Концепции современного естествознания

Развитие естествознания в XX в., научные открытия и фундаментальные теории современной физики. Значение открытия Ньютоном законов всемирной механики. Развитие теорий и гипотез о происхождении человека и его самоорганизации в современной антропологии.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 01.03.2014
Размер файла 28,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

1. Развитие естествознания в XX в.

2. Закон всемирного тяготения

3. Происхождение человека и его самоорганизация

Список использованной литературы

естествознание физика антропология

1. Развитие естествознания в XX в.

В конце прошлого и начале нынешнего веков в естествознании были сделаны крупнейшие открытия, которые коренным образом изменили наши представления о картине мира. Прежде всего, это открытия, связанные со строением вещества, и открытия взаимосвязи вещества и энергии. Если раньше последними неделимыми частицами материи, своеобразными кирпичиками, из которых состоит природа, считались атомы, то в конце прошлого века были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов (лишенных заряда частиц).

Согласно первой модели атома, построенной английским ученым Эрнестом Резерфордом (1871--1937), атом уподоблялся миниатюрной Солнечной системе, в которой вокруг ядра вращаются электроны. Такая система была, однако, неустойчивой. Позже модель строения атома была значительно усовершенствована выдающимся датским физиком Нильсом Бором (1885--1962), который предположил, что при вращении по так называемым стационарным орбитам электроны не излучают энергии. Такая энергия излучается или поглощается в виде кванта, или порции энергии, только при переходе электрона с одной орбиты на другую.

Значительно изменились также взгляды на энергию. Если раньше предполагалось, что энергия излучается непрерывно, то тщательно поставленные эксперименты убедили физиков, что она может испускаться отдельными квантами.

В 30-е годы XX в. было сделано другое важнейшее открытие, которое показало, что элементарные частицы вещества, например электроны, обладают не только корпускулярными, но и волновыми свойствами. Таким путем было доказано экспериментально, что между веществом и полем не существует непроходимой границы: в определенных условиях элементарные частицы вещества обнаруживают волновые свойства, а частицы поля -- свойства корпускул. Это получило название дуализма волны и частицы и было представлением, которое никак не укладывалось в рамки обычного здравого смысла. До этого физики придерживались убеждения, что вещество, состоящее из разнообразных материальных частиц, может обладать лишь корпускулярными свойствами, а физические поля -- волновыми свойствами. Соединение в одном объекте корпускулярных и волновых свойств совершенно исключалось. Но под давлением неопровержимых экспериментальных результатов ученые вынуждены были признать, что микрочастицы одновременно обладают как свойствами корпускул, так и волн.

В 1925--1927 гг. для объяснения процессов, происходящих в мире мельчайших частиц материи -- микромире, была создана новая волновая, или квантовая, механика.

Другая фундаментальная теория современной физики -- теория относительности, в корне изменившая научные представления о пространстве и времени. В специальной теории относительности получил дальнейшее применение установленный еще Галилеем принцип относительности в механическом движении. Согласно этому принципу во всех инерциальных системах, т.е. системах отсчета, движущихся друг относительно друга равномерно и прямолинейно, все механические процессы происходят одинаковым образом, и поэтому их законы имеют ковариантную, или ту же самую математическую, форму. В дальнейшем принцип относительности был использован и для описания электромагнитных процессов.

Важный методологический урок, который был получен из специальной теории относительности, состоит в том, что она впервые ясно показала, что все движения, происходящие в природе, имеют относительный характер. Это означает, что в природе не существует никакой абсолютной системы отсчета и, следовательно, абсолютного движения, которые допускала ньютоновская механика.

Еще более радикальные изменения в учении о пространстве и времени произошли в связи с созданием общей теории относительности, которую нередко называют новой теорией тяготения, принципиально отличной от классической ньютоновской теории. Эта теория впервые ясно и четко установила связь между свойствами движущихся материальных тел и их пространственно-временной метрикой. Теоретические выводы из нее были экспериментально подтверждены во время наблюдения солнечного затмения. Согласно предсказаниям теории луч света, идущий от далекой звезды и проходящий вблизи Солнца, должен отклониться от своего прямолинейного пути и искривиться, что и было подтверждено наблюдениями.

