Генная инженерия. За и против

История появления и развития генной инженерии, первые трансгенные растения и животные, важнейшие открытия и разработки. Генетический мониторинг за генетически модифицированными организмами. Польза и вред генномодифицированных продуктов для человека.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 18.12.2010
Размер файла 35,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Нижегородский Государственный

Технический Университет

Выксунский филиал

Генная инженерия.

За и против.

Выполнила:

студент

группы ПТК-09

Малышева М.

Проверила:

Смирнова В.М.

Выкса 2010 г.

Содержание:

Предисловие

1. Генная инженерия. История появления и развития генной инженерии

2. Важные открытия и разработки, сделанные в генной инженерии в настоящее время

3. Генетический мониторинг. Неоднозначность в вопросах о пользе ГИ

4. Генетически модифицированный организм (ГМО)

5. Польза и вред генномодифицированных продуктов

Заключение

Список литературы

Предисловие

В данном реферате рассматриваются основные характеристики, проблемы и перспективы такой новейшей технологии, как генная инженерия. В настоящее время эта тема весьма актуальна. На начало 21-го века в мире проживает около 5 млрд. человек. По прогнозам учёных к концу 21-го века население Земли может увеличиться до 10 миллиардов. Как прокормить такое количество людей качественной пищей, если и при 5 миллиардах в некоторых регионах население голодает? Впрочем, даже если бы такой проблемы не существовало, то человечество, для решения других своих проблем, стремилось бы внедрять в сельское хозяйство и другие отрасли наиболее производительные биотехнологии. Одной из таких технологий как раз и является генная инженерия.

1. Генная инженерия

Генетическая инженерия (генная инженерия) -- совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.

Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология. Уже сегодня генная инженерия позволяет включать и выключать отдельные гены, контролируя таким образом деятельность организмов, а также -- переносить генетические инструкции из одного организма в другой, в том числе - организмы другого вида. По мере того, как генетики всё больше узнают о работе генов и белков, всё более реальной становится возможность произвольным образом программировать генотип (прежде всего, человеческий), с лёгкостью достигая любых результатов: таких, как устойчивость к радиации, способность жить под водой, способность к регенерации повреждённых органов и даже бессмертие.

История появления и развития генной инженерии

Любое растение или животное имеет тысячи различных признаков. Например, у растений: цвет листьев, величина семян, наличие в плодах определённого витамина и так далее. За наличие каждого конкретного признака отвечает определённый ген. Ген - от греческого genos, и переводится как «род», «происхождение». Ген представляет собой маленький отрезок молекулы ДНК и генерирует или порождает определённый признак растения или животного. Если внести в организм (растение, микроорганизм, животное или даже человек) новые гены, то можно наделить его новой желательной характеристикой, которой до этого он никогда не обладал. Изменения генов прежде всего связано с преобразованием химической структуры ДНК: изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Изменённый же организм может теперь именоваться мутантом (с лат. - «изменённый»).

А началось все с того, что в 1962 г. Дж. Уотсон и Ф. Крик совершили одно из величайших открытий XX века, установив молекулярную структуру ДНК (дезоксирибонуклеиновой кислоты, из которой и состоят гены) и определив ее роль в передаче наследственной информации. Десятью годами позже группа американских исследователей сообщила о выделении в лаборатории первой гибридной (рекомбинантной) молекулы ДНК - то есть вещества, объединившего в себе гены разных организмов.

В 1973 году генетики Стэнли Кохен и Герберт Бойер внедрили новый ген в бактерию кишечной палочки (E. coli). С этого момента формально и взяла старт генная инженерия.

Вживляя ген, "одолженный" у одного растения (или животного) другому, биотехнологи добились появления новых видов с определенными заданными свойствами. Начиная с 1982 года фирмы США, Японии, Великобритании и других стран производят генно-инженерный инсулин. Клонированные гены человеческого инсулина были введены в бактериальную клетку, где начался синтез гормона, который природные микробные штаммы никогда не синтезировали.

В 1983 году американцы вывели трансгенный табак, неуязвимый для определенного вида вредителей. И вот тогда начался настоящий бум. Уже через 4 года трансгенные растения, устойчивые к насекомым и гербицидам, поступили в массовую продажу. Кроме того, необыкновенная притягательность трансгенов кроется в том существенном факте, что биотехнологии позволяют выводить новые культуры за 2-3 года. Обычные же методы селекции путем отбора и скрещивания - это 10 и более лет. За эти годы получены, в частности, помидоры и картофель, огурцы и соя, кукуруза, рапс и т.д.

Около 200 новых диагностических препаратов уже введены в медицинскую практику, и более 100 генно-инженерных лекарственных веществ находится на стадии клинического изучения. Среди них лекарства, излечивающие артрозы, сердечнососудистые заболевания, некоторые опухолевые процессы и, возможно, даже СПИД. Среди нескольких сотен генно-инженерных фирм 60% работают над производством лекарственных и диагностических препаратов.

2. Важные открытия и разработки, сделанные генной инженерией в настоящее время

Птичий грипп победят трансгенные куры

Шотландские биологи надеются победить эпидемию птичьего гриппа, создав новую породу генетически модифицированных кур, невосприимчивых к этому вирусу.

На борьбу с вирусом, поднялись ученые из Рослинского института (Эдинбург, Шотландия), подарившие миру знаменитую овечку Долли. Работая в одной команде с исследователями из Кембриджского университета, шотландские ученые смогли доказать принципиальную возможность выведения «гриппостойкой» породы птиц путем имплантации фрагментов ДНК вируса в живые клетки.

