Галилей как выдающаяся фигура эпохи зарождения современного естествознания

Творческая биография Галилея. Основы его мировоззрения и вклад в развитие естественных наук. Создание основных принципов механики. Галилей как экспериментатор и изобретатель. Создание принципа относительности в динамике как важнейшее достижение Галилея.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 25.03.2010
Размер файла 35,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

Введение

1. Творческая биография Г. Галилея

2. Вклад Г. Галилея в развитие естественных наук

3. Г. Галилей как экспериментатор и изобретатель

Заключение

Список литературы

Введение

Одной из выдающихся фигур эпохи зарождения современного естествознания был Галилео Галилей (1564 - 1642), который по своему мировоззрению был в основном весьма близок Кеплеру.

Галилей, подобно Кеплеру, много и плодотворно занимался математикой, что и обусловило его выдающиеся достижения в области физики. Учение Коперника, слов но некая программа, определяет научные устремления Галилея: все его исследования в конечном счете были подчинены одной цели -- доказать, что учение Коперника отнюдь не чисто математическое построение, как утверждал Оссиандер, а отражение реального строения окружающего мира.

Исследования Галилея в области механики прежде всего касались старых и весьма значительных проблем статики и динамики. Здесь он добился значительных успехов, потому что, опираясь на принципы кинематики, акцентировал внимание не на причинах явлений, а путем длительных и кропотливых опытов исследовал их точное течение. Галилей, опровергнув воззрения своих предшественников времен средневековья, установил закон свободного падения -- ныне столь привычный для нас (Гиндикин, 1985, с. 143).

1. Творческая биография Г. Галилея

Галилей родился в семье обедневшего дворянина в городе Пизе (недалеко от Флоренции). В годы детства и юности Галилея практически безраздельно господствовали представления, сформировавшиеся еще во времена античности. Некоторые из них, например, геометрия Евклида и статика Архимеда, сохранили свое значение и в наши дни. Большой багаж накопили и наблюдения астрономов, приведшие к возникновению прогрессивной для своего времени системы мира Птолемея (2 в. н. э).

Однако многие положения античной науки, обретшие со временем статус непререкаемых догм, не выдержали испытания временем и оказались отвергнутыми, когда главным арбитром в науке был признан опыт.

В первую очередь, это относится к механике Аристотеля и многим другим его естественнонаучным представлениям. Именно эти ошибочные положения стали фундаментом официального “идеологического кредо”, и требовались не только способности к независимому мышлению, но и просто мужество, чтобы выступить против него. Одним из первых на это отважился Галилео Галилей (Робсон, 2001, с. 189).

Галилей происходил из знатной, но обедневшей дворянской семьи. Его отец, музыкант и математик, хотел, чтобы сын стал врачом, и в 1581, после окончания монастырской школы, определил его на медицинский факультет Пизанского университета. Но медицина не увлекала семнадцатилетнего юношу. Оставив университет, он уехал во Флоренцию и погрузился в самостоятельное изучение сочинений Евклида и Архимеда. По совету профессора философии Риччи и уступая просьбам сына, отец Галилео перевел его на философский факультет, где более углубленно изучались философия и математика. В детские годы Галилей увлекался конструированием механических игрушек, мастерил действующие модели машин, мельниц и кораблей.

Как рассказывал впоследствии его ученик Вивиани, Галилей еще в юности отличался редкой наблюдательностью, благодаря которой сделал свое первое важное открытие: наблюдая качания люстры в Пизанском соборе, установил закон изохронности колебаний маятника (независимость периода колебаний от величины отклонения). Некоторые исследователи подвергают сомнению рассказ Вивиани об обстоятельствах этого открытия, но достоверно известно, что Галилей не только проверял этот закон на опытах, но и использовал его для определения промежутков времени, что, в частности, было восторженно принято медиками.

Умение наблюдать и делать выводы из увиденного всегда отличало Галилея. Еще в молодости он понял, что “... явления природы, как бы незначительны, как бы во всех отношениях маловажны ни казались, не должны быть презираемы философом, но все должны быть в одинаковой мере почитаемы. Природа достигает большого малыми средствами, и все ее проявления одинаково удивительны”. По существу, это высказывание можно считать декларацией экспериментального подхода Галилея к изучению явлений природы (Робсон, 2001, с. 192-193).

В 1586 Галилей публикует описание сконструированных им гидростатических весов, предназначенных для измерения плотности твердых тел и определения центров тяжести. Эта, как и другие его работы, оказывается замеченной. Результатом этого периода жизни Галилея были небольшое сочинение «Маленькие весы» (1586, изд. 1655), в котором описаны построенные Галилеем гидростатические весы для быстрого определения состава металлических сплавов, и геометрическое исследование о центрах тяжести телесных фигур.

