Закон тяготения Ньютона в Солнечной системе. Теория Эйнштейна. Строение атома

"Парадокс длины" специальной теории относительности. Сущность второго начала термодинамики. Развитие представлений о строении атомов. Понятие равновесия в механике и статистической термодинамике. Биосферная роль хозяйственной деятельности человека.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 08.11.2012
Размер файла 57,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию

Новосибирский государственный университет экономики и управления

Кафедра современного естествознания и наукоемких технологий

Контрольная работа по дисциплине

КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ

Новосибирск 2011

Задание 1. Приведите доказательства справедливости закона тяготения Ньютона в Солнечной системе. Найдите ускорение свободного падения на Луне и оцените свой вес на Луне, исходя из знания, что ее масса в 81 раз меньше, чем у Земли

Английский астроном и геофизик Э. Галлей, изучая материалы астрономических наблюдений, обратил внимание на сходство орбит комет 1456, 1531, 1607, 1682 гг. и периодичность их появления (около 76 лет). Он пришел к выводу, что во всех этих случаях была одна и та же комета, и предсказал ее возвращение в 1758 г. Однако из-за возмущающего действия Юпитера и Сатурна, комета Галлея несколько запоздала и появилась только в следующем, 1759, году, почти в точном соответствии с расчетами Клеро - он ошибся только на 19 дней. Предсказание возвращения кометы стало первой убедительной победой теории Ньютона.

Самым убедительным подтверждением ньютонова закона тяготения явилось открытие «на кончике пера» еще одной планеты, названной Нептуном. В марте 1781 г. У. Гершель открыл новую планету - Уран. Для нее были вычислены элементы орбиты и составлены таблицы движения. Но через некоторое время заметили, что Уран в своем движении отклоняется от рассчитанных по закону Ньютона таблиц, к 1845 г. отклонение составило 2', тогда как точность измерений достигала долей секунды. Молодой французский астроном-теоретик У. Леверье предположил, что это отклонение вызвано влиянием новой неизвестной планеты, находящейся дальше Урана и невидимой невооруженным глазом, и сделал расчет предполагаемой орбиты.

Свои расчеты Леверье провел второпях и сообщил о результатах в письме от 18 сентября 1846 г. берлинскому астроному И. Галле, который имел звездные карты, содержавшие слабые звезды. Галле сразу же обнаружил в указанном Леверье месте слабую звездочку 8-й величины, которой на картах не было. На следующий день оказалось, что звездочка переместилась относительно ближайших звезд. В более сильный телескоп удалось даже разглядеть маленький диск. Это была новая планета Солнечной системы, предвычисленная по закону всемирного тяготения. Ее положение на небе отличалось от предсказанного расчетом Леверье всего на 52". Открытие «на кончике пера» новой планеты явилось величайшим триумфом науки и, конечно, закона всемирного тяготения. Границы Солнечной системы расширились почти вдвое.

Ньютон показал, что если сила тяготения точно соответствует закону обратных квадратов, то эллиптические орбиты планет не должны меняться со временем, т. е. ближайшая к Солнцу точка орбиты - перигелий - не должна смещаться по отношению к неподвижным звездам. Около 100 лет назад было обнаружено слабое смещение перигелия Меркурия, которое не удавалось полностью объяснить. Перигелий прецессировал с малой скоростью, так что орбита напоминала поворачивающийся эллипс. Не учитываемый в рамках ньютоновской теории эффект составлял 43" за 100 лет. Само измерение столь малой величины с такой точностью представляет собой большое достижение (погрешность менее 1%). Были подозрения, что есть еще одна планета, возмущающая орбиту Меркурия, ее даже условно назвали Вулканом, но не нашли. Поэтому появилось мнение, что закон всемирного тяготения неточен. И такую поправку в закон внес Эйнштейн в 1915г. в общей теории относительности. По его теории, перигелии орбит при каждом обороте планеты вокруг Солнца должны перемещаться на долю оборота, равную 3(Т/с)2. Для перигелия Меркурия получается 43", угол поворота перигелия за 100 лет составляет 42,91". Эта величина соответствует обработке наблюдений Меркурия с 1765 по 1937 г. Так была объяснена прецессия перигелия орбиты Меркурия. Было показано, что для практических задач закон Ньютона дает хорошие результаты, но для больших скоростей нужны иные законы.

Задача

Значение гравитационного ускорения на поверхности планеты можно приблизительно подсчитать, представив планету точечной массой M, и вычислив гравитационное ускорение на расстоянии её радиуса R:

где G-гравитационная постоянная для данной планеты.

В нашем случае возьмем из справочника значение G*M для Луны оно будет равно: 4.903·1012 м3/с2 радиус Луны равен 1737,1*103 м, отсюда g для Луны будет равна

g=4.903·1012/(1737,1*103)2=1,62 м/с2

Теперь найдем мой вес. Моя масса на Земле равен 56 кг, отсюда по формуле: теперь найдем мой вес на Луне:

P=m*g; P=56*1.62= 90,72 кг*м/с2

Ответ: ускорение g=1.62 м/с2, масса равна 90,72 кг*м/с2

Задание 2. Поясните «парадокс длины» специальной теории относительности. Определите относительную скорость движения, при которой сокращение линейных размеров тела составляет 10%. Приведите экспериментальные подтверждения верности теории Эйнштейна

Постулатами частной теории относительности являются два принципа.

1. Принцип относительности движения, которому Эйнштейн придал всеобщий характер, распространив его с механических на магнитные, электрические и световые процессы.

2. Принцип постоянства скорости света в пустоте, составляющей 300 000 км/с. Эта скорость является максимальной возможной скоростью распространения материальных взаимодействий.

Из этих двух физических принципов Эйнштейн заново вывел математические правила преобразования Лоренца. Но теперь математическая форма соотношений наполнена физическим смыслом, поскольку их Эйнштейн вывел из физических посылок. Из этих соотношений можно видеть, что, когда скорость движения тела становится сравнимой со скоростью света, линейный размер тела физически сокращается в направлении его движения. Со временем происходят противоположные изменения: его течение замедляется, ритмика течения времени растягивается.