Ожидается, что в течение следующих недель ученые приступят к имплантации генетического материала птичьего гриппа в куриные яйца. По словам руководителя проекта Хелен Санг из Рослинского института, если эксперимент пройдет удачно, то в скором будущем нас ожидает появление новой породы кур, совершенно нечувствительной к заразе, нанесшей удар по птицеводам Евразии. Учитывая тот факт, что основные разносчики гриппа -- постоянно мигрирующие дикие птицы, создание генетически модифицированных пород домашних птиц является, по всей видимости, единственным по-настоящему эффективным способом долгосрочного решения проблемы. Дело здесь, разумеется, не только в благосостоянии птицеводов: большинство случаев заражения человека смертельно опасным штаммом H5N1 происходило из-за контакта с больными курами и утками. И чем реже будут вспыхивать эпидемии в курятниках, тем ниже будет риск возникновения очередной пандемии.

Впервые создана искусственная форма жизни

Ученые сотворили наконец то, о чём говорили несколько лет: способную к размножению живую клетку, генетический код которой с нуля собран в лаборатории из химикатов и под присмотром компьютеров. Прорыв в синтетической биологии разными людьми воспринят неоднозначно - восторг от перспектив смешивается с мыслями о джине, выпущенном из бутылки. генная инженерия трансгенный модифицированный

Один из ведущих учёных в области генной инженерии -- Крейг Вентер и его институт (JCVI), как давно обещали, представили образчик искусственной жизни: первую в мире клетку, успешно управляемую полностью синтезированным геномом. К этому достижению Вентер и его коллеги шли 15 лет.

За образец кода учёные взяли гены бактерии Mycoplasma mycoides (1,08 миллиона пар нуклеотидов), но исследователи не стали заимствовать готовые хромосомы у живой клетки, а сами собрали искусственный геном "из кирпичиков" (используя бутылочки с химическими соединениями) по расшифрованной ранее и записанной в компьютер последовательности. Более того, они внесли в него ряд намеренных изменений и вставок -- "водяных знаков", полиморфизмов и мутаций. "Это первый случай, когда синтетическая ДНК полностью контролирует клетку", -- заявил Вентер. Он полагает, что в конечном счёте такие работы приведут к конструированию клеток, выполняющих полезные функции -- от синтеза лекарств до топлива. "Я думаю, они приведут к новой промышленной революции", -- добавил учёный.

Генная инженерия впервые поборола лихорадку Эбола

Это смертельно опасное заболевание пытаются научиться лечить с 1970-х годов. Вирус передаётся при прямом контакте или через необработанные предметы. При этом он "сжигает" почти всех заражённых людей за считанные дни. И вот его впервые удалось уничтожить при помощи методов генной терапии. Правда, пока лишь в организме низших приматов.

Группа исследователей под руководством Томаса Гизберта из Бостонского университета смогла вылечить от лихорадки Эбола макак-резус. Биологи привили девяти животным заирский подтип вируса, являющийся "самым летальным": умирают около 90% заражённых. В течение шести дней четверым подопытным стали ежедневно, а троим через день выдавать лекарство на основе малых интерферирующих РНК. Двоих макак-резус оставили в качестве контрольных - им лекарство не выдавали. Что стало с этими животными, предположить нетрудно. А вот по поводу остальных выяснилось следующее: через 10 дней после заражения у первой группы вирус не был обнаружен вовсе, а у второй - лишь малое его количество. Достижение значительное, ведь над созданием и испытанием вакцин от Эбола работают многие научные группы, однако победить инфекцию уже после заражения удалось впервые.

"Действующее вещество", особым образом спрятанное в молекулы жира, заставляло замолчать гены, ответственные за выработку ключевых для вируса белков L, VP24 и VP35. Все они необходимы патогену для выживания и размножения.

Отметим дополнительное преимущество нового метода лечения: siRNA, подходящие для определённого штамма вируса, могут быть синтезированы довольно быстро. То есть если в Африке или любом другом регионе мира вдруг появится разновидность Эбола, невиданная медиками ранее, терапевтическое решение будет найдено в разумные сроки. Биохимик Гайя Амарасингхе из университета Айовы считает, что нынешнее открытие хорошо ещё и тем, что позволяет создать лекарство от других филовирусов, также вызывающих геморрагические лихорадки.

Кстати, именно Амарасингхе и его коллеги в своё время расшифровывали структуру белка VP35.

Гизберт отмечает, что та же тактика, скорее всего, позволит побороть вирус Эбола и у человека. Однако вопрос клинических испытаний на людях натыкается на отсутствие финансирования. Одной из значительных трат является покупка аппаратуры, контролирующей биозагрязнение. Она стоит очень недёшево.

А так как заболевание распространено нешироко, частные инвесторы не слишком стремятся вкладываться в исследования. В общем, последнее слово за государственными структурами, считает Томас. Между тем одним из возможных "спонсоров" разработки человеческого лекарства может стать управление по контролю над пищевыми продуктами и медикаментами США.

Синдром Дауна будут лечить в утробе матери

Уже сейчас будущая мать может узнать о том, что её ребёнок родится с синдромом Дауна. Часто такое "открытие" приводит к аборту. Однако учёные из американского Национального института здравоохранения (National Institutes of Health) рапортуют о том, что приблизились к лечению симптомов болезни, когда плод ещё находится в чреве. Учёным удалось значительно улучшить состояние новорождённых мышей с отклонениями, похожими на человеческие. И хотя это достижение пока ещё не гарантирует положительных результатов у людей, надежда на повышение качества жизни ребёнка и значительное облегчение родительского бремени всё же есть.

У новорождённых с синдромом Дауна присутствует лишняя копия 21-й хромосомы. Та же ситуация моделируется на мышах: у них похожие симптомы (нарушение моторики и сенсорных способностей, медленное умственное развитие) проявляются, когда присутствует лишняя копия сегмента 16 хромосомы.