Эти работы принесли Галилею первую известность среди итальянских математиков. У него появляются влиятельные покровители, и благодаря их протекции он получает в 1589 место профессора в Пизанском университете (правда, с минимальным окладом).

Начав читать лекции по философии и математике в университете, Галилей оказался перед непростым выбором. С одной стороны обретшие статус нерушимых догм воззрения Аристотеля, с другой - плоды собственных размышлений и, что еще важнее, опыта.

Аристотель утверждал, что скорость падения тел пропорциональна их весу. Это утверждение уже вызывало сомнения, а проведенные Галилеем в присутствии многочисленных свидетелей наблюдения за падением с Пизанской башни шаров различного веса, но одинаковых размеров, наглядно опровергали его. Аристотель учил, что различным телам присуще различное “свойство легкости”, отчего одни тела падают быстрее других, что понятие покоя абсолютно, что для того, чтобы тело двигалось, его постоянно должен подталкивать воздух, а следовательно, движение тел свидетельствует об отсутствии пустоты.

Уже в 1590, через год после начала работы в Пизе, Галилей пишет трактат “О движении”, в котором выступает с резкими возражениями против воззрений перипатетиков (последователей Аристотеля). Это не могло не вызвать резко неодобрительного отношения к нему со стороны представителей казенной схоластической науки. Кроме того, Галилей в то время был сильно стеснен в средствах, и потому был рад получить (опять благодаря своему покровителю) приглашение правительства Венецианской республики на работу в университет в Падую.

Переход в 1592 в Падуанский университет, где Галилей занял кафедру математики, ознаменовал собой начало плодотворнейшего периода в его жизни. Здесь он вплотную подходит к изучению законов динамики, исследует механические свойства материалов, изобретает первый из физических приборов для исследования тепловых процессов термоскоп, совершенствует подзорную трубу и первым догадывается использовать ее для астрономических наблюдений, здесь становится самым активным и авторитетным сторонником системы Коперника, обретая благодарность и уважение потомков и активную враждебность многочисленных современников (Гиндикин ,1985, с. 156-158).

2. Вклад Г. Галилея в развитие естественных наук

У Галилео Галилея впервые связь космологии с наукой о движении приобрела осознанный характер, что и стало основой создания научной механики. Первоначально (до 1610 г.) Галилеем были открыты законы механики, но первые публикации и трагические моменты его жизни были связаны с менее оригинальными работами по космологии. Галилей первым отчетливо понимал два аспекта физики Архимеда: поиск простых и общих математических законов и эксперимент, как основа подтверждения этих законов.

Изобретение в 1608 году голландцем Хансом Липперсхеем, изготовителем очков, телескопа (правда, не предназначавшегося для астрономических целей), дало возможность Галилею, усовершенствовав его, в январе 1610 года "открыть новую астрономическую Эру".

Оказалось, что Луна покрыта горами, Млечный путь состоит из звезд, Юпитер окружен четырьмя спутниками и т.д. "Аристотелевский мир" рухнул окончательно. Галилей спешит с публикацией увиденного в своем "Звездном вестнике", который выходит в марте 1610 г. Книга написана на латыни и была предназначена для ученых (Чистяков, 1969, с. 312).

В 1632 г. во Флоренции была напечатана наиболее известная работа Галилея, послужившая поводом для процесса над ученым. Ее полное название - "Диалог Галилео Галилея Линчео, Экстраординарного Математика Пизанского университета и Главного Философа и Математика Светлейшего Великого Герцога Тосканского, где в четырех дневных беседах ведется обсуждение двух Основных Систем Мира, Птолемеевой и Коперниковой и предполагаются неокончательные философские и физические аргументы как с одной, так и с другой стороны".

Из нижеследующего фрагмента “Диалога...” видно, какое значение придавал Галилей принципу непрерывности движения, сформулированному еще в XVI веке Николаем Оремом:

“Сагредо: Итак, веришь, что камень, пребывавший в покое и начавший свое естественное движение к центру земли, проходит через все степени медленности прежде чем достичь какой-либо степени быстроты?

Сальвиатти: Верую, более того, настолько твердо в этом убежден, что, без сомнения, смогу убедить и тебя.

Сагредо: Если бы никакого другого плода я не извлек из сегодняшней беседы, кроме познания этой вещи, считал бы себя достаточно вознагражденным”.

Любопытно также посмотреть, как теперь, спустя много лет после написания своих ранних трудов, относится Галилей к учению о неизменности неба:

“Симпличио: Таким образом, на земле постоянно происходят рождения, уничтожения, изменения и т.п., коих никогда ни наши чувства, ни предание и память наших предков не замечали на небе. Следовательно, небеса неизменны.