Научно-техническая революция, развернувшаяся в последние десятилетия, внесла много нового в наши представления о естественно-научной картине мира. Возникновение системного подхода позволило взглянуть на окружающий нас мир как на единое, целостное образование, состоящее из огромного множества взаимодействующих друг с другом систем.

С другой стороны, появление такого междисциплинарного направления исследований, как синергетика, или учение о самоорганизации, дало возможность не только раскрыть внутренние механизмы всех эволюционных процессов, которые происходят в природе, но и представить весь мир как мир самоорганизующихся процессов. Заслуга синергетики состоит прежде всего в том, что она впервые показала, что процессы самоорганизации могут происходить в простейших системах неорганической природы, если для этого имеются определенные условия (открытость системы и ее неравновесность, достаточное удаление от точки равновесия и некоторые другие). Чем сложнее система, тем более высокий уровень имеют в ней процессы самоорганизации. Так, уже на предбиологическом уровне возникают автопоэтические процессы, т.е. процессы самообновления, которые в живых системах выступают в виде взаимосвязанных процессов ассимиляции и диссимиляции. Главное достижение синергетики и возникшей на ее основе новой концепции самоорганизации состоит в том, что они помогают взглянуть на природу как на мир, находящийся в процессе непрестанной эволюции и развития.

Эволюция систем напрямую связана с механизмами самоорганизации. Исследование конкретных механизмов самоорганизации и основанной на ней эволюции составляет задачу конкретных наук. Синергетика же выявляет и формулирует общие принципы самоорганизации любых систем, и в этом отношении она аналогична системному методу, который рассматривает общие принципы функционирования, развития и строения любых систем.

Эти новые мировоззренческие подходы к исследованию естественно-научной картины мира оказали значительное влияние как на конкретный характер познания в отдельных отраслях естествознания, так и на понимание природы научных революций в естествознании. С революционными преобразованиями в естествознании связано изменение представлений о картине мира.

В наибольшей мере изменения в характере конкретного познания коснулись наук, изучающих живую природу. Переход от исследований на клеточном уровне к молекулярному ознаменовался крупнейшими открытиями в биологии, связанными с расшифровкой генетического кода, пересмотром прежних взглядов на эволюцию живых организмов, уточнением старых и появлением новых гипотез происхождения жизни и многого другого. Такой переход стал возможен в результате взаимодействия различных естественных наук, широкого использования в биологии точных методов физики, химии, информатики и вычислительной техники.

В свою очередь, живые системы послужили для химии той природной лабораторией, опыт которой ученые стремились воплотить в своих исследованиях по синтезу сложных соединений. По-видимому, в неменьшей степени учения и принципы биологии оказали свое воздействие на физику.

Выдвижение на передний край естествознания биологических проблем, а также особая специфика живых систем дали повод целому ряду ученых заявить о смене лидера современного естествознания. Если раньше таким бесспорным лидером считалась физика, то теперь в таком качестве все больше выступает биология. Основой устройства окружающего мира теперь признаются не механизм и машина, а живой организм. Однако многочисленные противники такого взгляда не без основания заявляют, что поскольку живой организм состоит из тех же молекул, атомов, элементарных частиц и кварков, то по-прежнему лидером естествознания должна оставаться физика.

По-видимому, вопрос о лидерстве в естествознании зависит от множества разнообразных факторов, среди которых решающую роль играют: значение лидирующей науки для общества, точность, разработанность и общность методов ее исследования, возможность их применения в других науках. Несомненно, однако, что самыми впечатляющими для современников являются наиболее крупные открытия, сделанные в лидирующей науке, и перспективы ее дальнейшего развития. С этой точки зрения биология второй половины XX столетия может рассматриваться как лидер современного естествознания, ибо именно в ее рамках были сделаны наиболее революционные открытия.