Группа Кэтрин Спун (Catherine Spong) попыталась лечить симптомы болезни уже тогда, когда потомство мышей находилось в утробе матери. Для этого они ввели беременным мышам (середина срока) части белков, которые вырабатываются нейроглиальными клетками для регулирования развития нейронов. Отметим, что отклонения в функциональном развитии человека и животных обусловлены малой выработкой в "сломанном" организме именно этих веществ.

Рождённые после такого "лечения" подопытные мышата обладали некоторыми способностями вполне здорового потомства. По крайней мере, учёные смогли значительно укоротить задержку в их развитии. Мозг больных мышей, выращенных после терапии их матерей, также был тщательно обследован. Установлено, что у животных вырабатывается достаточное количество белка ADNP (одного из важных регуляторов) и ещё одного вещества, свидетельствующего о том, что нейроглиальные клетки работают почти так же, как у здоровых мышей.

Все данные говорят, что часть негативных эффектов вследствие генетического нарушения уходит. Сейчас Спун и её коллеги выясняют, насколько лучше обучаются мыши, пролеченные таким необычным способом.

Можно ли автоматически перенести все полученные результаты на людей и утверждать, что им данная терапия тоже поможет? Нельзя, утверждают учёные, так как были прецеденты, когда "лекарства" работали в лабораториях даже с человеческими клетками, но при полноценном тестировании на людях не давали никакого результата.

Тем не менее исследователи не теряют надежды и продолжают свою работу ради тех семей, что даже не рассматривают аборт как вероятный исход.

Генная инженерия совершила прорыв в лечении рака

Стивен Розенберг и его коллеги из американского Национального института рака опробовали на ряде пациентов новый метод борьбы с опухолями, основанный на введении в организм перепроектированных иммунных клеток.Не так давно учёные сумели "обучить" иммунные системы мышей эффективной борьбе с раковыми опухолями путём простой трансплантации белых клеток крови, забранных от особей, по естественным причинам к раку невосприимчивым (ведь бывают и такие организмы). Теперь схожий метод лечения рака опробован на людях.

Сначала авторы работы взяли иммунные клетки -- Т-лимфоциты -- у человека, который, в силу своих природных особенностей, смог успешно "отогнать" у себя меланому. Учёные определили в них гены, отвечающие за работу рецептора, признающего раковые клетки, и растиражировали этот ген. Затем они взяли Т-лимфоциты у нескольких больных меланомой и при помощи ретровируса внедрили в них искусственный, клонированный ген.

Затем пациенты перенесли процедуру химиотерапии, после которой их иммунные системы оказались ослабленными, с крайне небольшим числом выживших иммунных клеток. Тут-то этим больным вернули их же собственные Т-клетки, забранные ранее, но теперь уже -- с внедрённым в них новым геном. Через месяц в 15 пациентах из 17 эти новые клетки не только выжили, но составили от 9% до 56% всего "населения" Т-лимфоцитов в организме.

Но главное удивление -- через 18 месяцев после лечения два пациента полностью избавились от рака, и также продемонстрировали высокий уровень Т-клеток в крови.У одного пациента раковых образований было два, одно из которых было разрушено полностью, а второе -- сократилось на 89% (после чего его удалили хирургическим путём), а у второго пациента -- была одна опухоль, которая "рассеялась". Розенберг отмечает, что "впервые генные манипуляции привели к регрессу опухоли у людей".

"Мы теперь можем брать нормальные лимфоциты у пациентов и модифицировать их в лимфоциты, реагирующие на раковые клетки", -- заявил учёный, который намерен продолжить исследование. Он хочет узнать, как генетически модифицированные клетки выживут в организме в течение большего срока, как будет работать эта терапия в комплексе с другими методами лечения рака, как она сможет помочь при борьбе с другими типами раковых образований (здесь будут работать иные гены, кодирующие строительство других рецепторов). В общем -- вопросов ещё немало.

Получение препарата против ВИЧ из растений

Столь необходимое человечеству снадобье против чумы XXI века - вируса иммунодефицита человека (ВИЧ), разрабатывается в Университете Луисвилля.

Исследователи этого университета использовали растения для получения больших количеств белка, который может помочь предотвратить передачу ВИЧ, иными словами, лишить вирус свойства вирулентности. Ученые считают, что их работа приближает момент, когда появится коммерчески доступное лекарство против СПИДа. На сегодняшний день все микробициды с похожими свойствами настолько дороги, что производить их в требуемых в современных условиях масштабах просто невозможно. спользуя генетически модифицированную форму вируса табачной мозаики, исследователи из США и Великобритании внесли в клетки растения Nicotiana benthamiana (один из видов табака) ген белка красных водорослей grft. В результате в растениях начал вырабатываться белок гриффитсин (griffithsin, GRFT). Более ранние исследования на клетках человека, выращенных в культурах, продемонстрировали, что GRFT эффективен против распространения ВИЧ. Считается, что белок связывает рецепторы на поверхности вирусного капсида и не дает ВИЧ инфицировать клетки.

До настоящего времени клинические испытания небелковых микробицидов приносили только разочарования. Carraguard, химическое соединение, которое инактивирует ВИЧ, повреждая белки на поверхности его капсида, было первым препаратом, прошедшим третью фазу клинических испытаний. Однако в конце 2007 года было показано, что он неэффективен для уничтожения вируса. Сегодня ученые надеются, что белковые препараты станут решением этой проблемы. «Белки, как оказалось, наиболее эффективны против ВИЧ, и на сегодняшний день GRFT - наиболее мощный из всех описанных ингибиторов вируса», говорит Кеннет Палмер (Kenneth Palmer), профессор вирусологии из Университета Луисвилля (University of Louisville) в США, который руководил американской группой ученых. Ранее ученые уже пытались генетически модифицировать растения, чтобы получать из них рекомбинантные белки. Но до настоящего времени все попытки терпели неудачу, так как из клеток растений не удавалось выделить достаточно белка. «Лучшими кандидатами в микробициды являются препараты, сделанные на основе низкомолекулярных белков. Но в последнее время интерес к микробицидам сильно снизился, поскольку ученые не представляли себе метода получения таких препаратов с низкой себестоимостью», говорит Джулия Ма (Julian Ma), профессор молекулярной иммунологии из Госпиталя Святого Георга (St. George's Hospital) при Лондонском Университете, которая также занимается этой темой.