Если скорость движения тела приближается к скорости света, то тело сжимается в направлении движения до такой степени, что превращается в плоскую фигуру (в лепешку). Значит, допускавшиеся в классической физике скорости, превышающие скорость света в пустоте, не имеют физического смысла. Отсюда следует, что скорость распространения материальных взаимодействий в природе не может превышать скорость света в пустоте.

Таким образом, дедуктивные следствия из физических постулатов привели Эйнштейна к построению развернутой содержательной теории, которую затем он назовет частной, или специальной. Специальная теория относительности (СТО) обобщает классическую физику и электродинамику Максвелла и выступает как релятивистская физика, в которой дается новая теория таких понятий, как масса, движение, пространство, время.

В классической физике пространство оторвано от времени, и они рассматриваются как абсолютные. Абсолютны они потому, что оторваны от движущихся материальных тел. Специальная теория относительности устанавливает зависимость пространства и времени от скорости движения материальных тел. Кроме того, она устанавливает неразрывную связь пространства и времени, поскольку они изменяются синхронно, и притом в противоположных направлениях: при больших скоростях движения тел их линейный размер сокращается в направлении движения, а ритмика течения времени растягивается. Поэтому рассмотрение физических событий должно относиться к единому четырехмерному пространственно-временному континууму: х, у, z, t.

Принцип эквивалентности инерциальных и ускоренных систем отсчета стал исходным постулатом для общей теории относительности. Сам Эйнштейн сформулировал этот принцип так: «В поле тяготения (малой пространственной протяженности) все происходит так, как в пространстве без тяготения, если в нем вместо «инерциальной» системы отсчета ввести систему, ускоренную относительно ее».

В соответствии с этим принципом Эйнштейн приступил к переработке специальной теории относительности и в итоге получил новую, более широкую теорию, которую назвал общей теорией относительности (ОТО). Центральным положением ОТО стало утверждение о том, что не существует привилегированных систем координат. Эту мысль он выразил следующим образом: «Законы физики должны быть таковы по природе, что они должны быть применимы к произвольно движущимся системам отсчета». Иначе говоря, поскольку законы физики сохраняют свою форму для любого наблюдателя, то математическое представление этих законов должно оставаться неизменным (инвариантным) не только при лоренцевых, но и при произвольных преобразованиях. [6]

Выведенные из этого центрального положения ОТО следствия привели Эйнштейна к дальнейшему обобщению представлений о пространстве и времени.

Если ускоренное движение нейтрализует тяготение в какой-либо системе отсчета, то гравитация и кинематика связаны между собой по существу. А поскольку кинематика (то есть теория механического движения, представляющего собой перемещение тел в пространстве) - это геометрия, к которой добавлена еще одна переменная - время, то Эйнштейн интерпретирует гравитационное поле как геометрию пространства-времени.

Из эквивалентности гравитации с геометрией пространства-времени вытекают интересные и важные следствия.

Следствие 1. Вблизи больших тяготеющих масс изменяются метрические свойства пространства и времени, а именно, линейный размер тела, находящегося вблизи большой тяготеющей массы, сокращается в радиальном направлении, а течение времени вблизи такой массы замедляется.

Следствие 2. Если бы в мире вещественные массы были распределены равномерно, то пространство окружающего мира описывалось бы геометрией Евклида. Поскольку же в реальном мире вещественные массы распределены неравномерно, то такой мир не является евклидовым, его геометрические свойства зависят от распределения масс и от скорости их движения.

Следствие 3. В механистической картине мира, как мы видели, были разорваны и разведены такие базовые понятия, как пространство, время, движение, материя. Теория относительности сплотила воедино понятия пространства и времени, массы и энергии, тяготения и инерции. Тем самым теория относительности привела к построению новой, современной научной картины мира. Подтверждением теории относительности стали опыты с короткоживущими элементарными частицами - при их ускорении в реакторах, время их жизни увеличивалось в соответствии с лоренцевым преобразованием; искривление линии распространения света вблизи Солнца; схема прецессии орбиты Меркурия.

Специальная теория относительности (СТО) (частная теория относительности; релятивистская механика) - теория, описывающая движение, законы механики и пространственно-временные отношения при скоростях движения, близких к скорости света. В рамках специальной теории относительности классическая механика Ньютона является приближением низких скоростей. Обобщение СТО для гравитационных полей называется общей теорией относительности.

Общая теория относительности - геометрическая теория тяготения, развивающая специальную теорию относительности (СТО), опубликованная Альбертом Эйнштейном в 1915-1916 годах. В рамках общей теории относительности, как и в других метрических теориях, постулируется, что гравитационные эффекты обусловлены не силовым взаимодействием тел и полей, находящихся в пространстве-времени, а деформацией самого пространства-времени, которая связана, в частности, с присутствием массы-энергии. Общая теория относительности отличается от других метрических теорий тяготения использованием уравнений Эйнштейна для связи кривизны пространства-времени с присутствующей в нём материей.

Доказательства ОТО

Эффекты, связанные с ускорением систем отсчёта

Первый из этих эффектов - гравитационное замедление времени, из-за которого любые часы будут идти тем медленнее, чем глубже в гравитационной яме (ближе к гравитирующему телу) они находятся. Данный эффект был непосредственно подтверждён в эксперименте Хафеле - Китинга, а также в эксперименте Gravity Probe A и постоянно подтверждается в GPS.

Непосредственно связанный с этим эффект - гравитационное красное смещение света. Под этим эффектом понимают уменьшение частоты света относительно локальных часов (соответственно, смещение линий спектра к красному концу спектра относительно локальных масштабов) при распространении света из гравитационной ямы наружу (из области с меньшим гравитационным потенциалом в область с большим потенциалом)/

Гравитационное замедление времени влечёт за собой ещё один эффект, названный эффектом Шапиро (также известный как гравитационная задержка сигнала). Из-за этого эффекта в поле тяготения электромагнитные сигналы идут дольше, чем в отсутствие этого поля. Данное явление было обнаружено при радиолокации планет солнечной системы и космических кораблей, проходящих позади Солнца, а также при наблюдении сигналов от двойных пульсаров.