Сальвиатти: Необходимо тогда, чтобы ты Китай и Америку считал небесными телами. Ибо и там ты, конечно же, никогда не наблюдал никаких изменений, которые наблюдаешь здесь в Италии, так что из твоего рассуждения выходит, что эти части мира сами являются неизменными Видишь, что сам случай помог обнаружить ложность твоего аргумента. Ибо если ты скажешь, что изменения, которые наблюдаются на нашей части земли, нельзя наблюдать в Америке по причине большого расстояния до нее, то тем в меньшей степени можешь увидеть эти изменения на Луне, в сотни раз более удаленной от нас. Поэтому из того, что ты не замечаешь на небе никаких изменений, которые даже если бы они там были и величайшие, не можешь заметить по причине чрезвычайно большого расстояния, то также и из того, что никакие наши посланцы туда не доходят, потому что и дойти не могут, не можешь делать вывод, что там нет никаких изменений”.

Еще один фрагмент из “Диалога...” напоминает нам об аргументах Филопона и Буридана:

“Из этого делаю вывод, что лишь круговое движение может естественным образом быть присущим природным телам, существующим во вселенной и расположенным наилучшим образом - прямолинейное же движение согласно природе следует приписать телам и их частям, когда они находятся вне своих мест в неправильном расположении и поэтому нуждаются в возвращении к своему природному состоянию по наикратчайшему пути”.

Эта книга была написана на итальянском языке и предназначалась для "широкой публики". В книге много необычного. Так, например, один из ее героев Симпличио (в переводе с латинского - простак), отстаивающий точку зрения Аристотеля, - явный намек на выдающегося комментатора Аристотеля, жившего в VI веке - Симпликия. Несмотря на легкость и изящество литературной формы, книга полна тонких научных наблюдений и обоснований (в частности таких сложных физических явлений как инерции, гравитации и прочие.) Вместе с тем, Галилей не создал цельной системы. Несмотря на папский интердикт, в протестантских странах появился латинский перевод «Диалога», в Голландии было напечатано рассуждение Галилея об отношениях Библии и естествознания.

Наконец, в 1638 в Голландии издали одно из самых важных сочинений Галилея, подводящее итог его физическим изысканиям и содержащее обоснование динамики, -- «Беседы и математические доказательства, касающиеся двух новых отраслей науки...", в которой суммировал результаты всех своих прежних трудов по различным отделам механики. Книга была отпечатана фирмой Эльзевиров в Лейдене в 1638 г. Часть книги, посвященная механическим свойствам строительных материалов и исследованию прочности балок, представляет собой первый печатный труд в области сопротивления материалов; датой ее выхода в свет начинается история механики упругих тел (Тростников, 1990, с. 101).

Все работы Галилея по механике материалов вошли в первые два диалога его книги о двух новых науках. Свое изложение он начинает ссылкой на некоторые наблюдения, сделанные им при посещениях венецианского арсенала, и обсуждением свойств геометрически подобных сооружений. Он утверждает, что если возводить сооружения геометрически подобные, то по мере увеличения их абсолютных размеров они будут становиться все более и более слабыми. Для пояснения он указывает: “Небольшие обелиск, колонна или иная строительная деталь могут быть установлены без всякой опасности обрушения, между тем как весьма крупные элементы этого типа распадаются на части из-за малейших причин, а то и просто под действием своего собственного веса”. Чтобы подтвердить это, он начинает с исследования прочности материалов при простом растяжении и устанавливает, что прочность бруса пропорциональна площади его поперечного сечения и не зависит от его длины. Такую прочность бруса Галилей называет “абсолютным сопротивлением разрыву” и приводит несколько числовых значений, характеризующих прочность меди. Определив абсолютное сопротивление бруса, Галилей исследует сопротивление разрушению того же бруса в том случае, когда он используется как консоль и нагружен на свободном конце (Тростников, 1990, с. 108).

На основе своей теории Галилей получает ряд важных выводов. Рассматривая балку прямоугольного поперечного сечения, он ставит вопрос: “Почему и во сколько раз брус, или, лучше, призма, ширина которой больше толщины, окажет больше сопротивления излому, когда сила приложена в направлении ее ширины, чем в том случае, когда она действует в направлении толщины?”. Исходя из своего предположения, он дает правильный ответ: “Любая линейка или призма, ширина которой больше толщины, окажет большее сопротивление излому, когда она поставлена на ребро, чем когда она лежит плашмя, и притом во столько раз больше, во сколько ширина больше толщины”.

