Менделевская теория наследственности

Ознакомление с историей изучения принципов наследования. Рассмотрение основных методов работы Менделя. Описание законов единообразия гибридов первого поколения, расщепления признаков и независимого наследования признаков. "Гипотеза чистоты гамет".

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 10.06.2014
Размер файла 20,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. История изучения принципов наследования

2. Методы работы Менделя

3. Закон единообразия гибридов первого поколения

4. Закон расщепления признаков

5. Закон независимого наследования признаков

6. Основные положения теории наследственности Менделя

7. Условия выполнения законов Менделя

Заключение

Литература

Введение

Способность к воспроизведению с изменением - одно из основных свойств биологически систем. Именно это изучает генетика - наука о наследственности и изменчивости живых организмов и методах их управления. Понятия "наследственность" и " изменчивость" неразрывно связанны между собой.

Наследственность - способность организмов порождать себе подобных; свойство организмов передавать свои признаки и качества из поколения в поколение; свойство организмов обеспечивать материальную и функциональную преемственность между поколениями. Элементарные единицы наследственности - гены - представляют собой участки ДНК хромосом.

Изменчивость - появление различий между организмами по отдельным признакам; это существование признаков в различных формах, свойство всех живых организмов приобретать в процессе индивидуального развития новые признаки.

Наследственность и изменчивость реализуются через наследование - процесс передачи наследственной информации, т.е. генетически детерминированных признаков и свойств от одного поколения к другому.

Принципы передачи наследственных признаков от родительских организмов к их потомкам - это Законы Менделя, вытекающие из его экспериментов. Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности.

Хотя в русскоязычных учебниках обычно описывают три закона, "первый закон" не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет "гипотеза чистоты гамет".

наследование мендель гибрид гамета

1. История изучения принципов наследования

В начале XIX века Дж. Госс (John Goss), экспериментируя с горохом, показал, что при скрещивании растений с зеленовато-голубыми горошинами и с желтовато-белыми в первом поколении получались жёлто-белые.

Однако, при втором поколении, не проявляющиеся у гибридов первого поколения, и названные позже Менделем рецессивными признаки вновь проявлялись, причём растения с ними не давали расщепление при самоопылении.

Огюстен Сажрэ (Augustin Sageret, 1763--1851), французский растениевод, проводил эксперименты по гибридизации тыквенных, главным образом дынь.

О. Сажрэ впервые в истории гибридизации стал изучать отдельные признаки скрещивающихся растений (мякоть, кожура и т.д.). Он установил, что при гибридизации родительские признаки распределяются между потомками без всякого смешения между собой.

Таким образом, Сажрэ пришёл к установлению решающего свойства наследственности - наличие константной наследственности.

Ш. Ноден (1815--1899), скрещивая различные виды дурмана, обнаружил преобладание признаков дурмана Datura tatula над Datura stramonium, причём это не зависело от того, какое растение материнское, а какое -- отцовское, т.е. обнаружил доминантный признак дурмана Datura tatula.

Таким образом, к середине XIX века было открыто явление доминантности, единообразие гибридов в первом поколении, расщепление и комбинаторику признаков во втором поколении.

Тем не менее, Мендель, высоко оценивая работы предшественников, указывал, что всеобщего закона образования и развития гибридов ими не было найдено, и их опыты не обладают достаточной достоверностью для определения численных соотношений.

Нахождение такого достоверного метода и математический анализ результатов, которые помогли создать теорию наследственности, является главной заслугой Менделя.

2. Методы работы Менделя

Основой работы Менделя был так называемый метод гибридизации, суть которого заключается в скрещивании организмов, отличающихся друг от друга какими-либо признаками, и в последующем анализе характера наследования этих признаков.

Мендель в своих работах изучал наследование отдельных признаков. Он выбрал из всех признаков только альтернативные -- такие, которые имели у его сортов гороха два чётко различающихся варианта (семена либо гладкие, либо морщинистые; либо жёлтые, либо зелёные; промежуточных вариантов не бывает). В тех случаях, когда родительские организмы различаются лишь по одному признаку, скрещивание называется моногибридным.