Самая известная ранняя проверка ОТО стала возможна благодаря полному солнечному затмению 1919 года. Артур Эддингтон показал, что свет от звезды искривлялся вблизи Солнца в точном соответствии с предсказаниями ОТО.

Искривление пути света происходит в любой ускоренной системе отсчёта. Детальный вид наблюдаемой траектории и гравитационные эффекты линзирования зависят, тем не менее, от кривизны пространства-времени. Эйнштейн узнал об этом эффекте в 1911 году, и когда он эвристическим путём вычислил величину кривизны траекторий, она оказалась такой же, какая предсказывалась классической механикой для частиц, движущихся со скоростью света. В 1916 году Эйнштейн обнаружил, что на самом деле в ОТО угловой сдвиг направления распространения света в два раза больше, чем в ньютоновской теории, в отличие от предыдущего рассмотрения. Таким образом, это предсказание стало ещё одним способом проверки ОТО.

С 1919 года данное явление было подтверждено астрономическими наблюдениями звёзд в процессе затмений Солнца, а также с высокой точностью проверено радиоинтерферометрическими наблюдениями квазаров, проходящих вблизи Солнца во время его пути по эклиптике.

Наконец, у любой звезды может увеличиваться яркость, когда перед ней проходит компактный массивный объект. В этом случае увеличенные и искажённые из-за гравитационного отклонения света изображения дальней звезды не могут быть разрешены (они находятся слишком близко друг к другу) и наблюдается просто повышение яркости звезды. Этот эффект называют микролинзированием, и он наблюдается теперь регулярно в рамках проектов, изучающих невидимые тела нашей Галактики по гравитационному микролинзированию света от звёзд - МАСНО, EROS (англ.) и другие.

Орбитальные эффекты.

ОТО корректирует предсказания ньютоновской теории небесной механики относительно динамики гравитационно-связанных систем: Солнечная система, двойные звёзды и т.д.

Первый эффект ОТО заключался в том, что перигелии всех планетных орбит будут прецессировать, поскольку гравитационный потенциал Ньютона будет иметь малую релятивистскую добавку, приводящую к формированию незамкнутых орбит. Это предсказание было первым подтверждением ОТО, поскольку величина прецессии, выведенная Эйнштейном в 1916 году, полностью совпала с аномальной прецессией перигелия Меркурия. Таким образом, была решена известная в то время проблема небесной механики.

Позже релятивистская прецессия перигелия наблюдалась также у Венеры, Земли, астероида Икар и как более сильный эффект в системах двойных пульсаров. За открытие и исследования первого двойного пульсара PSR B1913+16 в 1974 году Р. Халс и Д. Тейлор получили Нобелевскую премию в 1993 году.

Доказательство СТО.

Специальная теория относительности лежит в основе всей современной физики. Поэтому, какого-либо отдельного эксперимента, «доказывающего» СТО нет. Вся совокупность экспериментальных данных в физике высоких энергий, ядерной физике, спектроскопии, астрофизике, электродинамике и других областях физики согласуется с теорией относительности в пределах точности эксперимента. Например, в квантовой электродинамике (объединение СТО, квантовой теории и уравнений Максвелла) значение аномального магнитного момента электрона совпадает с теоретическим предсказанием с относительной точностью 10 ? 9.

Фактически СТО является инженерной наукой. Её формулы используются при расчёте ускорителей элементарных частиц. Обработка огромных массивов данных по столкновению частиц, двигающихся с релятивистскими скоростями в электромагнитных полях, основана на законах релятивистской динамики, отклонения от которых обнаружено не было. Поправки, следующие из СТО и ОТО, используются в системах спутниковой навигации (GPS). СТО лежит в основе ядерной энергетики, и т.д.

Задача

Пусть стержень длины L движется (вдоль своей длины) со скоростью х относительно некой системы отсчёта. В таком случае в фиксированный момент времени расстояние между концами стержня составит:

L'=v(1-(х/c)2)*L,

где L'-расстояние между концами при движении, х-скорость движения, с = 3·108 м/с. Выразим из предыдущего уравнения скорость движения:

L'/L=v(1-(х/c)2)

(L'/L)2=1-(х/c)2

1-(L'/L)2=(х/c)2

v(1-(L'/L)2)= х/c

х=v(1-(L'/L)2)c

Теперь найдем скорость, подставив соответствующие значения из условия и константы:

х=v (1-(0,9)2)*300*106

х=130*106 м/с

Ответ: скорость движения стержня равна 130*106 м/с.

Задание 3. В чем сущность второго начала термодинамики? Приведите не менее трех его формулировок. Приведите значения к.п.д. для типичных тепловых станций. Если пар поступает на турбину при температуре +1770С, а окружающий воздух имеет температуру +150С, определите максимально возможный к.п.д. этой паровой турбины. Назовите макроскопические и микроскопические свойства энтропии. Вычислите изменение энтропии в процессе превращения 1 моль воды в пар при температуре кипения

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Второе начало термодинамики запрещает так называемые вечные двигатели второго рода, показывая невозможность перехода всей внутренней энергии системы в полезную работу.

Второе начало термодинамики является постулатом, не доказываемым в рамках термодинамики. Оно было создано на основе обобщения опытных фактов и получило многочисленные экспериментальные подтверждения.

Постулат Клаузиуса: «Невозможен процесс, единственным результатом которого являлась бы передача тепла от более холодного тела к более горячему» (такой процесс называется процессом Клаузиуса).

Постулат Томсона: «Невозможен круговой процесс, единственным результатом которого было бы производство работы за счет охлаждения теплового резервуара» (такой процесс называется процессом Томсона).

«Энтропия изолированной системы не может уменьшаться» (закон неубывания энтропии).

К.п.д. паротурбинной установки очень низок и может колебаться от 3 до 39 %

К.п.д. тепловые электростанции с парогазотурбинной установкой (ПГЭС) достигает 41-44%.