Продолжая исследование задачи о балке-консоли постоянного поперечного сечения, Галилей заключает, что изгибающий момент веса балки возрастает пропорционально квадрату длины. Сохраняя длину круговых цилиндров, но меняя радиусы их оснований, Галилей находит, что их момент сопротивления пропорционален кубам радиусов. Этот результат следует из того факта, что “абсолютное” сопротивление пропорционально площади поперечного сечения цилиндра, а плечо момента сопротивления равно радиусу цилиндра.

Сравнивая геометрически подобные консоли, нагруженные собственным весом, Галилей заключает, что если изгибающий момент в сечении заделки пропорционален четвертой степени длины, то момент сопротивления пропорционален кубу линейных размеров. Это указывает на то, что геометрически подобные балки не равнопрочны. По мере возрастания размеров геометрически подобные балки становятся все менее и менее прочными и в конце концов при достаточно больших размерах могут разрушиться под действием одного лишь собственного веса. Он замечает также, что для сохранения постоянной прочности размеры поперечного сечения нужно увеличивать в большем отношении, чем то, в котором возрастают длины.

Все эти соображения приводят Галилея к следующему важному замечанию общего характера: “Вы теперь ясно видите невозможность как для искусства, так и для природы увеличивать размеры своих произведений до чрезмерно огромных; равным образом невозможно и сооружение кораблей, дворцов или храмов колоссальных размеров, если мы хотим, чтобы их весла, реи, балки, скрепы, короче, все вообще их части держались бы как одно целое; сама природа не производит деревьев необычайной величины, иначе ветви их поломались бы от собственной тяжести; невозможно было бы также создать и скелет человека, лошади или какого-либо другого животного, так чтобы он сопротивлялся и выполнял бы свои нормальные функции, если бы размеры этих живых существ были бы непомерно увеличены в высоту; такое увеличение в высоту могло бы оказаться осуществимым лишь в том случае, если бы для них был использован более твердый и прочный материал, или если бы их кости были увеличены также и в ширину, отчего по форме и по облику эти существа стали бы походить скорее на чудовищ... Если, напротив, размеры тела сократить, то прочность его хотя и уменьшится, но не в той же степени; и действительно, чем меньше тело, тем больше его относительная прочность. Так, например, маленькая собачка смогла бы, вероятно, унести на своей спине пару или даже три таких, как она, собачки, лошадь же, надо думать, не в силах была бы поднять и одной себе подобной” (Рыжов, 1999, с. 123).

Галилей исследует также балку, лежащую на двух опорах, и находит, что изгибающий момент принимает наибольшее значение в той точке пролета, где приложена нагрузка, так что для осуществления излома с наименьшей нагрузкой эту нагрузку следует поместить в середину пролета. Он замечает, что здесь представляется возможность сэкономить на материале, уменьшая поперечное сечение вблизи опор.

Галилей дает полное решение задачи о консоли равного сопротивления, поперечное сечение которой -- прямоугольник. Рассматривая сначала призматическую консоль, он замечает, что часть материала можно из нее удалить, не нанося ущерба ее прочности. Он показывает также, что если мы удалим половину материала, придав консоли форму клина, то прочность в любом промежуточном поперечном сечении окажется недостаточной. Для того чтобы моменты сопротивления находились между собой в том же самом отношении, что и изгибающие моменты, мы должны придать продольному очертанию консоли параболическую форму. Это удовлетворяет требованию равной прочности (Кузнецов, 1964, с. 167).

В заключение Галилей исследует прочность полых балок, указывая, что такие балки “находят разнообразнейшие применения в технике -- а еще чаще в природе - в целях возможно большего увеличения прочности без возрастания в весе; примерами тому могут служить кости птиц и разного вида тростники: и те и другие отличаются большой легкостью и в то же время хорошо сопротивляются как изгибу, так и излому. Так, если бы пшеничный стебель, которым поддерживается превышающий его по весу колос, был бы сформирован из того же количества материала сплошным стержнем, то он смог бы оказать меньшее сопротивление изгибу и излому. Проверенный и подтвержденный практикой опыт указывает, что полые пики или трубы, будь то из дерева или из металла, всегда оказываются значительно более прочными, чем соответствующие сплошные стержни того же веса при той же длине...”. Сравнивая полый цилиндр со сплошным той же площади поперечного сечения, Галилей замечает, что их абсолютные сопротивления разрыву одинаковы, а так как моменты сопротивления равны абсолютным сопротивлениям, умноженным на наружный радиус, то прочность при изгибе трубы будет превышать соответствующую прочность сплошного цилиндра во столько же раз, во сколько раа диаметр трубы больше диаметра сплошного цилиндра (Кузнецов, 1964, 176).

