Научная революция в естествознании конца XIX – начало ХХ века. Возникновение релятивистских и квантовых представлений

Особенности влияния движения источников и приемников света на оптические явления для волновой теории света. Анализ противоречий в основаниях классической механики. Создание специальной теории относительности и нерелятивистской квантовой механики.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 14.10.2013
Размер файла 23,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Учреждение образования федерации профсоюзов Беларуси

Научная революция в естествознании конца XIX - начало ХХ вв. Возникновение релятивистских и квантовых представлений

Выполнила студентка

Сманцер Л.А.

МИНСК 2012

Введение

После создания теории электромагнитного поля и экспериментального доказательства его реальности перед физикой встала задача выяснить, распространяется ли принцип относительности движения (сформулированный в свое время еще Галилеем) на явления, присущие электромагнитному полю. Принцип относительности Галилея был справедлив для механических явлений. Во всех инерциальных системах (т.е. движущихся прямолинейно и равномерно друг по отношению в другу) применимы одно и те же законы механики. Но справедлив ли этот принцип, установленный для механических движений материальных объектов, для немеханических явлений, особенно тех, которые представлены полевой формой материи, в частности электромагнитных явлений? Корни теории относительности лежат именно в этом комплексе проблем физики конца ХIХ века.

Ответы на эти вопросы лежали в области изучения закономерностей взаимосвязи движущихся тел с эфиром, но не как с механической средой, а как со средой, являющейся носителем электромагнитных колебаний. Отдаленные истоки такого рода исследований складывались еще в ХVIII веке в оптике движущихся тел. Впервые вопрос о влиянии движения источников света и приемников, регистрирующих световые сигналы, на оптические явления возник в связи с открытием аберрации света английским астрономом Брадлеем в 1728 г.

1. Создание специальной теории относительности (СТО)

1.1 Фундаментальные противоречия в основаниях классической механики

Вопрос о влиянии движения источников и приемников света на оптические явления для волновой теории света был значительно более сложным, чем для теории, основанной на представлении о корпускулярной природе света. Решение этого вопроса требовало введения ряда допущений. Эти гипотетические допущения касались явлений, которые было очень сложно выяснить в опыте: как взаимодействуют весомые тела и эфир (полагали, что эфир проникает в тела); отличается ли эфир внутри тел от эфира, находящегося вне их, и если отличается, то чем; как ведет себя внутри эфир тел при их движении, и т. д.

В 1846 г. английский ученый Стокс разработал новую теорию аберрации на основе аналогий с гидродинамикой. Он исходил из предположения, что Земля при своем движении полностью увлекает окружающий ее эфир, так что скорость эфира на поверхности Земли в точности равна ее скорости. Но последующие слои эфира движутся все медленнее и медленнее, и это обстоятельство и вызывает искривление волнового фронта, что и воспринимается как аберрация. Из этой теории следует, что в любых оптических опытах, проведенных на Земле, не может быть обнаружена скорость ее движения.

Существовала и иная точка зрения. Она принадлежала Френелю, которому пришла очень интересная идея о частичном увлечении эфира движущимися телами. Френель показал также, что коэффициент увлечения имеет порядок ( v / c ) І , а значит опытная проверка этой идеи требует очень точного эксперимента.

Сравнивая свою теорию с теорией Френеля, Стокс указывал, что эти теории хотя и основываются на противоположных гипотезах, но практически приводят к одним и тем же результатам. Принципиальная сторона вопроса сводилась в сущности к двум возможным гипотетическим допущениям. Первое допущение состояло в том, что эфир полностью увлекается движущейся системой. Целый ряд опытов, которые были поставлены еще в ХIХ веке, показал, что скорость света всегда одинакова во всех системах координат, независимо от того, движется ли излучающий источник или нет, и независимо от того, как он движется. Таким образом, гипотеза о том, что эфир полностью увлекается движущейся системой позволяла придерживаться принципа относительности, но тем не менее противоречила опыту.

Второе допущение прямо противоположно первому: движущаяся система проходит через эфир, не захватывая его. Это предположение по сути отождествляет эфир с абсолютной системой отсчета и приводит к отказу от принципа относительности Галилея, ведь в системе координат, связанной с эфирным морем, законы природы отличаются от законов во всех других системах.