Различение способов рассмотрения организации сферы природы приводит к формированию различных концепций описания природы, что соответствует также существованию аналогичных способов рассмотрения экономики. Так, корпускулярная и концептуальная концепции описания природы отображаются соответственно в микро- и макроэкономике посредством наличия общих алгоритмов исследования природы и экономики, либо как состоящих из отдельных элементов, либо как представляющих собой единое целое. В то же время концепции существования порядка или беспорядка в природе находят свое отражение и в сфере экономики, где различают концепцию самодостаточности экономической системы, не нуждающейся в ее упорядочении со стороны государства, и концепцию необходимости государственного регулирования экономической системы, неспособной к автоматическому установлению равновесия (порядка).

Научный метод представляет собой яркое воплощение единства всех форм знаний о мире. Тот факт, что познание в естественных, технических, социальных и гуманитарных науках в целом совершается по некоторым общим принципам, правилам и способам деятельности, свидетельствует, с одной стороны, о взаимосвязи и единстве этих наук, а с другой -- об общем, едином источнике их познания, которым служит окружающий нас объективный реальный мир: природа и общество.

Широкое распространение идей и принципов системного метода способствовало выдвижению ряда новых проблем мировоззренческого характера. Более того, некоторые западные лидеры системного подхода стали рассматривать его в качестве новой научной философии, которая в отличие от господствовавшей раньше философии позитивизма, подчеркивавшей приоритет анализа и редукции, главный упор делает на синтез и антиредукционизм. В связи с этим особую актуальность приобретает старая философская проблема о соотношении части и целого.

Многие сторонники механицизма и физикализма утверждают, что определяющую роль в этом соотношении играют части, поскольку именно из них возникает целое. Но при этом они игнорируют тот непреложный факт, что в рамках целого части не только взаимодействуют друг с другом, но и испытывают действие со стороны целого. Попытка понятъ целое путем сведения его к анализу частей оказывается несостоятельной именно потому, что она игнорирует синтез, который играет решающую роль в возникновении любой системы. Любое сложное вещество или химическое соединение по своим свойствам отличается от свойств составляющих его простых веществ или элементов. Каждый атом обладает свойствами, отличными от свойств образующих его элементарных частиц. Короче, всякая система характеризуется особыми целостными, интегральными свойствами, отсутствующими у ее компонентов.

Противоположный подход, опирающийся на приоритет целого над частью, не получил в науке широкого распространения потому, что он не может рационально объяснить процесс возникновения целого. Нередко поэтому его сторонники прибегали к допущению иррациональных сил, вроде энтелехии, жизненной силы, и других подобных факторов. В философии подобные взгляды защищают сторонники холизма (от греч. holos -- целый), которые считают, что целое всегда предшествует частям и всегда важнее частей. В применении к социальным системам такие принципы обосновывают подавление личности обществом, игнорирование его стремления к свободе и самостоятельности.

На первый взгляд может показаться, что концепция холизма о приоритете целого над частью согласуется с принципами системного метода, который также подчеркивает большое значение идей целостности, интеграции и единства в познании явлений и процессов природы и общества. Но при более внимательном знакомстве оказывается, что холизм чрезмерно преувеличивает роль целого в сравнении с частью, значение синтеза по отношению к анализу. Поэтому он является такой же односторонней концепцией, как атомизм и редукционизм.

Системный подход избегает этих крайностей в познании мира. Он исходит из того, что система как целое возникает не каким-то мистическим и иррациональным путем, а в результате конкретного, специфического взаимодействия вполне определенных реальных частей. Именно вследствие такого взаимодействия частей и образуются новые интегральные свойства системы. Но вновь возникшая целостность, в свою очередь, начинает оказывать воздействие на части, подчиняя их функционирование задачам и целям единой целостной системы.

Мы видели, что не всякая совокупность или целое образуют систему, и в связи с этим ввели понятие агрегата. Но всякая система есть целое, образованное взаимосвязанными и взаимодействующими его частями. Таким образом, процесс познания природных и социальных систем может быть успешным только тогда, когда в них части и целое будут изучаться не в противопоставлении, а во взаимодействии друг с другом, а анализ сопровождаться синтезом.