В данной работе исследователям удалось выделить больше 60 грамм белка GRFT из растений, собранных с 460 квадратных метров. Палмер говорит, что использованный вид растений был выбран потому, что он очень восприимчив к вирусной трансфекции, а также может выращиваться в очень высокой плотности в теплицах. Палмер считает, что из такого количества GRFT можно изготовить около миллиона доз микробицидного препарата, который может применяться в виде геля.

Сегодня на рынке фармацевтических препаратов нет лекарств, изготовленных с помощью клеток растений, хотя множество их участвует в клинических испытаниях, например препарат, получаемый из генетически модифицированных клеток моркови, который предполагается применять при болезни Гоше. Палмер надеется начать клинические испытания своей разработки в ближайшие несколько лет.

Единственное, что беспокоит исследователей - возможный иммунный ответ организма человека на белок красных водорослей. Предварительные тесты на культурах клеток человека, а также доклинические испытания на кроликах показали, что белок эффективен против ВИЧ, безопасен и нетоксичен.

«Все это выглядит очень многообещающим. Но будет ли это работать на обезьянах?», спрашивает Ян МакГован (Ian McGowan), один из ведущих исследователей в Microbicide Trials Network - интернациональном объединении биологов и врачей, которое занимается тестированием и изучением микробицидов против ВИЧ и СПИДа. Ученый добавляет: «Будет очень интересно узнать, какая концентрация этого белка потребуется для применения его на людях, если будут успешно пройдены тесты на животных, ведь зачастую при переходе в клинику приходится вносить весьма существенные изменения в схему терапии».

3. Генетический мониторинг. Неоднозначность в вопросах о пользе ГИ

ГЕНЕТИЧЕСКИЙ МОНИТОРИНГ - система слежения за уровнем загрязнения мутагенами среды обитания (воздуха, воды, почвы, пищи, лекарственных препаратов) и за состоянием генетического здоровья живых организмов. Загрязнение природной среды вредными отходами производства, продуктами неполного сгорания, ядохимикатами и другими мутагенами, повышение фона ионизирующей радиации, вызываемое испытаниями атомного оружия, бесконтрольным использованием химических и радиоактивных веществ в энергетике, промышленности, сельском хозяйстве - все это ведет к значительному увеличению генетических нарушений.

Генетический груз.

Генетический груз - накопление летальных и сублетальных отрицательных мутаций, вызывающих при переходе в гомозиготное состояние выраженное снижение жизнеспособности особей, или их гибель. Генетический груз, подразумевающий собой эти генетические нарушения, подрывающие наследственное здоровье населения, растет. Так в СССР с восьмидесятого года рождалось 200 000 детей с серьезными генетическими дефектами и около 30 000 мертвых. Около 25% беременностей не донашивается по генетическим причинам. На данный момент у 10% всего населения существует нарушение психики. Увеличивается также число онкологических заболеваний. И при этом, в большинстве случаев, болезни связаны с загрязнением окружающей среды. По данным ВОЗ 80% болезней вызвано состоянием экологического напряжения. Поэтому проблемы генетики, экологии и адаптации человека становятся особенно острыми. Наиболее целесообразным на данный момент для решения проблем экологии человека является использование мониторинга окружающей среды и социально-трудовой потенциал людей. Цель мониторинга заключается в выявлении физического, химического, биологического загрязнения окружающей среды. Мониторинг окружающей среды проводится на основе оценки структур здоровья населения в различных территориально-производственных комплексах. При этом нельзя считать полученные статистические данные абсолютно точными, так как они могут констатировать лишь рост заболеваний. Мешает также и отсутствие четких критериев здоровья и эффективных средств его оценки. Несомненно, мониторинг окружающей среды, а также другие методы решения экологических проблем так или иначе затрагивают генетику. А между тем, генетическое загрязнение нашей планеты опаснее всех других. Становится необходимым прогнозирование изменений роста заболеваний. Поэтому особое значение имеет генетический мониторинг, позволяющий проводить контроль за мутационным процессом у человека, выявлять и предотвращать всю возможность генетической опасности, связанную с еще необнаруженными мутагенами. На данный момент, однако, исследования мутаций трудно осуществимы. Возникшие трудности исследования мутаций прежде всего связаны с проблемой обнаружения их в организме человека. Так, например, дело обстоит с регистрацией рецессивной аномалии, так как такой мутантный ген проявляется в организме в гомозиготном состоянии, для достижения которого требуется некоторое время. Значительно проще дело обстоит с регистрацией доминантных генных и хромосомных мутаций, особенно, если их появление в фенотипе легко обнаружимо. Благодаря биоэкологическому мониторингу через типизацию климатогеографических и производственных районов по структурам здоровья, (то есть по соотношениям между группами с различными уровнями здоровья) возможно более эффективное улучшение условий окружающей среды, а также повышение уровня здоровья населения. Хотя остается большое количество проблем. Так, например, показатели рождаемости, заболеваемости и смертности довольно инертно “откликаются” на изменение окружающей среды, и выявляются лишь последствия экологического неблагополучия, что не дает возможности оперативного управления экологической ситуацией.

Наследственные болезни

Наследственность и среда оказываются этиологическими факторами или играют роль в патогенезе любого заболевания человека, но доля их участия при каждой болезни своя, причем чем больше доля одного фактора, тем меньше другого. Все формы патологии с этой точки зрения можно разделить на четыре группы, между которыми нет резких границ.