Таким образом, только в одной системе координат, которая связана с неподвижным эфирным морем, скорость света была бы одинакова во всех направлениях. В любой другой системе, движущейся относительно эфирного миря, она зависела бы от направления, в котором производилось измерение. А это значит, что для того, чтобы проверить эту вторую гипотезу, необходимо измерить скорость света в двух противоположных направлениях. Для этого воспользовались движением Земли вокруг Солнца: скорость света в направлении движения Земли отличалась бы от скорости света в противоположном направлении.

Фитцджеральд и Лоренц высказали в 1892 г. оригинальную гипотезу. Суть ее состоит в том, что отрицательный результат опыта Майкельсона - Морли может быть объяснен тем, что каждое движущееся в эфире тело сокращает свои размеры в направлении своего движения относительно эфира. Согласно этой гипотезе, размеры тел при движении в эфире уменьшаются в направлении движения в 1: (1-n 2/с2)1/2 раз. Эта гипотеза совместно с гипотезой неувлекаемого, всюду неподвижного эфира чисто формально объясняла отрицательный результат опыта Майкельсона. Но никаких разумных теоретических соображений о причинах изменения размеров тел она не выдвигала. Более того, гипотеза Фитцжеральда - Лоренца предполагает, что вообще не существует никаких (ни эмпирических, ни теоретических) средств, позволявших бы решить вопрос о том, движется ли тело относительно эфира или покоится.

Таким образом, к рубежу ХIХ-ХХ веков развитие физики привело к осознанию противоречий и несовместимости трех принципиальных оснований классической механики:

1. Скорость света в пустом пространстве всегда постоянна, независимо от движения источника или приемника света.

2. В двух системах координат, движущихся прямолинейно и равномерно друг относительно друга, все законы природы строго одинаковы, и нет никакого средства обнаружить абсолютное прямолинейное и равномерное движение (принцип относительности).

3. Координаты и скорости преобразовываются от одной инерциальной системы к другой согласно классическим преобразованиям Галилея.

Французский математик и физик Анри Пуанкаре (1854 - 1912) обратился к проблемам, рассмотренным Лоренцем. В отличие от последнего, Пуанкаре сразу исходил из принципа относительности, который он распространил на оптические и любые явления природы. Пуанкаре ближе всего подходил к основным представлениям теории относительности, а в разработке математического аппарата он был даже впереди Эйнштейна. Но Пуанкаре так и не решился на полный разрыв с классическими принципами и представлениями, хотя и был близок к этому.

Внутренней логикой своего развития физика подводилась к необходимости найти нестандартный новый путь в разрешении фундаментальных противоречий в ее принципиальных основаниях. Этот путь и был найден великим физиком ХХ в. А. Эйнштейном (1879 - 1955) .

1.2 Создание А. Эйнштейном специальной теории относительности (СТО)

В сентябре 1905 г. в немецком журнале "Аппа1еп der Physik" появилась работа Эйнштейна "К электродинамике движущихся тел". Эйнштейн сформулировал основные положения специальной теории относительности, которая объясняла и отрицательный результат опыта Майкельсона - Морли, и смысл преобразований Лоренца, и, кроме того, содержала новый взгляд на пространство и время.

Эйнштейн пошел по третьему из трех возможных путей преодоления противоречий в принципиальных основах классической механики (первые два были исчерпаны Г. Герцем и Лоренцем). Эйнштейн пришел к убеждению, что необходимо сохранить в качестве верных два первых утверждения (принцип постоянства скорости света и принцип относительности), но отказаться от преобразований Галилея. И дело не просто в том, чтобы чисто формально заменить их другим преобразованием. Он увидел, что за преобразованиями Галилея кроется определенное представление о пространственно-временных соотношениях, которое не соответствует физическому опыту и реальным пространственно-временным соотношениям вещей. Таким наиболее слабым звеном принципиальных оснований классической механики было представление об абсолютной одновременности событий. Этим представлением, не сознавая его сложной природы, не эксплицируя, и пользовалась классическая механика.