2. Закон всемирного тяготения

Закон всемирного тяготения был открыт англичанином И. Ньютоном в 1666 Исаак Ньютон родился в местечке Вулсторп близ города Грантема в семье небогатого фермера. Учился в Кембриджском университете. В 1669 - 1701 гг. Ньютон - выдающийся английский учёный, заложивший основы современного естествознания, создатель классической физики, член Лондонского королевского общества (1627), президент (с 1703). Работы относятся к механике, оптике, астрономии, математике. Научное творчество Ньютона сыграло исключительно важную роль в истории развития физики. По словам А.Эйнштейна, "Ньютон был первым, кто попытался сформулировать элементарные законы, которые определяют временной ход широкого класса процессов в природе с высокой степенью полноты и точности" и "... оказал своими трудами глубокое и сильное влияние на всё мировоззрение в целом". В его честь названа единица сила в Международной системе единиц - ньютон.

Ньютон сформулировал основные законы классической механики, открыл закон всемирного тяготения, разработал основы дифференциального и интегрального исчислений.

Наблюдая за падением яблока с ветки дерева, Ньютон выдвинул гипотезу о том, что движение планет по орбитам вокруг Солнца и падение тел на Землю вызваны одной и той же причиной - тяготением, которое существует между всеми телами. Закон звучит следующим образом: сила гравитационного притяжения двух материальных точек прямо пропорциональна произведению их масс и обратно пропорциональна квадрату расстояния между ними.

Материальная точка - модельное понятие (абстракция) классической механики, обозначающее тело исчезающе малых размеров, но обладающее некоторой массой.

С одной стороны, материальная точка - простейший объект механики, так как его положение в пространстве определяется всего тремя числами. С другой стороны, материальная точка - основной опорный объект механики, так как именно для нее сформулированы основные законы механики. Все другие объекты механики - материальные тела и среды - могут быть представлены в виде той или иной совокупности материальных точек.

Этот главный для астрономии закон выведен опытным путем. Закон утверждает, что два точечных тела с массами m1 и m2 притягивают друг друга с силой

F = G*m1*m2/r2

где r - расстояние между телами, а G - гравитационная постоянная. Коэффициент G называется гравитационной постоянной (постоянной тяготения). Он численно равен силе взаимного притяжения между двумя материальными точками, которые обладают одинаковыми массами, равными единице массы, и находятся друг от друга на расстоянии, равном единице длины. Гравитационная постоянная определяется опытным путем. Ее численное значение зависит только от выбора системы единиц измерения:

g = 6.67*10-11 Н*м2/кг2 = g = 6.67*10-8 дин*см22

Ускорение, которое испытывает тело m2, находящееся на расстоянии r от данного тела m1, равно:

a2 = F/m2 = G*m1/r2

Закон справедлив и для протяженных тел со сферически-симметричным распределением массы, при этом r - расстояние между центрами симметрии тел. Для несферических тел закон соблюдается приближенно, причем тем точнее, чем больше расстояние между телами (между их центрами масс) по отношению к размерам тел.

В случае неточечных тел сила гравитационного притяжения между ними может быть найдена как векторная сумма сил парных взаимодействий между всеми малыми частями этих тел. Два тела, обладающие сферической симметрией, притягиваются друг к другу так же, как притягивались бы два точечных тела соответствующих масс, помещенные в центры этих тел. Расчеты гравитационного взаимодействия неточечных тел трудоемки.

Закон всемирного тяготения Ньютона позволил с высокой точностью определить орбиты планет Солнечной системы, благодаря ему была строго доказана справедливость законов Кеплера. Для самого Ньютона наиболее важным доводом в пользу этого закона послужило полученное им доказательство того, что притяжение Земли действует и на Луну. Анализ движения Луны, проведенный Ньютоном на основе закона всемирного тяготения, с высокой точностью совпадал с астрономическими наблюдениями.

Закон тяготения объяснил многие явления, прежде не совсем понятные и таинственные. Например, периодическое повышение уровня воды морей и океанов, называемое приливом и связанное с притяжением воды Луной.

Закон тяготения Ньютона позволил сделать множество ценных предсказаний, он позволил глубже понять устройство окружающего мира. Знание о существовании тяготения позволяет понять, например, почему Земля круглая (ну, почти круглая): так как между всеми телами существует притяжение, то и все, из чего возникла Земля, тоже взаимно притягивалось до тех пор, пока было куда притягиваться. Из закона тяготения, таким образом, следует, что и Солнце, и Луна, и Земля, и другие планеты, и звезды, которые по современным представлениям возникли в результате взаимного притяжения частиц межзвездных пылевых облаков, должны быть приблизительно шарами.