Первую группу составляют собственно наследственные болезни, у которых этиологическую роль играет патологический ген, роль среды заключается в модификации лишь проявлений заболевания. В эту группу входят моногенно обусловленные болезни (такие как, например, фенилкетонурия, гемофилия), а также хромосомные болезни.

Вторая группа - это тоже наследственные болезни, обусловленные патологической мутацией, однако для их проявления необходимо специфическое воздействие среды. В некоторых случаях такое "проявляющее" действие среды очень наглядно, и с исчезновением действия средового фактора клинические проявления становятся менее выраженными. Таковы проявления недостаточности гемоглобина HbS у его гетерозиготных носителей при пониженном парциальном давлении кислорода. В других случаях (например, при подагре) для проявления патологического гена необходимо длительное неблагоприятное воздействие среды (особенности питания).

Третью группу составляет подавляющее число распространенных болезней, особенно болезней зрелого и преклонного возраста (гипертоническая болезнь, язвенная болезнь желудка, большинство злокачественных образований и др.). Основным этиологическим фактором в их возникновении служит неблагоприятное воздействие среды, однако, реализация действия фактора зависит от индивидуальной генетически детерминируемой предрасположенности организма, в связи с чем эти болезни называют мультифакториальными, или болезнями с наследственным предрасположением. Необходимо отметить, что разные болезни с наследственным предрасположением неодинаковы по относительной роли наследственности и среды. Среди них можно было бы выделить болезни со слабой, умеренной и высокой степенью наследственного предрасположения.

Четвертая группа болезней - это сравнительно немногие формы патологии, в возникновении которых исключительную роль играет фактор среды. Обычно это экстремальный средовой фактор, по отношению к действию которого организм не имеет средств защиты (травмы, особо опасные инфекции). Генетические факторы в этом случае играют роль в течении болезни, влияют на ее исход.

Диагностика

Трудности диагностики обусловлены прежде всего тем, что нозологические формы наследственных болезней очень многообразны (около 2000) и каждая из них характеризуется большим разнообразием клинической картины. Так, в группе нервных болезней известно более 200 наследственных форм, а в дерматологии их более 250. Некоторые формы встречаются крайне редко, и врач в своей практике может не встретиться с ними. Поэтому он должен знать основные принципы, которые помогут ему заподозрить нечасто встречающиеся наследственные заболевания, а после дополнительных консультаций и обследований поставить точный диагноз.Диагностика наследственных болезней основывается на данных клинического, параклинического и специального генетического обследования.

При общем клиническом обследовании любого больного постановка диагноза должна завершиться одним из трех заключений:

1. четко поставлен диагноз ненаследственного заболевания;

2. четко поставлен диагноз наследственного заболевания;

3. имеется подозрение, что основная или сопутствующая болезнь является наследственной.

Первые два заключения составляют подавляющую часть при обследовании больных. Третье заключение, как правило, требует применения специальных дополнительных методов обследования, которые определяются врачом-генетиком. Полного клинического обследования, включая параклиническое, обычно достаточно для диагностики такого наследственного заболевания, как ахондроплаэия.

В тех случаях, когда диагноз больному не поставлен и необходимо уточнить его, особенно при подозрении на наследственную патологию, используют следующие специальные методы:

1. Подробное клинико-генеалогическое обследование проводится во всех случаях, когда при первичном клиническом осмотре возникает подозрение на наследственное заболевание. Здесь следует подчеркнуть, что речь идет о подробном обследовании членов семьи. Это обследование заканчивается генетическим анализом его результатов.

2. Цитогенетическое исследование может проводиться у родителей, иногда у других родственников и плода. Хромосомный набор изучается при подозрении на хромосомную болезнь для уточнения диагноза. Большую роль цитогенетического анализа составляет пренатальная диагностика.

3. Биохимические методы широко применяются в тех случаях, когда имеется подозрение на наследственные болезни обмена веществ, на те формы наследственных болезней, при которых точно установлены дефект первичного генного продукта или патогенетическое звено развития заболевания.

4. Иммуногенетические методы применяют для обследования пациентов и их родственников при подозрении на иммунодефецитные заболевания, при подозрении на антигенную несовместимость матери и плода, при установлении истинного родительства в случаях медико-генетического консультирования или для определения наследственного предрасположения к болезням.

5. Цитологические методы применяются для диагностики пока еще небольшой группы наследственных болезней, хотя возможности их достаточно велики. Клетки от больных можно исследовать непосредственно или после культивирования цитохимическими, радиоавтографическими и другими методами.

6. Метод сцепления генов применяется в тех случаях, когда в родословной имеется случай заболевания и надо решить вопрос, унаследовал ли пациент мутантный ген. Это необходимо знать в случаях стертой картины заболевания или позднего его проявления.

Длительное время диагноз наследственной болезни оставался как приговор обреченности больному и его семье. Несмотря на успешную расшифровку формальной генетики многих наследственных заболеваний, лечение их оставалось лишь симптоматическим. Впервые С. Н. Давиденков еще в 30-х годах указал на ошибочность точки зрения о неизлечимости наследственных болезней. Он исходит из признания роли факторов внешней среды в проявлении наследственной патологии. Однако отсутствие сведений о патогенетических механизмах развития заболеваний в тот период ограничивало возможности разработки методов, и все попытки, несмотря на правильные теоретические установки, оставались длительное время эмпирическими. В настоящее время благодаря успехам генетики в целом (всех ее разделов) и существенному прогрессу теоретической и клинической медицины можно утверждать, что уже многие наследственные болезни успешно лечатся. Общие подходы к лечению наследственных болезней остаются теми же, что и подходы к лечению болезней другого происхождения.