Появлению статьи Эйнштейна "К электродинамике движущихся тел", в которой впервые были изложены основы теории относительности, предшествовало, по словам самого автора, 7 - 10 лет упорных размышлений над проблемой влияния движения тел на электромагнитные явления. Прежде всего, Эйнштейн пришел к твердому убеждению о всеобщности принципа относительности, т. е. к выводу, что и в отношении электромагнитных явлений, а не только механических, все инерциальные системы координат совершенно равноправны. Одновременно с принципом относительности, Эйнштейну казалось ясным и существование инвариантности скорости света во всех инерциальных системах отсчета. В своих воспоминаниях он пишет, что еще в 1896 г. у него " возник вопрос: если бы можно было погнаться за световой волной со скоростью светя, то имели бы мы перед собой не зависящее от времени волновое поле? Такое все-таки кажется невозможным!". Таким образом, Эйнштейн, по-видимому, еще в молодости пришел также к принципу, согласно которому во всех инерциальных системах скорость распространения световой волны одинакова.

Кроме формул преобразований координат и времени Эйнштейн получает также релятивистскую формулу сложения скоростей, показывает, что масса тела также является относительной величиной, зависящей от скорости. Кроме того, Эйнштейн показывает, что между массой тела и его полной энергией существует определенное соотношение. Он формулирует следующий закон: "масса тела есть мера содержащейся в нем энергии" в соотношении E = m c І .

2. Создание и развитие общей теории относительности (ОТО)

2.1 Принципы и понятия эйнштейновской теории гравитации

Возможность распространения принципа относительности на случай неинерциальных систем Эйнштейн увидел на пути обобщения принципа относительности движения - распространение принципа относительности не только на скорость, но и на ускорение движущихся систем. Если отказаться от приписывания абсолютного характера не только скорости, но и ускорению, то в таком случае выделенность класса инерциальных систем потеряет свой смысл, и можно так формулировать физические законы, чтобы их формулировка имела смысл в отношении любой системы координат. Это и есть содержание общего принципа относительности. Это означает, что точно так же, как нельзя говорить о скорости тела вообще, безотносительно к какому-нибудь телу В, так, очевидно, и ускорение имеет конкретный смысл по отношению к некоторому фактору, вызывающему и определяющему его.

С точки зрения ОТО пространство не обладает постоянной (нулевой) кривизной. Кривизна его меняется от точки к точке. Кривизна пространства определяется полем тяготения. Можно сказать больше: поле тяготения является не чем иным, как отклонением свойств реального пространства от свойств идеального евклидова пространства. Величина поля тяготения в каждой точке определяется значением кривизны пространства в этой точке. Таким образом, движение материальной точки в поле тяготения можно рассматривать как свободное "инерциальное" движение, но происходящее уже не в евклидовом, а в пространстве с изменяющейся кривизной. В результате, движение точки уже не является прямолинейным и равномерным, а происходит по геодезической линии искривленного пространства. Отсюда следует, что уравнение движения материальной точки, а также и луча света должно быть записано в виде уравнения геодезической линии искривленного пространства.

ОТО кардинально отличается от предшествующих ей фундаментальных физических теорий. Она отказывается от целого ряда старых понятий, формулируя вместе с тем новые понятия. Так, ОТО отказывается от понятий "сила", "потенциальная энергия", "инерциальная система", "евклидов характер пространства- времени" и др. Зато вводятся новые понятия. Поскольку в гравитационных полях не существует твердых тел, и ход часов зависит от состояния этих полей, то ОТО вынуждена пользоваться нежесткими (деформирующимися) телами отсчета. Такая система отсчета (ее называют "моллюском отсчета") может двигаться произвольным образом и ее форма может изменяться, используемые часы могут быть со сколь угодно нерегулярным ходом.

Таким образом, в ОТО был получен новый фундаментальный результат: скорость света уже не является постоянной величиной, она изменяется, когда свет проходит поле тяготения, увеличиваясь или уменьшаясь в зависимости от взаимного направления распространения света и направления сил тяготения.

На основе ОТО были развиты два фундаментальных направления современной физики:

- геометризированные единые теории поля;

- релятивистская космология.