Притягиваясь друг к другу подобно частицам космической пыли, звезды (расстояние между которыми измеряется в световых годах!) вместе со своими планетами образуют звездные скопления. Взаимное притяжение звездных скоплений (расстояния между которыми достигают сотен тысяч световых лет!) приводит к образованию галактик, а галактики образуют скопления галактик.

Трудно даже представить себе мир, в котором не было бы тяготения. Трудно даже представить, как развивалась бы наука без открытия Ньютоном основных законов механики и закона всемирного тяготения. Вместо царивших в прежние века неуверенности, сомнений, бесконечных споров и парадоксов перед людьми предстали четкие и простые законы окружающего мира. Как важно было, что все луны, все планеты, все звезды подчиняются столь простым правилам! Но еще важнее оказалось то, что человек оказался в состоянии понять эти правила и сделать с их помощью предсказания на будущее. У людей появилась надежда, что и в других явлениях мира прячутся такие же простые закономерности.

3. Происхождение человека и его самоорганизация

Долгое время отсутствовали эмпирические данные о предках человека. Дарвин знал только дриопитеков (найденных в 1856 г. во Франции) и писал о них как о далеких предках человека. В XX веке раскопки позволили обнаружить остатки ископаемых обезьян, живших примерно от 20 до 12 млн. лет назад. К ним относятся проконсулы (обнаруженные в Восточной Африке), ориопитек (находка скелета в 1958 г. в Италии), рамапитек (30-е годы XX века в Индии), сивапитеки и др., которые уже по многим признакам обнаруживают сходство с человеком.

В настоящее время большинство специалистов считает, что ближайшим предшественником человека являются австралопитеки - прямоходящие млекопитающие. Их костные остатки, возраст которых составляет от 5 до 2,5 млн. лет, впервые были обнаружены в 1924 г. в Южной Африке. К настоящему времени обнаружены костные остатки около 400 особей австралопитековых. Австралопитеки были связующим звеном между животным миром и первыми людьми.

В современной антропологии наиболее распространенной является точка зрения, по которой "эволюция человеческой линии заняла не свыше 10 млн. лет, а обезьяний предок гоминид имел черты сходства с шимпанзе, был по существу "шимпанзеподобен"... В качестве "модельного предка" человеческой и шимпанзоидной линии некоторые антропологи рассматривают карликового шимпанзе - бонобо - ... из джунглей Экваториальной Африки" (Хрисанова Е.Н., Перевозчиков И.В. Антропология, М.: 1991, стр.37-38).

В 1891 г. голландский исследователь Эжен Дюбуа на о.Ява впервые нашел окаменелости древнейшего человека - первого питекантропа, или человека прямоходящего. Уже в нашем веке на Яве найдены еще несколько питекантропов, в Китае - близкие к ним синантропы и т.д. Все они представляют собой различные географические варианты человека прямоходящего, существовавшего приблизительно 0,5-2 млн.лет назад. Наряду с добыванием растительной пищи у питекантропов большую роль играла охота. Они умели пользоваться огнем, сохраняли его от поколения к поколению.

В 60-70-е годы нашего века в Африке были обнаружены остатки древнейших людей и самые примитивные орудия труда из гальки. Этот древнейший предок человека получил название человека умелого. Человек умелый, судя по найденным останкам, датирующимся 2,6-3,5 млн. лет назад, существовал более полумиллиона лет, медленно эволюционировал, пока не приобрел значительное сходство с человеком прямоходящим. Древнейших людей - питекантропов - сменили древние люди, которых называют неандертальцами (по месту первой находки в долине реки Неандр, Германия). Их скелетные остатки открыты в Европе, Азии и Африке. Время существования - 200-35 тысяч лет назад. Они могли не только поддерживать, но и добывать огонь. Шло развитие речи. С помощью изготовленных орудий древние люди охотились на животных, сдирали с них шкуры, разделывали туши, строили жилища. У неандертальцев впервые встречаются захоронения.
В гроте Кроманьон во Франции было обнаружено сразу несколько ископаемых людей современного типа. По месту находки их называют кроманьонцами. Самые ранние их костные остатки датируются в 40 тысяч лет. Разнообразие типов орудий из камня и кости говорит о сложной трудовой деятельности. Человек уже умел сшивать шкуры животных и изготавливать из них одежду, жилье. На стенах пещер обнаружены мастерские рисунки.