3. Г. Галилей как экспериментатор и изобретатель

Важнейшим достижением Галилея в динамике было создание принципа относительности, ставшего основой современной теории относительности. Решительно отказавшись от представлений Аристотеля о движении, Галилей пришел к выводу, что движение (имеются в виду только механические процессы) относительно, то есть нельзя говорить о движении, не уточнив, по отношению к какому “телу отсчета” оно происходит; законы же движения безотносительны, и поэтому, находясь в закрытой кабине (он образно писал “в закрытом помещении под палубой корабля”), нельзя никакими опытами установить, покоится ли эта кабина или же движется равномерно и прямолинейно (Ландау,…, 1975, с. 278).

Механика Галилея дает идеализированное описание движения тел вблизи поверхности Земли, пренебрегая сопротивлением воздуха, кривизной земной поверхности и зависимостью ускорения свободного падения от высоты. В основе "теории" Галилея лежат четыре простые аксиомы, правда в явном виде Галилеем не сформулированные.

1. Свободное движение по горизонтальной плоскости происходит с постоянной по величине и направлению скоростью (сегодня - закон инерции, или первый закон Ньютона).

Исходя из этого утверждения становится ясно, что тело скользящее без трения по горизонтальной поверхности не будет не ускоряться, не замедляться ни отклоняться в сторону. Это утверждение не является прямым следствием наблюдений и экспериментов. В законе говорится о движении, которое никогда не наблюдалось. Будучи последователем Архимеда, Галилей считал, что физические законы похожи на геометрические аксиомы. В природе не существует идеальных вещей и предметов. Но он не пренебрегал усложнениями вносимыми трением, воздухом - он пытался поставить эксперимент показывающий незначительность этих эффектов. Свой закон свободного движения Галилей получил не из реальной жизни и экспериментов, а из мысленного опыта.

2. Свободно падающее тело движется с постоянным ускорением.

Равноускоренным называется движение, при котором скорость тела за равные промежутки времени увеличивается на одну и ту же величину:

(1)

Рассмотрим как Галилей пришел к этому выводу. Сначала он предположил, что первоначально покоящееся тело постепенно увеличивает свою скорость от начального значения V=0. Во времена Галилея полагали, что как только на тело начинает действовать сила тяжести, оно мгновенно приобретает скорость и эта скорость тем больше, чем тяжелее тело. Галилей мысленно поставил эксперимент, который показывал что тело, падающее из состояния покоя, должно двигаться очень медленно, а по мере падения увеличивать скорость.

Далее Галилей полагал, что движение падающих тел должно описываться простым законом.

На какое то время он решил, что это закон : , равные приращения скорости, за равные промежутки расстояния. Но он отверг этот закон, когда понял что если бы он был справедлив, то тело, первоначально покоящееся, осталось бы в покое навсегда.

Проверить закон в первоначальном виде было практически невозможно. В то время не существовало точных часов, кратчайший промежуток времени который можно было определить 10 секунд. За 10 секунд свободно падающее тело пролетает 490 метров. Поэтому для применения закона ему потребовался постулат:

3. Тело, скользящее без трения по наклонной плоскости, движется с постоянным ускорением:

(2)

где угол наклона плоскости к горизонту.

Свободное падение можно рассматривать как частный случай движения по наклонной плоскости , а закон инерции соответствует горизонтальной плоскости. Используя в своих экспериментах наклонную плоскость с малыми углами наклона, Галилей смог проверить гипотезу постоянства ускорения при вертикальном падении.

Из закона вытекает, что конечная скорость тела, скользящего без трения по наклонной плоскости из состояния покоя, зависит лишь от высоты, с которой тело начало двигаться, но не зависит от угла наклона плоскости:

(3)

Галилей гордился этой формулой, поскольку она позволяла определить скорость при помощи геометрии. Измерение скорости в то время было малонадежной процедурой из за отсутствия точных часов. Теперь можно измерить только расстояние. Если мы захотим придать телу скорость , то нужно столкнуть его с высоты , предполагая отсутствие трения.

4. Принцип относительности Галилея.

Представим корабль движущийся с постоянной скоростью. С его мачты сбрасывают предмет, куда он упадет? Соотечественники Галилея сказали бы, что он упадет отклонившись от основания мачты в сторону кормы при движении корабля, и не отклонился бы вообще будь корабль неподвижен. Однако Галилей доказал, что траектория падающего тела отклоняется от вертикали только от сопротивления воздуха. В вакууме тело упало бы точно под точкой, из которой начала падать, если корабль движется с постоянной скоростью и с неизменным направлением. Траектория падения тела для наблюдателя с берега будет парабола.