Хотя в настоящее время вопрос о природе гена выяснен не окончательно, тем не менее прочно установлен ряд общих закономерностей мутирования гена. Мутации генов возникают у всех классов и типов животных, высших и низших растений, многоклеточных и одноклеточных организмов, у бактерий и вирусов. Мутационная изменчивость как процесс качественных скачкообразных изменений является всеобщей для всех органических форм. Еще не разработан ряд необходимых экономических механизмов для стимулирования мероприятий по охране окружающей среды. Хотя генетический мониторинг - дело сложное, он просто необходим для решения экологических проблем человека, а также уменьшения роста заболеваний, в том числе наследственных.

Неоднозначность в вопросах о пользе ГИ.

Несмотря на явную пользу от генетических исследований и экспериментов, само понятие «генная инженерия» породило различные подозрения и страхи, стало предметом озабоченности и даже политических споров. Так как генная инженерия появилась совсем не давно, многие ученые еще скептически относятся к этой панацеи от всех заболеваний. Существует масса различных мнений: некоторые считают, что, внося изменения в генный код растения или животного, учёные делают то же самое, что и сама природа (абсолютно все живые организмы от бактерии до человека - это результат мутаций и естественного отбора), другие, напротив считают это противоестественным вмешательством в природу.

Вот несколько мнений против генной инженерии:

1. Генная инженерия в корне отличается от выведения новых сортов и пород. Искусственное добавление чужеродных генов сильно нарушает точно отрегулированный генетический контроль нормальной клетки. Манипулирование генами коренным образом отличается от комбинирования материнских и отцовских хромосом, которое происходит при естественном скрещивании.

2. В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень неполны для того, чтобы предсказать результаты.

3. В результате искусственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. Это могут быть токсические вещества, аллергены или другие вредные для здоровья вещества. Сведения о подобного рода возможностях ещё очень неполны.

4. Не существует совершенно надёжных методов проверки на безвредность. Более 10% серьёзных побочных эффектов новых лекарств не возможно выявить несмотря на тщательно проводимые исследования на безвредность. Степень риска того, что опасные свойства новых, модифицированных с помощью генной инженерии продуктов питания, останутся незамеченными, вероятно, значительно больше, чем в случае лекарств.

5. Существующие в настоящее время требования по проверке на безвредность крайне недостаточны. Они совершенно явно составлены таким образом, чтобы упростить процедуру утверждения. Они позволяют использовать крайне нечувствительные методы проверки на безвредность. Поэтому существует значительный риск того, что опасные для здоровья продукты питания смогут пройти проверку незамеченными.

6. Могут возникнуть новые и опасные вирусы. Экспериментально показано, что встроенные в геном гены вирусов могут соединяться с генами инфекционных вирусов (так называемая рекомбинация). Такие новые вирусы могут быть более агрессивными, чем исходные. Вирусы могут стать также менее видоспецифичными. Например, вирусы растений могут стать вредными для полезных насекомых, животных, а также людей.

Мнения за генную инженерию:

1. Именно применение генноинженерной методики позволили расшифровать геном человека и многих других организмов, выявить гены, отвечающие за те или иные признаки, в том числе тяжелые наследственные заболевания. Последнее открывает новые пути к лечению ранее безнадежных недугов.

2. Весьма эффективна генная инженерия и в фармакологии. Например, пересаживают гены, кодирующие синтез того или иного ценного лекарственного препарата (эритропоэтина человека, инсулина и пр.), в молочные железы домашних животных, и это позволяет легко получать необходимые лекарства в больших количествах.

3. С помощью генной инженерии в будущем можно будет излечить врожденные заболевания или различные отклонения, с которыми рождаются некоторые дети, из-за сбоя в генах. И даже такие заболевания как ВИЧ.

4. Население Земли увеличивается с каждым годом, поэтому генетически модифицированные продукты призваны спасти растущее население планеты от голода. Будущее за геннномодифицированными продуктами.

4. Генетически модифицированный организм (ГМО)

Генетически модифицированный организм (ГМО) -- живой организм, генотип которого был искусственно изменён при помощи методов генной инженерии. Такие изменения, как правило, производятся в научных или хозяйственных целях. Генетическая модификация отличается целенаправленным изменением генотипа организма в отличие от случайного, характерного для естественного и искусственного мутагенеза.

История появления ГМО-продуктов.

Всю историю сельского хозяйства (около 10 000 лет) человек для своей пользы улучшал животных и растения. Вначале селекция была основана на явлении естественной генетической изменчивости, позже люди научились искусственно создавать комбинативную изменчивость (гибридизация), а в последние десятилетия -- и мутационную (мутагенез). Принцип селекции всегда оставался неизменным -- отбор ценных генотипов. Результат известен -- современные виды капусты совершенно непохожи на своих далёких предков, а початки кукурузы сегодня примерно в 10 раз больше тех, что выращивались 5 тысяч лет назад. К сожалению, кпд селекции очень низок -- из тысяч и десятков тысяч исходных растений селекционер выводит всего один-два сорта.

Началом эволюции в сельском хозяйстве же можно считать 1983 год, когда была проведена первая пересадка генов.

При исследовании почвенной бактерии, вырабатывающей на деревьях наросты, выяснилось, что, паразитируя, эта бактерия отдает фрагмент своей ДНК в растительную клетку дерева, где он встраивается в хромосому. После этого чужая ДНК принимается как собственная, поэтому бактерия вынуждает дерево синтезировать нужные ей питательные вещества. Такой эксперимент считается стартом генной инженерии растений.

Первым генным подопытным стал табак, устойчивый к вредителям, затем модифицировали кукурузу, сою, рис, помидоры, огурцы, картофель, свеклу и яблоки. Растения с „чужими“ генами приобретают устойчивость к гербицидам, вредителям и патогенам, их плоды способны долго храниться при комнатной температуре, они имеют повышенную питательную ценность или другой вкус, и, наконец, они способны синтезировать новые вещества -- начиная от лекарств и заканчивая пластиком.