У газотурбинной электростанции КПД самой газотурбинной установки составляет порядка 51%, а при утилизации уходящих газов, общий КПД достигает уже 93%.

Макроскопические свойства энтропии - теплота, температура, масса, теплоемкость и микроскопические - термодинамическая вероятность.

Задача

Для расчета к.п.д. воспользуемся формулой:

КПД = (T1 ? T2)/T1,

где Т1,Т2-температура поступающего газа и окружающей среды.

Подставив температуру из условий (в 0 кельвина) получим:

КПДmax = ((177 + 273) - (15 + 273) \ (177 + 273) = 0,36 = 36%.

Ответ: максимально возможный к.п.д. равен 36 %

Задача

Молярная масса воды - 18 г/моль, т.е. воды имеем 18

Теплота парообразования - dQ = r·m. r = 23 Дж/кг - удельная теплота парообразования воды.

dS = dQ / Т

Изменение энтропии= 0,018·23 / 100 = 0,00414 Дж/К.

Ответ: изменеие энтропии составляет 0,00414 Дж/К.

Задание 4. Развитие представлений о строении атомов. Сравните строение атома и Солнечной системы. В какой степени атом похож на солнечную систему? Дайте понятие об энергетических уровнях и переходах в модели Бора и в современной науке. Пусть кинетическая энергия невозбужденного электрона в атоме водорода 10 эВ. Найдите импульс электрона, длину волны де Бройля и сравните ее с размерами диаметра орбиты электрона (10-10 м), рассчитанной на основе постулатов Бора. С точки зрения волнового движения можно ли говорить о движении его по определенной орбите?

Развитие представлений о строении атома:

Кусочки материи. Демокрит полагал, что свойства того или иного вещества определяются формой, массой, и пр. характеристиками образующих его атомов. Так, скажем, у огня атомы остры, поэтому огонь способен обжигать, у твёрдых тел они шероховаты, поэтому накрепко сцепляются друг с другом, у воды - гладки, поэтому она способна течь. Даже душа человека, согласно Демокриту, состоит из атомов.

Корпускулярно-кинетическая теория тепла. М. В. Ломоносов утверждает, что все вещества состоят из «корпускул» - «молекул», которые являются «собраниями» «элементов» - «атомов»: «Элемент есть часть тела, не состоящая из каких-либо других меньших и отличающихся от него тел… Корпускула есть собрание элементов, образующее одну малую массу». «Элементу» он придаёт современное ему значение - в смысле предела делимости тел - последней составной их части. Учёный указывает на шарообразную его форму. Именно М. В. Ломоносову принадлежит мысль о «внутреннем вращательном („коловратном“) движении частиц» - скорость вращения сказывается повышением температуры. При всех издержках такой модели, важно придание учёным понятию движения более глубокой физической значимости.

Модель атома Томсона (модель «Пудинг с изюмом», англ. Plum pudding model). Дж. Дж. Томсон предложил рассматривать атом как некоторое положительно заряженное тело с заключёнными внутри него электронами. Эта модель не объясняла дискретный характер излучения атома и его устойчивость. Была окончательно опровергнута Резерфордом после проведённого им знаменитого опыта по рассеиванию альфа-частиц.

Ранняя планетарная модель атома Нагаоки. В 1904 году японский физик Хантаро Нагаока предложил модель атома, построенную по аналогии с планетой Сатурн. В этой модели вокруг маленького положительного ядра по орбитам вращались электроны, объединённые в кольца. Модель оказалось ошибочной, но некоторые важные её положения вошли в модель Резерфорда.

Планетарная модель атома Бора-Резерфорда. В 1911 году [11] Эрнест Резерфорд, проделав ряд экспериментов, пришёл к выводу, что атом представляет собой подобие планетной системы, в которой электроны движутся по орбитам вокруг расположенного в центре атома тяжёлого положительно заряженного ядра («модель атома Резерфорда»). Однако такое описание атома вошло в противоречие с классической электродинамикой. Дело в том, что, согласно классической электродинамике, электрон при движении с центростремительным ускорением должен излучать электромагнитные волны, а, следовательно, терять энергию. Расчёты показывали, что время, за которое электрон в таком атоме упадёт на ядро, совершенно ничтожно. Для объяснения стабильности атомов Нильсу Бору пришлось ввести постулаты, которые сводились к тому, что электрон в атоме, находясь в некоторых специальных энергетических состояниях, не излучает энергию («модель атома Бора-Резерфорда»). Постулаты Бора показали, что для описания атома классическая механика неприменима. Дальнейшее изучение излучения атома привело к созданию квантовой механики, которая позволила объяснить подавляющее большинство наблюдаемых фактов.

Квантово-механическая модель атома. Современная модель атома является развитием планетарной модели. Согласно этой модели, ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома). Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Положение атома в таблице Менделеева определяется электрическим зарядом его ядра (то есть количеством протонов), в то время как количество нейтронов принципиально не влияет на химические свойства; при этом нейтронов в ядре, как правило, больше, чем протонов (см.: атомное ядро). Если атом находится в нейтральном состоянии, то количество электронов в нём равно количеству протонов. Основная масса атома сосредоточена в ядре, а массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).

Строение атома чем то похоже на строение Солнечной системы: как и в Солнечной системе большая часть массы всего ядра сосредоточена в центре, электроны находятся подобна планетам на своих «орбитах» энергетических уровнях, у электронов и ядра есть собственный момент вращения (спин) планеты и Солнце тоже вращается вокруг своей оси. Расположение с каждым новым энергетическим уровнем электроны всё дальше от массивного ядра. Но это только в первом, грубом, приближении строение атома очень похоже на строение Солнечной системы даже одна из теорий строения атома была выдвинута опираясь на её структуру.