В развитии учений о происхождении жизни существенное место занимает теория, утверждающая, что все живое происходит только от живого - теория биогенеза. Эту теорию в середине XIX века противопоставляли ненаучным представлениям о самозарождении организмов (червей, мух и др.). Однако как теория происхождения жизни биогенез несостоятелен, поскольку принципиально противопоставляет живое неживому, утверждает отвергнутую наукой идею вечности жизни.

Абиогенез - идея о происхождении живого из неживого - исходная гипотеза современной теории происхождения жизни.

В 1924 г. известный биохимик А.И.Опарин высказал предположение, что при мощных электрических разрядах в земной атмосфере, которая 4-4,5 млрд.лет назад состояла из аммиака, метана, углекислого газа и паров воды, могли возникнуть простейшие органические соединения, необходимые для возникновения жизни. Предсказание академика Опарина оправдалось. В 1955 г. американский исследователь С.Миллер, пропуская электрические заряды через смесь газов и паров, получил простейшие жирные кислоты, мочевину, уксусную и муравьиную кислоты и несколько аминокислот. Таким образом в середине XX века был экспериментально осуществлен абиогенный синтез белковоподобных и др. органических веществ в условиях, воспроизводящих условия первобытной Земли.

В отношении самозарождения организмов необходимо отметить, что Французская Академия наук еще в 1859 г. назначила специальную премию за попытку осветить по-новому вопрос о самопроизвольном зарождении жизни. Эту премию в 1862 г. получил знаменитый французский ученый, основоположник современной микробиологии Луи Пастер. Своими опытами он доказал невозможность самозарождения микроорганизмов.

Важно подчеркнуть, что в настоящее время жизнь на Земле не может возникнуть абиогенным путем.

Еще Дарвин в 1871 г. писал: "Но если бы сейчас ... в каком-либо теплом водоеме, содержащем все необходимые соли аммония и фосфора и доступном воздействию света, тепла, электричества и т.п., химически образовался белок, способный к дальнейшим все более сложным превращениям, то это вещество немедленно было бы разрушено и поглощено, что было невозможно в период возникновения живых существ".

Жизнь возникла на Земле абиогенным путем. В настоящее время живое происходит только от живого (биогенное происхождение). Возможность повторного возникновения жизни на Земле исключена.

Наряду с теорией абиогенного происхождения жизни существуют и другие гипотезы. Так, в 1865 г. немецкий врач Г.Рихтер выдвинул гипотезу космозоев (космических зачатков), в соответствии с которой жизнь является вечной и зачатки, населяющие мировое пространство, могут переноситься с одной планеты на другую. Сходную гипотезу в 1907 г. выдвинул известный шведский естествоиспытатель С.Аррениус, предположив, что во Вселенной вечно существуют зародыши жизни - гипотезу панспермии.

Панспермия - гипотеза о повсеместном распространении во Вселенной зародышей живых существ. Согласно панспермии, в мировом пространстве рассеяны зародыши жизни (например, споры микроорганизмов), которые движутся под давлением световых лучей, а попадая в сферу притяжения планеты, оседают на ее поверхности и закладывают на этой планете начало живого.

Гипотеза А.И.Опарина о возникновении жизни на Земле опирается на представление о постепенном усложнении химической структуры и морфологического облика предшественников жизни (пробионтов) на пути к живым организмам. На стыке моря, суши и воздуха создавались благоприятные условия для образования сложных органических соединений. В концентрированных растворах белков, нуклеиновых кислот могут образовываться сгустки подобно водным растворам желатина. А.И.Опарин назвал эти сгустки коацерватными каплями или коацерватами.