Такое сознательное сужение задачи исследования позволило чётко установить общие закономерности наследования.

Мендель спланировал и провёл масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 "чистых" (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученные гибриды скрещивал между собой.

Он изучил наследование семи признаков, изучив в общей сложности около 20 000 гибридов второго поколения.

Эксперимент облегчался удачным выбором объекта: горох -- самоопыляемое растение и в природе его сорта не смешиваются (чистые линии), но легко подвергаются искусственной гибридизации.

Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

3. Закон единообразия гибридов первого поколения

Закон единообразия гибридов первого поколения (первый закон Менделя): при скрещивании двух гомозиготных организмов, относящихся к разным чистым линиям и отличающихся друг от друга по одной паре альтернативных проявлений признака, всё первое поколение гибридов (F1) окажется единообразным и будет нести проявление признака одного из родителей. Этот закон также известен как "закон доминирования признаков". (Доминирование- это проявление у гибридов признака только одного из родителей.) Его формулировка основывается на понятии чистой линии относительно исследуемого признака -- на современном языке это означает гомозиготность особей по этому признаку. Понятие гомозиготности было введено позднее У. Бэтсоном в 1902 году.

При скрещивании чистых линий гороха с пурпурными цветками и гороха с белыми цветками Мендель заметил, что взошедшие потомки растений были все с пурпурными цветками, среди них не было ни одного белого. Мендель не раз повторял опыт, использовал другие признаки. Если он скрещивал горох с жёлтыми и зелёными семенами, у всех потомков семена были жёлтыми. Если он скрещивал горох с гладкими и морщинистыми семенами, у потомства были гладкие семена. Потомство от высоких и низких растений было высоким.

Итак, гибриды первого поколения всегда единообразны по данному признаку и приобретают признак одного из родителей. Этот признак - более сильный, доминантный (термин введён Менделем от латинского dominus), всегда подавлял другой, рецессивный.

Кодоминирование и неполное доминирование

Некоторые противоположные признаки находятся не в отношении полного доминирования (когда один всегда подавляет другой у гетерозиготных особей), а в отношении неполного доминирования.

Например, при скрещивании чистых линий львиного зева с пурпурными и белыми цветками особи первого поколения имеют розовые цветки. При скрещивании чистых линий андалузских кур чёрной и белой окраски в первом поколении рождаются куры серой окраски. При неполном доминировании гетерозиготы имеют признаки, промежуточные между признаками рецессивной и доминантной гомозигот. При кодоминировании, в отличие от неполного доминирования, у гетерозигот признаки проявляются одновременно (смешанно).

Типичный пример кодоминирования -- наследование групп крови системы АВ0 у человека, где А и В -- доминантные гены, а 0 -- рецессивный.

По этой системе генотип 00 определяет первую группу крови, АА и А0 -- вторую, ВВ и В0 -- третью, а АВ будет определять четвёртую группу крови. Т.о. всё потомство людей с генотипами АА (вторая группа) и ВВ (третья группа) будет иметь генотип АВ (четвёртая группа). Их фенотип не является промежуточным между фенотипами родителей, так как на поверхности эритроцитов присутствуют оба агглютиногена (А и В).

Явления кодоминирования и неполного доминирования признаков слегка видоизменяет первый закон Менделя: "Гибриды первого поколения от скрещивания чистых линий особей с противоположными признаками всегда одинаковы по этому признаку: проявляют доминирующий признак, если признаки находятся в отношении доминирования, или смешанный (промежуточный) признак, если они находятся в отношении кодоминирования (неполного доминирования)".

4. Закон расщепления признаков

Закон расщепления (второй закон Менделя) -- при скрещивании двух гетерозиготных потомков первого поколения между собой во втором поколении наблюдается расщепление в определенном числовом отношении: по фенотипу 3:1, по генотипу 1:2:1.

Скрещиванием организмов двух чистых линий, различающихся по проявлениям одного изучаемого признака, за которые отвечают аллели одного гена, называется моногибридное скрещивание.

Явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несёт доминантный признак, а часть -- рецессивный, называется расщеплением. Следовательно, расщепление -- это распределение доминантных и рецессивных признаков среди потомства в определённом числовом соотношении. Рецессивный признак у гибридов первого поколения не исчезает, а только подавляется и проявляется во втором гибридном поколении.

Закон чистоты гамет: в каждую гамету попадает только одна аллель из пары аллелей данного гена родительской особи. В норме гамета всегда чиста от второго гена аллельной пары. Этот факт, который во времена Менделя не мог быть твердо установлен, называют также гипотезой чистоты гамет. В дальнейшем эта гипотеза была подтверждена цитологическими наблюдениями. Из всех закономерностей наследования, установленных Менделем, данный "Закон" носит наиболее общий характер (выполняется при наиболее широком круге условий).

Гипотеза чистоты гамет. Мендель предположил, что при образовании гибридов наследственные факторы не смешиваются, а сохраняются в неизменном виде. У гибрида присутствуют оба фактора -- доминантный и рецессивный, но проявление признака определяет доминантный наследственный фактор, рецессивный же подавляется. Связь между поколениями при половом размножении осуществляется через половые клетки -- гаметы. Следовательно, необходимо допустить, что каждая гамета несет только один фактор из пары. Тогда при оплодотворении слияние двух гамет, каждая из которых несет рецессивный наследственный фактор, будет приводить к образованию организма с рецессивным признаком, проявляющимся фенотипически. Слияние же гамет, каждая из которых несет доминантный фактор, или же двух гамет, одна из которых содержит доминантный, а другая рецессивный фактор, будет приводить к развитию организма с доминантным признаком.

Таким образом, появление во втором поколении рецессивного признака одного из родителей может быть только при двух условиях:

1) если у гибридов наследственные факторы сохраняются в неизменном виде;

2) если половые клетки содержат только один наследственный фактор из аллельной пары.

Расщепление потомства при скрещивании гетерозиготных особей Мендель объяснил тем, что гаметы генетически чисты, то есть несут только один ген из аллельнои пары. Гипотезу (теперь ее называют законом) чистоты гамет можно сформулировать следующим образом: при образовании половых клеток в каждую гамету попадает только один аллель из пары аллелей данного гена.

Известно, что в каждой клетке организма в большинстве случаев имеется совершенно одинаковый диплоидный набор хромосом. Две гомологичные хромосомы обычно содержат каждая по одному аллелю данного гена. Генетически "чистые" гаметы образуются следующим образом:

Основные этапы мейоза

В процессе образования гамет у гибрида гомологичные хромосомы во время I мейотического деления попадают в разные клетки. При слиянии мужских и женских гамет получается зигота с диплоидным набором хромосом. При этом половину хромосом зигота получает от отцовского организма, половину -- от материнского.

По данной паре хромосом (и данной паре аллелей) образуются два сорта гамет. При оплодотворении гаметы, несущие одинаковые или разные аллели, случайно встречаются друг с другом.

В силу статистической вероятности при достаточно большом количестве гамет в потомстве 25% генотипов будут гомозиготными доминантными, 50% -- гетерозиготными, 25% -- гомозиготными рецессивными, то есть устанавливается отношение 1АА:2Аа:1аа (расщепление по генотипу 1:2:1).

Соответственно по фенотипу потомство второго поколения при моногибридном скрещивании распределяется в отношении 3:1 (3/4 особей с доминантным признаком, 1/4 особей с рецессивным).

Таким образом, при моногибридном скрещивании цитологическая основа расщепления признаков -- расхождение гомологичных хромосом и образование гаплоидных половых клеток в мейозе.

5. Закон независимого наследования признаков

Закон независимого наследования (третий закон Менделя): при скрещивании двух особей, отличающихся друг от друга по двум (и более) парам альтернативных признаков, гены и соответствующие им признаки наследуются независимо друг от друга и комбинируются во всех возможных сочетаниях (как и при моногибридном скрещивании).