Электронные орбиты в модели Бора обозначаются целыми числами 1, 2, 3, … n, начиная от ближайшей к ядру, именуемые электронными уровнями. Уровни, в свою очередь, могут состоять из близких по энергии подуровней. Например, 2-й уровень состоит из двух подуровней (2s и 2p). Третий уровень состоит из 3-х подуровней (3s, 3p и 3d). Четвертый уровень состоит из подуровней 4s, 4p,4d, 4f.

В электронной оболочке любого атома ровно столько электронов, сколько протонов в его ядре, поэтому атом в целом электронейтрален. Электроны в атоме заселяют ближайшие к ядру уровни и подуровни, потому что в этом случае их энергия меньше, чем если бы они заселяли более удаленные уровни. На каждом уровне и подуровне может помещаться только определенное количество электронов.

Подуровни, в свою очередь, состоят из одинаковых по энергии орбиталей. Каждая орбиталь - это как бы "квартира" для электронов в "доме"-подуровне. Например, любой s-подуровень - это "дом" из одной "квартиры" (s-орбиталь), p-подуровень - "трехквартирный дом" (три p-орбитали), d-подуровень - "дом" из 5 "квартир"-орбиталей, а f-подуровень - "дом" из 7 одинаковых по энергии орбиталей. В каждой "квартире"-орбитали могут "жить" не больше двух электронов. Запрещение электронам "селиться" более чем по-двое на одной орбитали называют запретом Паули - по имени ученого, который выяснил эту важную особенность строения атома. "Адрес" каждого электрона в атоме записывается набором квантовых чисел. Здесь мы упомянем лишь о главном квантовом числе n, которое в "адресе" электрона указывает номер уровня, на котором этот электрон существует.

В 20-е годы прошлого века на смену модели Бора пришла волновая модель электронной оболочки атома, которую предложил австрийский физик Э. Шредингер. К этому времени было экспериментально установлено, что электрон имеет свойства не только частицы, но и волны. Шредингер применил к электрону-волне математические уравнения, описывающие движение волны в трехмерном пространстве. Однако с помощью этих уравнений рассчитывается не траектория движения электрона внутри атома, а вероятность найти электрон-волну в той или иной точке пространства вокруг ядра.

Общее у волновой модели Шредингера и планетарной модели Бора в том, что электроны в атоме существуют на определенных уровнях, подуровнях и орбиталях. В остальном эти модели не похожи друг на друга. В волновой модели орбиталь - это пространство около ядра, в котором можно обнаружить заселивший ее электрон с вероятностью 95%. За пределами этого пространства вероятность встретить такой электрон меньше 5%.

В волновой модели тоже существуют орбитали разных видов: s-орбитали (сферической формы), p-орбитали (похожие на веретено или на объемные восьмерки), а также d-орбитали и f-орбитали еще более сложной формы. Все эти фигуры очерчивают область 95%-ной вероятности найти s-, p-, d- или f-электроны именно в том месте электронного облака, которое ограничено этими сложными фигурами. Области вероятности нахождения s, p, d, f-электронов в атоме могут пересекаться. Впрочем, к необычным свойствам волновой модели следует относиться спокойно, поскольку она является не столько физической, сколько абстрактной математической моделью электронной оболочки.

Во всех моделях атома электроны называют s-, p-, d- и f-электронами в зависимости от подуровня, на котором они находятся. Элементы, у которых внешние (то есть наиболее удаленные от ядра) электроны занимают только s-подуровень, принято называть s-элементами. Точно так же существуют p-элементы, d-элементы и f-элементы.

Задача.

Для решения задачи оценим длину волны электрона. h = 6,62·10-34 Дж·с - постоянная Планка; m = 9,11·10-31 кг - масса электрона; Т.к. Е = m·V2/2, р = m·V, получаем:

р = (2m·Е)1/2 = (2·9,11·10-31·10·1,6·10-19)1/2 = 1,71·10-24 кг·м/с.

лБ = h/р = h/(2m·Е)1/2 = 6,62·10-34/(2·9,11·10-31·10·1,6·10-19)1/2 = 3,88·10-10 м = 0,388 нм.

Ответ: Импульс электрона равен 0,388 нм.

Полученное значение длины волны сравнимо с размером диаметра орбиты электрона.

С точки зрения волнового движения говорить о движении его по определенной орбите нельзя. Электрон образует нечто похожее на облако.

Задание 5. Характеризуйте методы химической кинетики. Какими факторами можно изменить скорость химических реакций? Оцените, за сколько времени произойдет химическая реакция при температуре 70C, если при температуре 50C она протекает за 2 мин. 15 с, при этом известно, что в данном температурном интервале = 3?

К методам химической кинетики относят изменение температуры, изменение концентрации реагирующих веществ, катализ.

Скорость химической реакции можно увеличить путем выбора химически активных реагентов, повысив концентрации реагентов, увеличив поверхность твердых и жидких реагентов, повысив температуру, введением катализатора.

Так же скорость химической реакции можно уменьшить путем выбора химически неактивных реагентов, понижением концентрации реагентов, уменьшением поверхности твердых и жидких реагентов, понижением температуры, введением ингибиторов.

Задача

Для решения задачи используем правило Вант-Гоффа. При увеличении температуры с 50 до 70C скорость реакции в соответствии с этим правилом возрастает:

v(t2)/v(t1) = (t2 - t1)/10 = 3(70 - 50)/10 = 32 = 9.

Скорость реакции обратно пропорциональна времени реакции:

v(t2) / v(t1) = Т(t2) / Т(t1),

Т - время реакции при различных температурах.

Переведем время в секунды - 135 с. Выразим отсюда Т(t2):

Т(t2) = Т(t1)·v(t2)/v(t1) = 135·(1/9) = 15 с.

Ответ: Время химической реакции 15с.

Задание 6. Понятие равновесия в механике и статистической термодинамике. Как ведут себя макросистемы вдали от равновесия? Поясните принцип локального равновесия. Используя принцип Ле Шаталье - Брауна ответьте, в какую сторону измениться равновесие в системе H2 + I2 2HI, при уменьшении концентрации йодоводорода?

В механике считается, что система находится в равновесии, если все действующие на нее силы полностью уравновешены между собой, то есть гасят друг друга.