Направленной генетической модификации (трансформации) можно подвергать не только растения, а любые живые организмы. Первые трансгенные микроорганизмы были получены в начале 70-х, а первые трансгенные сельскохозяйственные растения и животные появились значительно позже -- в середине 80-х. Трансгенные микроорганизмы, к примеру, широко используются в фармацевтической и пищевой промышленности. Такие препараты, как инсулин, интерферон, интерлейкин, в основном получают генно-инженерным способом. Сегодня с применением методов генной инженерии выпускается около 25% всех лекарств в мире. Некоторые генетически модифицированные микробы эффективно перерабатывают промышленные отходы. Трансгенные животные чаще всего используются в качестве биореакторов -- продуцентов нужных белков, в основном лекарственных препаратов или ферментов для пищевой промышленности. Например, в России выведена порода овец, вырабатывающих вместе с молоком и фермент, необходимый в производстве сыра. В ближайшей перспективе -- использование трансгенных животных в качестве моделей для изучения наследственных заболеваний человека, а также в качестве источников органов и тканей для трансплантологии.

К примеру, современные гербициды значительно эффективнее и экологически безопаснее своих предшественников, но они действуют на всю растительность подряд, не разбираясь, где культурные растения, а где сорняки, поэтому ранее в основном использовались до высадки растений или после уборки урожая. С появлением технологии генетической трансформации стало возможным встраивать в растения гены, которые делают их нечувствительными к таким гербицидам. Таким образом, после обработки гербицидом сорняки гибнут, а трансгенные культуры -- нет.

Для придания устойчивости к вредителям чаще всего используется ген Bt-токсина, выделенный из бактерии Bacillus thuringiensis. Препараты этой бактерии уже около 50 лет применяются в сельском хозяйстве в качестве безопасного для людей и животных биоинсектицида, но они быстро теряют активность, и поэтому их доля в мировом производстве инсектицидов составляет менее 2%. Токсин бактерии поражает кишечник вредителей, питающихся растениями, причём с очень высокой специфичностью. При встраивании гена растение начинает вырабатывать токсин самостоятельно. А значит, отпадает необходимость обработки культур опасными химическими инсектицидами. В 2002 году 75% всех выращиваемых трансгенных растений содержали ген устойчивости к гербицидам, 17% -- ген устойчивости к вредителям и почти 8% -- по два гена устойчивости. Но сегодня приоритеты в создании растений, обладающих теми или иными признаками, изменились. Если в 90-е годы в основном работали над растениями, обладающими полезными свойствами для их выращивания, -- именно они сейчас и возделываются на полях, -- то в настоящее время основной упор делается на улучшение потребительских свойств. По прогнозам, такие улучшенные культуры сменят растения, синтезирующие медикаменты, а их, в свою очередь, -- растения-продуценты специфических химических соединений.

Генная инженерия растений развивается очень быстрыми темпами. Первое трансгенное, или генетически модифицированное, растение (ГМР) было получено в 1984 году, а через два года в США и во Франции уже проводились полевые испытания. Площади, занятые трансгенными растениями, стремительно возрастают: с 1,7 млн га в 1996 году, когда началось их возделывание в коммерческих масштабах, до 58,7 млн га в 2002 году, что составляло около 4,5% от всех пахотных площадей в мире. Причём 99% этой площади занимают четыре культуры: соя, хлопок, кукуруза и рапс. По этим растениям картина ещё более впечатляющая -- в среднем 22% их насаждений занимают трансгенные сорта. В 2002 году в США около 75% хлопка и cои, в Аргентине -- 99% сои, в Канаде -- 65% рапса, в Китае -- 51% хлопка были трансгенными.

5. Польза и вред генномодифицированных продуктов

Прежде чем рьяно отвергать или фанатично принимать любое нововведение, нужно вспомнить, что у любой медали все же две стороны. Для этого нужно изучить все положительные и все отрицательные стороны новшества.

Генетически модифицированные организмы способны не только расти, как их предшественники, но и выживать там, где старые сорта погибали из-за различных погодных условий. Многим из них не страшны неожиданные заморозки, наводнения или засуха. Некоторые растения стали обладать такой развитой корневой системой, которая позволяет им удерживать максимальное количество влаги. А те сорта, которые ранее были чувствительны к пониженным температурам, стали устойчивее к ним, а это, в свою очередь, повлияло на то, что растения теперь раньше вступают в весенний период активного роста. Также были созданы новые быстрорастущие сорта зерновых культур.

Генные изменения проводят для того, чтобы придать растению полезные свойства:

* устойчивость к вредителям, морозостойкость, урожайность и т.д.;

* население Земли увеличивается с каждым годом, генетически модифицированные продукты призваны спасти растущее население планеты от голода;

* генетически модифицированные продукты, способные защитить себя от насекомых и сорняков, обладающие высокой урожайностью, снижают и себестоимость продукции;

* устойчивость к действию различных вредителей позволяет использовать меньше пестицидов, чем это принято в традиционных технологиях;

* появились такие овощи и фрукты, которые способны противостоять вирусам, бактериям, грибкам;

* ученые работают над выведением сортов помидор и картофеля, содержащих вакцины и лекарства для стран третьего мира, где они будут выращиваться и не будут нуждаться в специальных методах хранения;

* некоторые виды деревьев выведены специально для уничтожения загрязнений.

Ну и другая сторона медали... Почему многие выступают против ГМ-продуктов?

* Большинство стран не имеет законов, регулирующих производство и потребление ГМ-продуктов.

