имеем мужскую гетерогаметность (разногаметность). Женский пол гомогаметен (равногаметен). Наряду с этим в природе встречается и другой тип определения пола, характеризующийся женской гетерогаметностью. Здесь имеют место отношения обратные только что рассмотренным. Разные половые хромосомы или только одна Х-хромосома свойственны женскому полу. Мужской пол обладает парой одинаковых Х-хромосом. Очевидно, в этих случаях будет иметь место женская гетерогаметность. После мейоза образуются яйцевые клетки двух сортов, тогда как в отношении хромосомного комплекса все спермин одинаковы (все несут одну Х-хромосому). Следовательно, пол зародыша будет определяться тем, какое яйцо - с Х- или У-хромосомой - будет оплодотворено.

Женская гетерогаметность имеет место у некоторых насекомых, например у бабочек. Среди позвоночных животных она характерна для птиц и пресмыкающихся.

ЗАКЛЮЧЕНИЕ

Теория гена устанавливает, что признаки или свойства особи являются функцией соединенных в пары элементов (генов), заложенных в наследственном веществе в виде определенного числа групп сцепления; она устанавливает затем, что члены каждой пары генов, когда половые клетки созревают, разделяются в соответствии с первым законом Менделя и, следовательно, каждая зрелая половая клетка содержит только один ассортимент их; она устанавливает также, что члены, принадлежащие к различным группам сцепления, распределяются при наследовании независимо, соответственно второму закону Менделя; равным образом она устанавливает, что иногда имеет место закономерный взаимообмен-перекрест - между соответственными друг другу элементами двух групп сцепления; наконец, она устанавливает, что частота перекреста доставляет данные, доказывающие линейное расположение элементов по отношению друг к другу...»

СПИСОК ЛИТЕРАТУРЫ

Общая генетика М.: Высшая школа, 1985

Хрестоматия по генетике. Изд-во Казанского ун-та, 1988

Петроф Д.Ф. Генетика с основами селекции. Высшая школа. 1971

Бочков Н.П. Медицинская генетика - М.: Мастерство, 2001

Иванов В.И. Генетика. М.: ИКЦ Академкнига, 2006

Размещено на Allbest.ru


Подобные документы

  • Генетика пола. Генетические механизмы формирования пола. Наследование признаков, сцепленных с полом. Наследование признаков, контролируемых полом. Хромосомная теория наследственности. Механизм сцепления. Биотехнологии и генная инженерия.

    реферат [72,9 K], добавлен 06.10.2006

  • Наследственная информация, понятие хромосомы. Последствия изменения числа хромосом в кариотипе человека. Процедура определения кариотипа. Хромосомная теория наследственности, генетика пола. Явление наследования, сцепленного с полом. Хромосомные болезни.

    контрольная работа [15,9 K], добавлен 24.12.2011

  • Выявление параллелизма в поведении генов и хромосом в ходе формирования гамет и оплодотворения. Понятие генетической рекомбинации, исследование явления на дрозофилах, проведенное Т. Морганом. Основные положения хромосомной теории наследственности.

    презентация [582,2 K], добавлен 28.12.2011

  • Хромосомная теория наследственности. Генетический механизм определения пола. Поведение хромосом в митозе и мейозе. Классификация хромосом, составление идиограммы. Методы дифференциальной окраски хромосом. Структура хромосом и хромосомные мутации.

    реферат [32,7 K], добавлен 23.07.2015

  • Мейоз как один из ключевых механизмов наследственности и изменчивости. Биологическое значение мейоза: поддержание постоянства кариотипа в ряду поколений, обеспечение рекомбинации хромосом и генов. Законы Грегора Менделя как основа классической генетики.

    презентация [3,3 M], добавлен 15.04.2014

  • Общая характеристика науки биологии. Этапы развития биологии. Открытие фундаментальных законов наследственности. Клеточная теория, законы наследственности, достижения биохимии, биофизики и молекулярной биологии. Вопрос о функциях живого вещества.

    контрольная работа [28,1 K], добавлен 25.02.2012

  • Понятие и функции в организме хромосомы как комплекса ДНК с белками (гистоновыми и негистоновыми). История разработки и содержание хромосомной теории наследственности. Типы хромосом в клетке в зависимости от фазы клеточного цикла, уровни организации.

    презентация [5,8 M], добавлен 11.11.2014

  • Гаметогенез и развитие растений. Основы генетики и селекции. Хромосомная теория наследственности. Моногибридное, дигибридное и анализирующее скрещивание. Сцепленное наследование признаков, генетика пола. Наследование признаков, сцепленных с полом.

    реферат [24,6 K], добавлен 06.07.2010

  • Биологические системы, организация живой природы. Цитология: строение ядра, деление клетки; молекулярная биология. Размножение и развитие организмов, общая и медицинская генетика, хромосомная теория наследственности; теория эволюции и антропогенез.

    курс лекций [301,1 K], добавлен 13.02.2012

  • Хромосомная теория наследственности Томаса Моргана. Установление закономерностей расположения генов в хромосомах. Понятие кроссинговера. Аутосомы и половые хромосомы организма. Гемофилия и дальтонизм - наследование заболеваний, сцепленных с полом.

    презентация [1,1 M], добавлен 12.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.