Термодинамическое равновесие - состояние системы, при котором остаются неизменными по времени макроскопические величины этой системы. Положению равновесия с молекулярно-кинетической точки зрения отвечает состояние максимального хаоса в изолированной системе. По законам термодинамики такая система вернется в положение равновесия; при удалении от него ее состояние становится все более неустойчивым, и даже малые изменения какого-либо параметра могут перевести систему в новое состояние.

Отличия неравновесной структуры от равновесной заключается в следующем.

1. Система реагирует на внешние условия (гравитационное поле и т. п.).

2. Поведение случайно и не зависит от начальных условий, но зависит от предыстории.

3. Приток энергии создает в системе порядок, и стало быть энтропия ее уменьшается.

4. Наличие бифуркации - переломной точки в развитии системы.

5. Когерентность: система ведет себя как единое целое и как если бы она была вместилищем дальнодействующих сил (такая гипотеза присутствует в физике). Несмотря на то, что силы молекулярного взаимодействия являются, система структурируется так, как если бы каждая молекула была «информирована» о состоянии системы в целом.

Различают также области равновесности и неравновесности, в которых может пребывать система.

Неравновесная область.

1. Система «адаптируется» к внешним условиям, изменяя свою структуру.

2. Множественность стационарных состояний.

3.Чувствительность к флуктуациям (небольшие влияния приводят к большим последствиям, внутренние флуктуации становятся большими).

4. Неравновесность - источник порядка (все части действуют согласованно) и сложности.

5. Фундаментальная неопределенность поведения системы.

Равновесная область

1. Для перехода из одной структуры к другой требуются сильные возмущения или изменения граничных условий.

2. Одно стационарное состояние.

3. Нечувствительность к флуктуациям.

4. Молекулы ведут себя независимо друг от друга.

5. Поведение системы определяют линейные зависимости.

Будучи предоставлена самой себе, при отсутствии доступа энергии извне, система стремится к состоянию равновесия - наиболее вероятному состоянию, достигаемому при энтропии, равной нулю. Пример равновесной структуры - кристалл. К такому равновесному состоянию в соответствии со вторым началом термодинамики приходят все закрытые системы, т. е. системы, не получающие энергии извне. Противоположные по типу системы носят название открытых. Изучение неравновесных состояний позволяет прийти к общим выводам относительно эволюции в неживой природе от хаоса к порядку.

Внутренняя релаксация противостоит процессам, нарушающим равновесие. В случае разреженных газов - это процессы столкновений. Если возмущающие процессы менее интенсивны, чем релаксационные, то говорят о локальном равновесии, существующем в малом объеме. При этом не обязательно, чтобы в других частях системы состояние было близко к равновесию. Например, газ помещают между плоскостями, нагретыми до разных температур. Процесс теплопроводности крайне медленный, газ находится в неравновесном состоянии, а где-то в системе будет малая область с локальным равновесием. Эта идея, высказанная И.Р. Пригожиным, позволила описывать в такой области состояния теми же параметрами, что и при равновесии.

Важное понятие локального равновесия вводят при медленном изменении внешнего воздействия и для времен, больших характерного времени элементарного релаксационного процесса, формирующего равновесие. Эти условия возникают из статистического рассмотрения процессов. Принцип локального равновесия ограничивает число систем, доступных термодинамическому рассмотрению. Есть также взаимное влияние друг на друга одновременно происходящих необратимых процессов. Существует принцип симметрии Кюри, который в формулировке Вейля гласит: «Если условия, однозначно определяющие какой-либо эффект, обладают некоторой симметрией, то результат их действия не нарушит эту симметрию». Поэтому формально все неравновесные процессы разделяют на скалярные (химические реакции), векторные (теплопроводность, диффузия) и тензорные (вязкое трение). В соответствии с принципом симметрии величины разного типа не могут быть связаны друг с другом. Так, скалярная величина (химическое сродство) не может вызвать векторный поток (теплопроводность).

Принцип Ле Шателье - Брауна - если на систему, находящуюся в равновесии, воздействовать извне, изменяя какое-нибудь из условий (температура, давление, концентрация), то равновесие смещается таким образом, чтобы компенсировать изменение. При уменьшении концентрации йодоводорода равновесие сместится в сторону образования продуктов (йодоводорода).

Задание 7. Дайте общую характеристику жидкого состояния. Определите картину процессов при явлениях капиллярности, смачивании, вязкости, поверхностном натяжении. Как объясняют большую теплоемкость воды, большое поверхностное натяжение и свойство капиллярности? Какое значение имеют эти особенности воды в живой природе?

Жидкость - одно из агрегатных состояний вещества. Основным свойством жидкости, отличающим её от других агрегатных состояний, является способность неограниченно менять форму под действием касательных механических напряжений, даже сколь угодно малых, практически сохраняя при этом объём.

Жидкое состояние обычно считают промежуточным между твёрдым телом и газом: газ не сохраняет ни объём, ни форму, а твёрдое тело сохраняет и то, и другое.

Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает несохранение формы (внутренних частей жидкого тела).

Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.

Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твердое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние - стекло), выше - в газообразное (происходит испарение). Границы этого интервала зависят от давления.

Капиллярность, капиллярный эффект - физическое явление, заключающееся в способности жидкостей изменять уровень в трубках, узких каналах произвольной формы, пористых телах. Поднятие жидкости происходит в случаях смачивания каналов жидкостями, например воды в стеклянных трубках, песке, грунте и т. п. Понижение жидкости происходит в трубках и каналах, не смачиваемых жидкостью, например ртуть в стеклянной трубке. На основе капиллярности основана жизнедеятельность животных и растений, химические технологии, бытовые явления (например, подъём керосина по фитилю в керосиновой лампе, вытирание рук полотенцем).

Смачивание - это поверхностное явление, заключающееся во взаимодействии жидкости с поверхностью твёрдого тела или другой жидкости. Смачивание бывает двух видов:

Иммерсионное (вся поверхность твёрдого тела контактирует с жидкостью)

Контактное (состоит из трёх фаз - твердая, жидкая, газообразная)

Смачивание зависит от соотношения между силами сцепления молекул жидкости с молекулами (или атомами) смачиваемого тела (адгезия) и силами взаимного сцепления молекул жидкости (когезия).