Когда скрещивались гомозиготные растения, отличающиеся по нескольким признакам, таким как белые и пурпурные цветы и желтые или зелёные горошины, наследование каждого из признаков следовало первым двум законам и в потомстве они комбинировались таким образом, как будто их наследование происходило независимо друг от друга.

Первое поколение после скрещивания обладало доминантным фенотипом по всем признакам.

Во втором поколении наблюдалось расщепление фенотипов по формуле 9:3:3:1, то есть 9:16 были с пурпурными цветами и желтыми горошинами, 3:16 с белыми цветами и желтыми горошинами, 3:16 с пурпурными цветами и зелёными горошинами, 1:16 с белыми цветами и зелёными горошинами.

Менделю попались признаки, гены которых находились в разных парах гомологичных хромосом гороха.

При мейозе гомологичные хромосомы разных пар комбинируются в гаметах случайным образом.

Если в гамету попала отцовская хромосома первой пары, то с равной вероятностью в эту гамету может попасть как отцовская, так и материнская хромосома второй пары.

Поэтому признаки, гены которых находятся в разных парах гомологичных хромосом, комбинируются независимо друг от друга. (Впоследствии выяснилось, что из исследованных Менделем семи пар признаков у гороха, у которого диплоидное число хромосом 2n=14, гены, отвечающие за одну из пар признаков, находились в одной и той же хромосоме. Однако Мендель не обнаружил нарушения закона независимого наследования, так как сцепления между этими генами не наблюдалось из-за большого расстояния между ними).

6. Основные положения теории наследственности Менделя

В современной интерпретации эти положения следующие:

За наследственные признаки отвечают дискретные (отдельные, не смешивающиеся) наследственные факторы -- гены (термин "ген" предложен в 1909 г. В. Иогансеном).

Каждый диплоидный организм содержит пару аллелей данного гена, отвечающих за данный признак; один из них получен от отца, другой -- от матери.

Наследственные факторы передаются потомкам через половые клетки. При формировании гамет в каждую из них попадает только по одному аллелю из каждой пары (гаметы "чисты" в том смысле, что не содержат второго аллеля).

7. Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования. Условия выполнения закона расщепления при моногибридном скрещивании:

Расщепление 3 : 1 по фенотипу и 1 : 2 : 1 по генотипу выполняется приближенно и лишь при следующих условиях:

Изучается большое число скрещиваний (большое число потомков).

Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).

Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью.

Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.

Условия выполнения закона независимого наследования:

Все условия, необходимые для выполнения закона расщепления.

Расположение генов, отвечающих за изучаемые признаки, в разных парах хромосом (несцепленность).

Условия выполнения закона чистоты гамет:

Нормальный ход мейоза. В результате нерасхождения хромосом в одну гамету могут попасть обе гомологичные хромосомы из пары. В этом случае гамета будет нести по паре аллелей всех генов, которые содержатся в данной паре хромосом.

Заключение

Менделевская теория наследственности, т.е. совокупность представлений о наследственных детерминантах и характере их передачи от родителей к потомкам, по своему смыслу прямо противоположна доменделевским теориям, в частности теории пангенезиса, предложенной Дарвином.

В соответствии с этой теорией признаки родителей прямо, т.е. от всех частей организма, передаются потомству. В связи с этим характер признака потомка должен прямо зависеть от свойств родителя.

Это полностью противоречит выводам, сделанным Менделем: детерминанты наследственности, т.е. гены, присутствуют в организме относительно независимо от него самого. Характер признаков (фенотип) определяется их случайным сочетанием. Они не модифицируются какими-либо частями организма и находятся в отношениях доминантности-рецессивности. Итак, менделевская теория наследственности противостоит идее наследования приобретенных в течение индивидуального развития признаков.

Опыты Менделя послужили основой для развития современной генетики - науки, изучающей два основных свойства организма - наследственность и изменчивость.

Ему получилось выявить закономерности наследования благодаря принципиально новым методическим подходам:

1) Мендель удачно выбрал объект исследования;

2) он проводил анализ наследования отдельных признаков в потомстве скрещиваемых растений, отличающихся по одной, двум и трем парам контрастных альтернативных признаков. В каждом поколении велся учет отдельно по каждой паре этих признаков;

3) он не просто зафиксировал полученные результаты, но и провел их математическую обработку.