Коацерваты - это обособленные в растворе органические многомолекулярные структуры. Это еще не живые существа. Их возникновение рассматривают как стадию развития преджизни. Наиболее важным этапом в происхождении жизни было возникновение механизма воспроизведения себе подобных и наследования свойств предыдущих поколений. Это стало возможным благодаря образованию сложных комплексов нуклеиновых кислот и белков. Нуклеиновые кислоты, способные к самовоспроизведению, стали контролировать синтез белков, определяя в них порядок аминокислот. А белки-ферменты осуществляли процесс создания новых копий нуклеиновых кислот. Так возникло главное свойство, характерное для жизни - способность к воспроизведению подобных себе молекул.

Список использованной литературы

1. Солопов Е.Ф. Концепции современного естествознания - М.:ЮНИТИ, 1998

2. Рузавин Г.И. Концепции современного естествознания - М.:ЮНИТИ, 1987

3. Дягилев Ф.М. Концепции современного естествознания - М.: Изд. ИМПЭ, 1998

4. Тулинов В.Д., Недельский А.Ф.КСЕ - М.: МУПК, 1995

5. Михайлов А.А. Земля и ее вращение. М.: Наука, 1984

Размещено на Allbest.ru


Подобные документы

  • Требования образовательных стандартов по дисциплине "Концепции современного естествознания". Изучение и понимание сущности фундаментальных законов природы, составляющих каркас современных физики, химии и биологии. Методология современного естествознания.

    лекция [26,7 K], добавлен 24.11.2017

  • Значение естествознания в формировании профессиональных знаний. Фундаментальные и прикладные проблемы естествознания. Развитие естествознания и антинаучные тенденции. Рациональная и реальная картина мира. Естественно-научные и религиозные знания.

    реферат [68,7 K], добавлен 13.12.2009

  • Классическая механика как фундамент естественнонаучной теории. Возникновение и развитие классического естествознания. Система Коперника. Галлилео Галлилей. Исаак Ньютон. Формирование основ классической механики. Метод флюксий.

    контрольная работа [99,8 K], добавлен 10.06.2007

  • Строго научный и ненаучный подход к естествознанию. Основные идеи и принципы классического и неклассического естествознания. Особенности современной науки, компоненты научных теорий. Концепции самоорганизации объекта, неопределенности, ноосферности.

    реферат [37,8 K], добавлен 02.06.2009

  • Исаак Ньютон как основатель классической физики. Открытия в области естествознания, которые широко используются в разнообразных областях нашей жизни. Свойства кварков, короткодействующие типы взаимодействия, суть идеи корпускулярно-волнового дуализма.

    контрольная работа [38,8 K], добавлен 04.01.2011

  • Наука как часть культуры, ее критерии и структура. Методы и подходы научного познания. Сущность современных концепций физики, химии и космологии. Земля как предмет естествознания. Теории происхождения жизни, эволюции органического мира. Феномен человека.

    учебное пособие [3,2 M], добавлен 21.09.2010

  • Цель и предмет курса "Концепции современного естествознания", основные термины и понятия. Специфические черты науки, виды культуры. История становления научных знаний. Естественнонаучная картина мира. Внутреннее строение Земли. Законы химии и биологии.

    шпаргалка [136,9 K], добавлен 12.02.2011

  • Причины, от которых зависит развитие науки. Роль практики в развитии естествознания. Проявление относительной самостоятельности развития естествознания. Преемственность в развитии идей и принципов естествознания, теорий, методов и приемов исследования.

    реферат [21,3 K], добавлен 29.11.2009

  • Значение науки в современной культуре и структура научного знания. Основные этапы эволюции европейского естествознания. Типы физических взаимодействий. Механистическая, электромагнитная и квантово-релятивистская картина мира. Модели строения атома.

    учебное пособие [49,9 K], добавлен 27.01.2010

  • Естественнонаучная и гуманитарная культуры. Предмет и метод естествознания. Динамика естествознания и тенденции его развития. История естествознания. Структурные уровни организации материи. Макромир. Открытые системы и неклассическая термодинамика.

    книга [353,5 K], добавлен 21.03.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.