3. Возникновение и развитие квантовой физики

3.1 Гипотеза квантов

Истоки квантовой физики уходят своими корнями в изучение процессов излучения тел. Еще в 1809 г. Прево сделал вывод о том, что каждое тело излучает независимо от окружающей среды. Развитие спектроскопии в Х1Х веке привело к тому, что вместе с исследованием спектров излучения начинают обращать внимание и на спектры поглощения. При этом выясняется, что между излучением и поглощением тела существует простая связь. В спектрах поглощения отсутствуют или ослабляются те участки спектра которые испускаются данным телом. Этот закон получил свое объяснение только в квантовой теории.

Густав Кирхгоф (1824 - 1887) сформулировал новый закон, известный под именем закона Кирхгофа. Он показал, что для лучей одной и той же длины волны при одной и той же температуре отношение испускательной и поглощательной способности для всех тел одно и то же. Или, другими словами, если Еl T и Аl T - соответственно испускательная и поглощательная способность тела, зависящие от длины волны l и температуры Т, то где j (l ,T) - некоторая универсальная функция l и Т, одинаковая для всех тел.

Кирхгоф ввел также понятие абсолютного черного тела как тела, поглощающего все падающие на него лучи, и дал известную его модель. Для такого тела, очевидно, Al T =1; тогда универсальная функция Кирхгофа j (l , Т) равна испускательной способности абсолютно черного тела. Сам Кирхгоф не определил вид функции j (l , Т), а отметил только некоторые ее свойства. Встала задача определить вид этой функции. Функция j (l , Т) - универсальная, поэтому естественно было предполагать, что ее вид можно определить, исходя из теоретических соображений - используя основные законы термодинамики. Больцман показал, что полная энергия излучения абсолютно черного тела пропорциональна четвертой степени его температуры .Однако задача определения вида функции Кирхгофа оказалась весьма трудной.

В 80-е годы ХIХ века эмпирические исследования закономерностей в распределении спектральных линий и изучение функции j ( l , T ) стали более интенсивными и систематическими. Была усовершенствована экспериментальная аппаратура. Для энергии излучения абсолютно черного тела Вином в 1896 г. и Рэлеем и Джином в 1900 г. было предложено две различные формулы. Как показали экспериментальные результаты, формула Вина ассимптотически верна в области коротких волн и дает резкие расхождения с опытом в области длинных волн, а формула Рэлея- Джинса таким же образом верна для длинных волн, но не применима для коротких.

В 1900 г. в октябре на заседании Берлинского физического общества Макс Планк (1858 - 1947) предложил новую формулу для распределения энергии в спектре черного тела, полученную первоначально полуэмпирическим путем. Эта формула давала полное соответствие с опытом. Но физический смысл этой формулы был не вполне понятен. Дополнительный анализ показал, что эта формула имеет смысл только в том случае, если допустить, что излучение энергии происходит не непрерывно, а определенными порциями - квантами (e ). Более того, e не является любой величиной, а именно e = hn , где h - совершенно определенная константа, а n - частота света. Это вело к признанию наравне с атомизмом вещества атомизма энергии или действия, дискретного, квантового характера излучения, что не укладывалось в рамки основных представлений классической физики. Формулировка гипотезы квантов энергии была началом новой эры в развитии теоретической физики. В 1912 г. А. Пуанкаре окончательно показал несовместимость формулы Планка и классической механики.

В 1909 г. Эйнштейн, продолжая исследования по теории излучения признает, что свет обладает одновременно и волновыми и корпускулярными свойствами. В целом ряде исследований были получены новые подтверждения гипотезы Эйнштейна о квантовых свойствах света. Теперь всем было ясно, что световое излучение обладает и корпускулярными и волновыми свойствами.

3.2 Создание нерелятивистской квантовой механики

В первой четверти ХХ века перед физикой по прежнему стояла задача нахождения новых путей развития теории атомных явлений. Эти пути потребовали отказа от целого ряда давно установленных понятий и выработки совершенно новых теоретических представлений и принципов. Такие представления и принципы были созданы целой плеядой выдающихся физиков ХХ века. Молодой немецкий ученый Гейзенберг установил основы так называемой матричной механики; французский физик де Бройль, а за ним австрийский физик Шредингер разработали волновую механику. Как вскоре оказалось, и матричная механика, и волновая механика - различные формы общей теории, получившей название квантовой механики.