Вязкость (внутреннее трение) - одно из явлений переноса, свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Механизм внутреннего трения в жидкостях и газах заключается в том, что хаотически движущиеся молекулы переносят импульс из одного слоя в другой, что приводит к выравниванию скоростей - это описывается введением силы трения. Вязкость твёрдых тел обладает рядом специфических особенностей и рассматривается обычно отдельно. Различают динамическую вязкость (единицы измерения: пуаз, 0,1Па·с) и кинематическую вязкость (единицы измерения: стокс, мІ/с, внесистемная единица - градус Энглера). Кинематическая вязкость может быть получена как отношение динамической вязкости к плотности вещества и своим происхождением обязана классическим методам измерения вязкости, таким как измерение времени вытекания заданного объёма через калиброванное отверстие под действием силы тяжести.

Поверхностное натяжение - термодинамическая характеристика поверхности раздела двух находящихся в равновесии фаз, определяемая работой обратимого изотермокинетического образования единицы площади этой поверхности раздела при условии, что температура, объем системы и химические потенциалы всех компонентов в обеих фазах остаются постоянными. Поверхностное натяжение имеет двойной физический смысл - энергетический (термодинамический) и силовой (механический). Энергетическое (термодинамическое) определение: поверхностное натяжение - это удельная работа увеличения поверхности при её растяжении при условии постоянства температуры. Силовое (механическое) определение: поверхностное натяжение - это сила, действующая на единицу длины линии, которая ограничивает поверхность жидкости.

Все эти особенности связаны с наличием водородных связей. Из-за большой разности электроотрицательностей атомов водорода и кислорода электронные облака сильно смещены в сторону кислорода. По причине этого, а также того, что ион водорода (протон) не имеет внутренних электронных слоев и обладает малыми размерами, он может проникать в электронную оболочку отрицательно поляризованного атома соседней молекулы. Благодаря этому, каждый атом кислорода притягивается к атомам водорода других молекул и наоборот. Определенную роль играет протонное обменное взаимодействие между молекулами и внутри молекул воды. Каждая молекула воды может участвовать максимум в четырёх водородных связях: 2 атома водорода - каждый в одной, а атом кислорода - в двух; в таком состоянии молекулы находятся в кристалле льда. При таянии льда часть связей рвётся, что позволяет уложить молекулы воды плотнее; при нагревании воды связи продолжают рваться, и плотность её растёт, но при температуре выше 4 °С этот эффект становится слабее, чем тепловое расширение. При испарении рвутся все оставшиеся связи. Разрыв связей требует много энергии, отсюда высокая температура и удельная теплота плавления и кипения и высокая теплоёмкость. Вязкость воды обусловлена тем, что водородные связи мешают молекулам воды двигаться с разными скоростями.

Высокая удельная теплоемкость в сочетании с высокой теплопроводностью это делает водную среду достаточно комфортной для обитания живых организмов. Благодаря высокой теплоемкости и теплопроводности водная среда, в отличие от воздушной, менее подвержена перепадам температур (как суточным, так и сезонным), что облегчает адаптацию животных и растений к этому абиотическому фактору.

Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной (в идеале - форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды. Значительная когезия играет важную роль в живых клетках, а также при движении воды по сосудам в растениях. Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: такие организмы образуют экологическую группу нейстон, которая делится на эпинейстон (те, кто передвигаются по поверхности пленки, как водомерка), и гипонейстон -организмов, прикрепляющихся к поверхностной пленке в воде (личинки некоторых мух и комаров).

Капиллярные явления играют существенную роль в водоснабжении растений, передвижении влаги в почвах и других пористых средах. Капиллярная пропитка различных материалов широко применяется в различных технологических процессах. Не меньшую роль капиллярные явления играют и при образовании новой фазы: капель жидкости при конденсации паров и пузырьков пара при кипении и кавитации.

Капиллярные явления играют большую роль в природе и технике. Подъем питательного раствора по стеблю или стволу растения в значительной мере обусловлен явлением капиллярности: раствор поднимается по тонким капиллярным трубкам, образованным стенками растительных клеток. По капиллярам почвы поднимается вода из глубинных в поверхностные слои почвы. Наоборот, разрыхляя поверхность почвы и создавая тем самым прерывистость в системе почвенных капилляров, можно задержать приток воды к зоне испарения и замедлить высушивание почвы.

Капиллярные явления играют существенную роль в водоснабжении растений и перемещении влаги в почве. В сухую погоду почва ссыхается, и в ней образуются трещины - капилляры. По ним вода поднимается из-под земли вверх и испаряется. Поверхность земли из-за этого высыхает еще больше. Для сохранения влаги внутри земли верхний слой почвы разрыхляют. При этом капилляры разрушаются, и вода остается в почве.

Задание 8. Поясните понятие равновесного излучения, модели абсолютного черного и абсолютно белого тела. В чем смысл гипотезы Планка о дискретном характере испускания света и ее значение? Насколько были решены при этом противоречия в теории теплового излучения? Определите температуру звезды Ригеля ( Ориона), в спектре которой максимум энергии приходится на длину волны 1930*10-10 м.

Равновесное излучение (излучение абсолютно черного тела), электромагнитное излучение, находящееся в термодинамическом равновесии с веществом, испускающим и поглощающим это излучение. Равновесное излучение не зависит от природы излучающего вещества и полностью определяется температурой излучающего тела.

Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план). Термин был введён Густавом Кирхгофом в 1862 году.

Абсолютно белое тело-антипод абсолютно черно тела, также является идеализацией, абсолютно белое тело не способно ни излучать, ни поглощать.

Теория Максвелла не смогла объяснить процессы испускания и поглощения света, фотоэлектрического эффекта, комптоновского рассеяния и т.д. Теория Лоренца в свою очередь не смогла объяснить многие явления, связанные с взаимодействием света с веществом, в частности вопрос о распределении энергии по длинам волн при тепловом излучении абсолютно черного тела.