Г. Галилей, решая задачу об описании падения камня, рассматриваемую еще Аристотелем, закладывает основу естественной науки Нового времени. Основой его построений является не эмпирическое наблюдение, а теоретическое убеждение, что природа "стремится применить во всяких своих приспособлениях самые простые и легкие средства...поэтому, когда я замечаю, - говорит Г. Галилей в своих "Беседах...", - что камень, выведенный из состояния покоя и падающий со значительной высоты, приобретает все новое и новое приращение скорости, не должен ли я думать, что подобное приращение происходит в самой простой и ясной для всякого форме? Если мы внимательно всмотримся в дело, то найдем, что нет приращения более простого, чем происходящее всегда равномерно...".

Отметим использование Галилеем понятие "пустоты" такой идеальной среды, где идеальное и реальное падения тела совпадают, и понятие "среды" - того, что отклоняет реальное падение от идеального. Эту же мысль мы обнаруживаем у Ньютона, у которого место равноускоренного падения занимает равномерное прямолинейное движение, а место среды - сила: если тело отклоняется от равномерного прямолинейного движения, то значит (по определению, роль которого играет 2-й закон Ньютона) на него действует сила, пропорциональная ускорению тела. Галилей на этом не останавливается. К созданному им теоретическому построению он подходит как инженер к проекту, т.е. он ставит перед собой задачу воплотить в материал определение - проект этой идеальной среды-пустоты. Он делает это в ходе созданного им эксперимента, создавая "гладкие наклонные плоскости" и другие "конструктивные элементы" инженерной конструкции.

Первые известия об изобретении в Голландии подзорной трубы дошли до Венеции уже в 1609. Заинтересовавшись этим открытием, Галилей значительно усовершенствовал прибор. 7 января 1610 произошло знаменательное событие: направив построенный телескоп (примерно с 30-кратным увеличением) на небо, Галилей заметил возле планеты Юпитер три светлые точки; это были спутники Юпитера (позже Галилей обнаружил и четвертый). Повторяя наблюдения через определенные интервалы времени, он убедился, что спутники обращаются вокруг Юпитера. Это послужило наглядной моделью кеплеровской системы, убежденным сторонником которой сделали Галилея размышления и опыт (Горохов, 1987, с. 167).

Были и другие важные открытия, которые еще больше подрывали доверие к официальной космогонии с ее догмой о неизменности мироздания: появилась новая звезда; изобретение телескопа позволило обнаружить фазы Венеры и убедиться, что Млечный Путь состоит из огромного числа звезд. Открыв солнечные пятна и наблюдая их перемещение, Галилей совершенно правильно объяснил это вращением Солнца. Изучение поверхности Луны показало, что она покрыта горами и изрыта кратерами. Даже этот беглый перечень позволил бы причислить Галилея к величайшим астрономам, но его роль была исключительной уже потому, что он произвел поистине революционный переворот, положив начало инструментальной астрономии в целом.

Рассматривая в телескоп Луну, он обнаружил там горы и долины, «горные гребни, излучающие свет» и обширные темные, очевидно, лежащие ниже равнины. Наблюдения тонкой светящейся кисеи Млечного Пути подтвердили предположение Демокрита, насчитывающее уже более 1000 лет: «Куда бы мы ни направили зрительную трубу, нашему взгляду везде должно представляться огромное количество звезд, из которых довольно многие достаточно велики и просто должны бросаться в глаза». Обнаруженные в телескоп отдельные детали структуры Млечного Пути срывали первые покровы таинственности с этого объекта, указывали на его облачное строение и даже выявляли «туманные звезды», имеющие вид отдельных светящихся объектов. Это были первые попытки наблюдений, которые легли в основу развития науки в последующие столетия.

Однако наиболее важное открытие Галилей сделал ночью 7 января 1610 г., когда он направил свой инструмент на Юпитер: «Поскольку я построил превосходную зрительную трубу, я заметил... рядом с ним три малые звезды, именно малые, но очень отчетливые. Хотя я принимал их за непо-движные звезды, они меня очень удивили, поскольку располагались точно по одной прямой, параллельной эклиптике, и были светлее, чем остальные звезды, которые не отличались от них по величине». Но более точное наблюдение вскоре показало, что речь здесь идет не о неподвижных звездах, ибо они двигались. Через четверо суток Галилей был уже твердо убежден, что «вокруг Юпитера вращаются три планеты, подобно тому как Венера и Меркурий вращаются вокруг Солнца». Чтобы почтить своего покровителя Козимо Медичи из Флоренции, Галилей назвал спутники Юпитера «Медичейскими звездами». Более того, всем спутникам -- а к ним добавился еще и четвертый, который в первый вечер наблюдений находился за планетой,-- он дал имена членов семьи Медичи. Правда, ни одно из этих имен не прижилось; сегодня четыре светлые луны Юпитера называются по именам известных персонажей древнегреческой мифологии, а именно: Ио, Европа, Ганимед и Каллисто (Чистяков, 1969, с. 319-321).