* Потребители не знают, что покупают, не знают, как это отражается на их здоровье. Например, ген из подснежника, внедренный в картофель для устойчивости к колорадскому жуку, вызывает повышенное содержание растительных лектинов, что неблагоприятно для млекопитающих. От такого продукта страдают иммунная система, кишечник, возникают болезни почек, печени и головного мозга.

* На товарах отсутствуют сведения о содержащихся в продуктах веществах, их количестве.

* Опасения экологов заключаются в том, что может наступить экологическая катастрофа, если генетически измененные формы проникнут в дикую природу. Например, при перекрестном опылении сорняки получат ген устойчивости к пестицидам и вредителям, и их размножение станет неконтролируемым.

* Кроме экологического риска существует и пищевой. Некоторые продукты могут вызывать аллергическую реакцию. Обычный продукт, тот же помидор, содержащий невидимый глазу ген рыбы, может спровоцировать аллергическую реакцию у человека, которому рыба противопоказана.

Пока ученые разных стран спорят о влиянии ГМО на здоровье, руководители государств считают необходимым информировать покупателей о наличии трансгенов в продуктах и давать им таким образом право выбора. В странах Евросоюза правила таковы: если в килограмме колбасы, содержащем, к примеру, 100 граммов сои, будет хотя бы один грамм генно-модифицированного ее сорта (более 0,9 процента), маркировка должна быть обязательно.

В Омске существует лаборатория, в которой проверяются продукты на наличие ГМО. Предел допустимых значений составляет 0,9% (величина погрешности прибора), что говорит об отсутствии ГМО в продукции .

Заключение

Проделанная работа позволяет сделать вывод о том, что генная инженерия-это наука, за которой стоит будущее.

В будущем при помощи генной инженерии можно получать потомков с улучшенной внешностью, умственными и физическими способностями, характером и поведением. С помощью генотерапии в будущем возможно улучшение генома и ныне живущих людей. В принципе можно создавать и более серьёзные изменения, но на пути подобных преобразований человечеству необходимо решить множество этических проблем.

Общий вывод таков: “При осмотрительном применении генных технологий польза от них сильно перевесит риск отрицательных последствий; технологии конструирования рекомбинантных ДНК внесут существенный вклад в здравоохранение, в развитие устойчивого сельского хозяйства, в производство пищи, в очистку окружающей среды”.

Список литературы

1. http://www.krugosvet.ru/enc/nauka_i_tehnika/biologiya/GENNAYA_INZHENERIYA.html?page=0,1

2. http://www.manwb.ru/articles/science/natural_science/Genetic_NatAdnoral/

3. http://elementy.ru/news/164928

4. http://ru.wikipedia.org/wiki/

5. http://ru.wikipedia.org/wiki/

6. http://1-veda.ru/_ge/

7. http://www.membrana.ru/

8. http://www.transhumanism-russia.ru/content/view/38/135

9. Алиханян С.И. Общая генетика. М.: Высшая школа, 1985

10. «Наука и жизнь», №9/2000

11. «Наука и жизнь», №3/1999

12. Ф. Антала, Дж. Кайгер, Современная генетика, Москва, “Мир”, 199, Т.1. с.63-80.

Размещено на http://www.allbest.ru/


Подобные документы

  • Пересадка генов и частей ДНК одного вида в клетки другого организма. История генной инженерии. Отношение к генетически модифицированным организмам в мире. Новые ГМ-сорта. Что несёт человечеству генная инженерия. Какие перспективы генной инженерии.

    презентация [325,1 K], добавлен 24.02.2015

  • Использование клеток, не существовавших в живой природе, в биотехнологических процессах. Выделение генов из клеток, манипуляции с ними, введение в другие организмы в основе задач генной инженерии. История генной инженерии. Проблемы продуктов с ГМО.

    презентация [2,2 M], добавлен 21.02.2014

  • История, возможности и перспективы генной инженерии. Трансгенные организмы: общее понятие. Отношения к ГМО в мире. Негативное влияние генномодифицированных продуктов на организм человека. Миф о трансгенной угрозе. Применение ГМО в медицине и фармации.

    презентация [614,6 K], добавлен 18.05.2015

  • Хранение и передача генетической информации у живых организмов. Способы изменения генома, генная инженерия. Риски для здоровья человека и окружающей среды, связанные с генетически модифицированными организмами (ГМО), возможные неблагоприятные эффекты.

    курсовая работа [164,0 K], добавлен 27.04.2011

  • Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.

    курсовая работа [2,5 M], добавлен 11.07.2012

  • Суть и задачи генной инженерии, история ее развития. Цели создания генетически модифицированных организмов. Химическое загрязнение как следствие ГМО. Получение человеческого инсулина как важнейшее достижение в сфере генно-модифицированных организмов.

    реферат [69,1 K], добавлен 18.04.2013

  • Сельскохозяйственные растения и вакцины производимые помощью генной инженерии. Изменение свойств сельскохозяйственных технических растений. Генные вакцины. Аргументы против распространения генетически модифицированных продуктов.

    реферат [23,7 K], добавлен 06.10.2006

  • История развития Биотехнологии. Генетическая инженерия как важная составная часть биотехнологии. Осуществление манипуляций с генами и введение их в другие организмы. Основные задачи генной инженерии. Генная инженерия человека. Искусственная экспрессия.

    презентация [604,9 K], добавлен 19.04.2011

  • Использование генной инженерии как инструмента биотехнологии с целью управления наследственностью живых организмов. Особенности основных методов и достижений генной инженерии в медицине и сельском хозяйстве, связанные с ней опасности и перспективы.

    доклад [15,1 K], добавлен 10.05.2011

  • Генная инженерия. Генетическая информация. Геннетическая карта и её значение в генной инженерии. Генетический анализ и его виды. Селекционный метод. Гибридологический метод. Цитогенетичедский метод. Молекулярно-генетический метод. Мутационый метод.

    реферат [13,3 K], добавлен 25.02.2003

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.