К созданию матричной механики В. Гейзенберг (1901-1975) пришел в результате исследований спектральных закономерностей, а также теории дисперсии, в которой атом представлялся некоторой символической математической моделью - как совокупность виртуальных гармонических осцилляторов. Представления же об атоме как о системе, состоящей из ядра и вращающихся вокруг него электронов, которые обладают определенной массой, движутся с определенной скоростью по определенной траектории, нужно понимать лишь как аналогию для установления соответствующей математической модели. Указанный метод исследования и развил Гейзенберг, распространив его вообще на теорию атомных явлений. При этом особую роль играл принцип соответствия как принцип аналогии между классическим и квантовым рассмотрениями. Именно таким путем Гейзенберг рассчитывал преодолеть трудности, возникшие перед полуклассической теорией Бора.

В 192б г. Гейзенберг впервые высказывает основные положения квантовой механики в матричной форме. Теория атомных явлений, по Гейзенбергу, должна ограничиваться установлением соотношений между величинами, которые непосредственно измеряются в экспериментальных исследованиях ("наблюдаемыми" величинами, по терминологии Гейзенберга) - частотой излучения спектральных линий, их интенсивностью, поляризацией и т. п. "Ненаблюдаемые" же величины, такие, как координаты электрона, его скорость, траектория, по которой он движется, и т. д., не должны использоваться в теории атома. Однако в согласии с принципом соответствия новая теория должна определенным образом соответствовать классическим теориям. Конкретно это должно выражаться в том, что соотношения новой теории должны находиться в отношении аналогии с соотношениями классических величин. При этом каждой классической величине нужно найти соответствующую ей квантовую величину и, пользуясь классическими соотношениями, составить соответствующие им соотношения между найденными квантовыми величинами.

Второе направление в создании квантовой механики начало развиваться в работах французского физика Луи де Бройля. В них была высказана идея о волновой природе материальных частиц. На основании уже установленного факта наличия у света одновременно и корпускулярных и волновых свойств, а также оптико-механической аналогии у де Бройля возникла идея о существовании волновых свойств частиц.

В 1927 г. волновая механика получила новое прямое экспериментальное подтверждение. В этом году Дэвиссоном и Джермером было обнаружено явление дифракции электронов. Таким образом, гипотеза де Бройля получила прямое экспериментальное подтверждение, оказалось правильным и найденное им количественное соотношение для длин "волн де Бройля". Кроме оправдания квантовой механики непосредственным подтверждением волновой природы электрона, с помощью этой теории удалось построить более совершенную теорию твердого тела, теорию электропроводности, термоэлектрических явлений, теорию магнетизма и т. д. Квантовая теория дала возможность приступить к построению теории радиоактивного распада, а в дальнейшем стала основой для новой области физики - ядерной физики и т. д.

Вслед за основополагающими работами Шредингера по волновой механике были сделаны первые попытки релятивистского обобщения квантово-механических закономерностей, и уже в 1928 г. Дирак заложил основы релятивистской квантовой механики.

Заключение

нерелятивистский квантовая механика теория относительности

Создание релятивистской, а затем и квантовой физики привело к необходимости значительного пересмотра методологических установок классической физики. Кардинальные изменения в системе методологических установок релятивистской физики связаны с выявлением зависимости описания поведения физических объектов от условий познания (учет состояния движения систем отсчета при признании постоянства скорости света в вакууме). Произошло изменение гносеологической позиции субъекта и объекта - появилась необходимость указания на ту систему отсчета, с позиций которой описывается исследуемая физическая область. Создание квантовой механики привело к еще более значительному пересмотру методологических принципов классической физики: введение нового класса принципиально статистических закономерностей; невозможность провести резкую границу между объектом и прибором и введение принципа дополнительности; невозможность одновременного определения всех свойств микрообъекта (принцип неопределенности); ненаглядный характер теоретических моделей, неоднозначность употребления понятий, необходимость указывать на условия познания

Список использованной литературы

1. Азимов А. Краткая история биологии. М.,1967.