Сам Галилей понимал важность сделанных им астрономических открытий. Он описал свои наблюдения в сочинении, вышедшем в 1610 под гордым названием “Звездный вестник” (Кузнецов, 1964, с. 58): «Наибольшим из всех чудес представляется то, что я открыл четыре новые планеты и наблюдал свойственные им собственные движения и различия в их движениях относительно друг друга и относительно движения других звёзд. Эти новые планеты движутся вокруг другой очень большой звезды так же, как Венера, и Меркурий, и, возможно, другие известные планеты движутся вокруг Солнца». (Галилео Галилей).

Продолжая телескопические наблюдения, Галилей открыл фазы Венеры, солнечные пятна и вращение Солнца, изучал движение спутников Юпитера, наблюдал Сатурн. В 1611 Галилей ездил в Рим, где ему был оказан восторженный приём при папском дворе и где у него завязалась дружба с князем Чези, основателем Академии деи Линчеи («Академии Рысьеглазых»), членом которой он стал. По настоянию герцога Галилей опубликовал своё первое антиаристотелевское сочинение -- «Рассуждение о телах, пребывающих в воде, и тех, которые в ней движутся» (1612), где применил принцип равных моментов к выводу условий равновесия в жидких телах (Рыжов, 1999, с. 112).

Заключение

Влияние Галилея на развитие механики, оптики и астрономии в 17 в. неоценимо. Его научная деятельность, огромной важности открытия, научная смелость имели решающее значение для победы гелиоцентрической системы мира.

Особенно значительна работа Галилея по созданию основных принципов механики. Если основные законы движения и не высказаны Галилеем с той чёткостью, с какой это сделал И. Ньютон, то по существу закон инерции и закон сложения движений были им вполне осознаны и применены к решению практических задач.

История статики начинается с Архимеда; историю динамики открывает Галилей. Он первый выдвинул идею об относительности движения (Галилея принцип относительности), решил ряд основных механических проблем.

Сюда относятся прежде всего изучение законов свободного падения тел и падения их по наклонной плоскости; законы движения тела, брошенного под углом к горизонту; установление сохранения механической энергии при колебании маятника.

Галилей нанёс удар аристотелевским догматическим представлениям об абсолютно лёгких телах (огонь, воздух); в ряде остроумных опытов он показал, что воздух -- тяжёлое тело и даже определил его удельный вес по отношению к воде (Чистяков, 1969, с. 201).

Основа мировоззрения Галилея -- признание объективного существования мира, т. е. его существования вне и независимо от человеческого сознания. Мир бесконечен, считал он, материя вечна.

Во всех процессах, происходящих в природе, ничто не уничтожается и не порождается -- происходит лишь изменение взаимного расположения тел или их частей. Материя состоит из абсолютно неделимых атомов, её движение -- единственное, универсальное механическое перемещение. Небесные светила подобны Земле и подчиняются единым законам механики. Всё в природе подчинено строгой механической причинности.

Подлинную цель науки Галилею видел в отыскании причин явлений. Согласно Галилею, познание внутренней необходимости явлений есть высшая ступень знания.

Исходным пунктом познания природы Галилей считал наблюдение, основой науки -- опыт. Отвергая попытки схоластов добыть истину из сопоставления текстов признанных авторитетов и путём отвлечённых умствований, Галилей утверждал, что задача учёного -- «... это изучать великую книгу природы, которая и является настоящим предметом философии» («Диалог о двух главнейших системах мира птоломеевой и коперниковой»). Тех, кто слепо придерживается мнения авторитетов, не желая самостоятельно изучать явления природы, Галилей называл «раболепными умами», считал их недостойными звания философа и клеймил как «докторов зубрёжки». Однако, ограниченный условиями своего времени, Галилей не был последователен; он разделял теорию двойственной истины и допускал божественный первотолчок (Робсон, 2001, с. 214).

Одарённость Галилея не ограничивалась областью науки: он был музыкантом, художником, любителем искусств и блестящим литератором. Его научные трактаты, большая часть которых написана на народном итальянском языке, хотя Галилей в совершенстве владел латынью, могут быть отнесены также к художественным произведениям по простоте и ясности изложения и блеску литературного стиля. Галилей переводил с греческого языка на латынь, изучал античных классиков и поэтов Возрождения (работы «Заметки к Ариосто», «Критика Тассо»), выступал во Флорентийской академии по вопросам изучения Данте, написал бурлескную поэму «Сатира на носящих тогу». Галилей -- соавтор канцоны А. Сальвадори «О звёздах Медичей» - спутниках Юпитера, открытых Галилеем в 1610 (Тростников, 1990, с. 132).