Перечисленные затруднения и противоречия были преодолены благодаря смелой гипотезе, высказанной в 1900 г. немецким физиком М. Планком, согласно которой излучение света происходит не непрерывно, а дискретно, т.е. определенными порциями (квантами), энергия которых определяется частотой н - Е = h·н, где h - постоянная Планка.

Гипотеза Планка - гипотеза, выдвинутая 14 декабря 1900 года Максом Планком и заключающаяся в том, что при тепловом излучении энергия испускается и поглощается не непрерывно, а отдельными квантами (порциями). Каждая такая порция-квант имеет энергию е, пропорциональной частоте н излучения:

е=hн,

где h - коэффициент пропорциональности, названный впоследствии постоянной Планка. На основе этой гипотезы он предложил теоретический вывод соотношения между температурой тела и испускаемым этим телом излучением - формулу Планка:

Позднее гипотеза Планка была подтверждена экспериментально.

Выдвижение этой гипотезы считается моментом рождения квантовой механики. Также квантовые представления о свете хорошо согласуются с законами излучения и поглощения света, законами взаимодействия излучения с веществом.

Задача

Для решения задачи применим закон смещения Вина:

лмакс.=0,0028999/Т,

где лмакс- длина волны с максимальной интенсивностью в метрах, T - температура в кельвинах. Выразим из этого уравнения температуру:

Т=0,0028999/ лмакс.

Подставим значения из задачи получим:

Т=0,002899/1930*10-10

Т=15025,39 0К

Ответ: Т=15025,39 0К

Задание 9. Охарактеризуйте реакции синтеза ядер и условия их осуществления. Где такие условия имеют место в природе? Каковы перспективы использования реакций синтеза ядер в энергетике? Считая светимость Солнца постоянной, определите, какую долю массы Солнце потеряет за свою жизнь из-за излучения

Ядерные взаимодействия с частицами носят весьма разнообразный характер, их виды и вероятности той или иной реакции зависят от вида бомбардирующих частиц, ядер-мишеней, энергий взаимодействующих частиц и ядер и многих других факторов.

Деление ядра - процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма- кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер - экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.

Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.

При нормальной температуре слияние ядер невозможно, так как положительно заряженные ядра испытывают огромные силы кулоновского отталкивания. Для синтеза легких ядер необходимо сблизить их на расстояние порядка 10?15 м, на котором действие ядерных сил притяжения будет превышать кулоновские силы отталкивания. Для того чтобы произошло слияние ядер, необходимо увеличить их подвижность, то есть увеличить их кинетическую энергию. Это достигается повышением температуры. За счет полученной тепловой энергии увеличивается подвижность ядер, и они могут подойти друг к другу на такие близкие расстояния, что под действием ядерных сил сцепления сольются в новое более сложное ядро. В результате слияния легких ядер освобождается большая энергия, так как образовавшееся новое ядро имеет большую удельную энергию связи, чем исходные ядра. Термоядерная реакция - это экзоэнергетическая реакция слияния легких ядер при очень высокой температуре (107 К).

Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространенного на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в виде

+ энергия (17,6 МэВ).

Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для термоядерного синтеза.


Подобные документы

  • Закон тяготения Ньютона. Специальная теория относительности. Второе начало термодинамики. Представления о строении атомов. Методы химической кинетики. Понятия равновесия, равновесного излучения. Реакции синтеза ядер. Особенности биотического круговорота.

    контрольная работа [54,4 K], добавлен 16.04.2011

  • Истоки теории относительности, порядок ее формирования и значение. Принцип относительности Галилея. Сущность преобразования Галилея и Лоренца. Теория относительности А. Эйнштейна, особенности и отличительные признаки ее общей и специальной формы.

    реферат [2,4 M], добавлен 09.11.2010

  • Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.

    реферат [30,5 K], добавлен 30.07.2010

  • Поле всемирного тяготения, гравитационное взаимодействие и постулаты общей теории относительности Эйнштейна - теории пространства, времени, материи, тяготения и движения. Идея построения материального мира из элементарных, фундаментальных "кирпичиков".

    реферат [888,7 K], добавлен 07.01.2010

  • Открытие периодического закона элементов: история создания и классификация свойств элементов. Развитие представлений о сложном строении атома. Физический смысл атомного номера на основе модели атома Бора. Отражение "застройки" электронных оболочек атома.

    контрольная работа [57,1 K], добавлен 28.01.2014

  • Сущность донаучного, вненаучного (обыденного) и научного познания. Представления о материи, суть эффекта замедления времени в теории относительности. Формулировки второго начала термодинамики, понятие "химическая связь", этапы и проблемы антропогенеза.

    контрольная работа [54,5 K], добавлен 05.02.2010

  • Закон сохранения массы как один из фундаментальных законов естествознания. Соотношение между энергией покоя и массой тела Эйнштейна, теория относительности. Взаимное преобразование массы и энергии в ядерной энергетике. Физическая суть огня, природа массы.

    реферат [24,4 K], добавлен 23.04.2010

  • Научная революция и работы Коперника, Кеплера, Галилея и Декарта. Механика Ньютона, атомы микромира и лапласовский детерминизм, теории газов. Электромагнитная картина мира в работах Фарадея, Максвелла и Лоренца. Теория относительности Эйнштейна.

    реферат [599,1 K], добавлен 25.03.2016

  • Понятие общей теории относительности - общепринятой официальной наукой теории о том, как устроен мир, объединяющей механику, электродинамику и гравитацию. Принцип равенства гравитационной и инертной масс. Теория относительности и квантовая механика.

    курсовая работа [111,1 K], добавлен 17.01.2011

  • Категории пространства и времени, анализ концепции их относительности. Инвариантность пространственных и временных интервалов как отражение свойств симметрии физического мира. Эволюционная теория относительности. Теория относительности А. Эйнштейна.

    реферат [35,2 K], добавлен 11.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.