2. Алексеев В.П. Становление человечества. М.,1984. Бор Н. Атомная физика и человеческое познание. М.,1961 Борн М. Эйнштейновская теория относительности.М.,1964.

3. Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной. М.,1981.

4. Гинзбург В.Л.О теории относительности. М.,1979.

5. Дорфман Я.Г. Всемирная история физики с начала 19 века до середины 20 века. М.,1979.

6. Кемп П., Армс К. Введение в биологию. М.,1986.

7. Кемпфер Ф. Путь в современную физику. М.,1972.

8. Либберт Э. Общая биология. М.,1978 Льоцци М. История физики. М.,1972.

9. Моисеев Н.Н. Человек и биосфера. М.,1990.

10. Мэрион Дж. Б. Физика и физический мир. М.,1975

11. Найдыш В.М. Концепции современного естествознания. Учебное пособие. М.,1999.

12. Небел Б. Наука об окружающей среде. Как устроен мир. М.,1993.

13. Николис Г., Пригожин И. Познание сложного. М.,1990.

14. Пригожин И.,Стенгерс И. Порядок из хаоса. М.,1986.

15. Пригожин И., Стенгерс И. Время, Хаос и Квант. М.,1994.

16. Пригожин И. От существующего к возникающему. М.,1985.

17. Степин В.С. Философская антропология и философия науки. М.,1992.

18. Фейнберг Е.Л. Две культуры. Интуиция и логика в искусстве и науке. М.,1992.

19. Фролов И.Т. Перспективы человека. М.,1983.

Размещено на Allbest.ru


Подобные документы

  • Предмет квантовой механики. Описание явлений микромира. Понятие кванта и корпускулярно-волновой дуализм света. Принцип дополнительности Бора. Отличие квантовой механики от классической. Термин "физическая реальность" в методологии физического познания.

    реферат [38,8 K], добавлен 06.09.2015

  • Особенность квантовой механики, теории элементарных частиц. Значение закона неравномерности развития различных направлений физической науки. Эволюция законов движения от классической механики к теории относительности. Принцип тождества противоположностей.

    реферат [26,5 K], добавлен 27.12.2016

  • Возникновение классической науки. Классическая физика и астрономия. Характеристика системы Ньютона. Революция в физике на рубеже XIX и XX столетий. Вклад датского физика Нильса Бора в развитие квантовой теории. Специальная теория относительности.

    курсовая работа [28,5 K], добавлен 05.10.2009

  • Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.

    реферат [30,5 K], добавлен 30.07.2010

  • Концепция детерминизма - одна из фундаментальных онтологических идей, положенных в основу классического естествознания. Сущность небесной механики — раздели астрономии, применяющего законы механики для изучения движения небесных тел. Механика Ньютона.

    реферат [65,3 K], добавлен 26.03.2011

  • Классическая механика как фундамент естественнонаучной теории. Возникновение и развитие классического естествознания. Система Коперника. Галлилео Галлилей. Исаак Ньютон. Формирование основ классической механики. Метод флюксий.

    контрольная работа [99,8 K], добавлен 10.06.2007

  • Четвертая научная революция, каскад научных открытий, сделанных в течение короткого исторического периода (конец XIX - начало XX века). Научно-техническая революция, ее естественнонаучная составляющая. Состояние и перспективы современного естествознания.

    реферат [87,6 K], добавлен 26.07.2010

  • Истоки теории относительности, порядок ее формирования и значение. Принцип относительности Галилея. Сущность преобразования Галилея и Лоренца. Теория относительности А. Эйнштейна, особенности и отличительные признаки ее общей и специальной формы.

    реферат [2,4 M], добавлен 09.11.2010

  • Волновая концепция света О. Френеля. Концепции классической электродинамики. Электромагнитное поле Максвелла и эфир. Возникновение предпосылок ядерной физики. Эволюционная теория Дарвина. Концепции классической термодинамики. Достижения биологии XIX века.

    реферат [61,7 K], добавлен 22.03.2011

  • Основные черты и отличия науки от других отраслей культуры. Проблемы, решаемые отдельными естественными науками. Свойства пространства и времени. Главные выводы специальной и общей теории относительности. Естественнонаучные модели происхождения жизни.

    контрольная работа [40,6 K], добавлен 18.11.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.