Перечисленные простые приемы исследования составили принципиально новый, гибридологический метод изучения наследования, ставший основой дальнейших исследований в генетике.

Литература

1. Гайсинович А.Е. Зарождение и развитие генетики. -- М.: Наука, 1988.

2. Дубинин Н.П. Общая генетика. -- М.: "Наука", 1986.

3. В.И. Иванов, Н.В. Барышникова, Дж.С. Билева Генетика / Под ред. В.И. Иванова. -- М.: Академкнига, 2007.

4. Концепции современного естествознания / Под ред. В.Н. Лавриненко, В.П. Ратникова. - М.: ЮНИТИ, 2000.

5. Алиханян С.И., Акифьев А.П., Чернин Л.С. Общая генетика: Учеб. - М.: Высш. шк., 1985.

Размещено на Allbest.ru


Подобные документы

  • Основные законы наследственности. Основные закономерности наследования признаков по Г. Менделю. Законы единообразия гибридов первого поколения, расщепления на фенотипические классы гибридов второго поколения и независимого комбинирования генов.

    курсовая работа [227,9 K], добавлен 25.02.2015

  • Генетика и эволюция, классические законы Г. Менделя. Закон единообразия гибридов первого поколения. Закон расщепления. Закон независимого комбинирования (наследования) признаков. Признание открытий Менделя, значение работ Менделя для развития генетики.

    реферат [22,1 K], добавлен 29.03.2003

  • Представления о наследственности. Единообразие гибридов первого поколения. Скрещивание Менделя. Закон независимого наследования различных признаков. Гены-модификаторы и полигены. Построение генетических карт. Хромосомные аберрации по половым хромосомам.

    реферат [134,5 K], добавлен 06.09.2013

  • Генетика и эволюция. Факторы эволюции. Естественный отбор. Теория пангенезиса Дарвина. Классические законы Менделя. Закон единообразия гибридов первого поколения. Закон расщепления. Закон независимого комбинирования признаков. Современная генетика.

    реферат [35,0 K], добавлен 21.06.2007

  • Истоки генетики. Первые идеи о механизме наследственности. Естественный отбор. Изучение теории пангенезиса Ч. Дарвина. Законы единообразия гибридов первого поколения и независимого комбинирования признаков. Значение работ Менделя для развития генетики.

    реферат [34,7 K], добавлен 26.11.2014

  • Типы наследования признаков. Законы Менделя и условия их проявления. Сущность гибридизации и скрещивания. Анализ результатов полигибридного скрещивания. Основные положения гипотезы "Чистоты гамет" У. Бэтсона. Пример решения типовых задач о скрещивании.

    презентация [22,0 K], добавлен 06.11.2013

  • Описания гибридологического метода исследования характера наследования признака. Подготовка питательной среды. Проведение прямого и обратного скрещивания мух. Определение типа взаимодействия между генами. Анализ первого и второго поколения гибридов.

    лабораторная работа [85,7 K], добавлен 26.05.2013

  • Понятие дигибридного скрещивания организмов, различающихся по двум парам альтернативных признаков (по двум парам аллелей). Открытие закономерностей наследования моногенных признаков австрийским биологом Менделем. Законы наследования признаков Менделя.

    презентация [3,3 M], добавлен 22.03.2012

  • Характеристика клетки - элементарной генетической и структурно-функциональной единицы многоклеточных организмов. Особенности первого закона Менделя - закона единообразия гибридов первого поколения. Основы генетики пола. Типы онтогенеза: прямой и непрямой.

    контрольная работа [69,6 K], добавлен 08.02.2011

  • Законы наследования признаков. Фундаментальные свойства живых организмов. Наследственность и изменчивость. Классический пример моногибридного скрещивания. Доминантные и рецессивные признаки. Опыты Менделя и Моргана. Хромосомная теория наследственности.

    презентация [2,9 M], добавлен 20.03.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.