Механистический характер воззрений Галилея, а также идеологическая незрелость класса буржуазии, мировоззрение которого он выражал, не позволили ему полностью освободиться от теологического представления о боге. Он не смог это сделать в силу метафизичности его воззрений на мир, согласно которым в природе, состоящей в своей основе из одних и тех же элементов, ничто не уничтожается и ничего нового не нарождается. Антиисторизм присущ и Галилееву пониманию человеческого познания.

Так, Галилей высказывал мысль о внеопытном происхождении всеобщих и необходимых математических истин. Это метафизическая точка зрения открывала возможность апелляции к богу как последнему источнику наиболее достоверных истин.

Еще яснее эта идеалистическая тенденция проявляется у Галилея в его понимании происхождения Солнечной системы. Хотя он вслед за Бруно исходил из бесконечности Вселенной, однако это убеждение сочеталось у него с представлением о неизменности круговых орбит планет и скоростей их движения.

Стремясь объяснить устройство Вселенной, Галилей утверждал, что бог, когда-то создавший мир, поместил Солнце в центр мира, а планетам сообщил движение по направления к Солнцу, изменив в определенной точке их прямой путь на круговой. На этом деятельность бога заканчивается. С тех пор природа обладает своими собственными объективными закономерностями, изучение которых дело только науки (Робсон В., 2001, с. 157-158).

Таким образом, в новое время Галилей одним из первых сформулировал деистический взгляд на природу. Этого взгляда придерживалось затем большинство передовых мыслителей 17 - 18 вв. Научно-философская деятельность Галилея кладет начало новому этапу развития философской мысли в Европе - механистическому и метафизическому материализму 17 - 18 вв.

Список литературы

1. Гиндикин, С.Г. Рассказы о физиках и математиках /С.Г. Гиндикин - М.: Наука, 1985.

2. Горохов, В.Г. Знать, чтобы делать / В.Г. Горохов - М.: Знание, 1987.

3. Кезин, А.В. Наука в зеркале философии / А.В. Кезин - М., 1999.

4. Кузнецов, Б.Г. Галилео Галилей / Б.Г. Кузнецов - М., 1964.

5. Ландау, Л.Д., Румер, Е.Б. Что такое теория относительности / Л.Д. Ландау, Е.Б. Румер - М.: Советская Россия, 1975.

6. Робсон, В. Великие изобретатели и изобретения / В. Робсон - М.: Наука, 2001.

7. Рыжов, К.В. 100 великих изобретений / К.В. Рыжов - М.: Вече, 1999.

8. Тростников, В.Н. Научна ли "научная картина мира"? / В.Н. Тростников - М.: Новый мир, 1990.

9. Чистяков, В.Д. Рассказы об астрономах / В.Д. Чистяков - Минск: Наука, 1969.


Подобные документы

  • Истоки теории относительности, порядок ее формирования и значение. Принцип относительности Галилея. Сущность преобразования Галилея и Лоренца. Теория относительности А. Эйнштейна, особенности и отличительные признаки ее общей и специальной формы.

    реферат [2,4 M], добавлен 09.11.2010

  • Изучение принципа относительности Галилея. История возникновения и содержание концепции наименьшего действия. Ознакомление с основными постулатами специальной теории относительности Эйнштейна. Экспериментальные подтверждения общей теории относительности.

    реферат [30,5 K], добавлен 30.07.2010

  • Особенности зарождения научного мышления в Древней Греции, видение естественнонаучной картины мира древнегреческими философами. Основные этапы развития неклассического естествознания в эпоху Возрождения, идеи Коперника, Бруно, Галилея и Кеплера.

    реферат [144,5 K], добавлен 28.11.2010

  • Предпосылки возникновения и история развития естествознания, его значение как науки. Виднейшие философы античности, их взгляды и особенности мировоззрения. Характеристика эпохи средневековья. Строение и состав Вселенной. Этапы развития основных наук.

    курсовая работа [27,0 K], добавлен 29.04.2009

  • История зарождения античной науки - натурфилософии. Основные идеи атомистики (Демокрит) и геоцентрической космологии (Аристотель). Вклад работ Пифагора, Архимеда, Евклида в развитие математики и механики. Знакомство с естествознанием эпохи Средневековья.

    реферат [30,7 K], добавлен 21.02.2010

  • Способы построения естественнонаучной теории: зарождение эмпирического научного знания, развитие естествознания в эпоху античности и средневековья. Взаимодействие естественных наук. Вклад естественнонаучной и гуманитарной культур в развитие цивилизации.

    контрольная работа [34,6 K], добавлен 26.04.2009

  • Концепции времени и пространства, этапы их зарождения и развития, направления исследования на сегодня. Эксперимент Майкельсона-Морли. Принцип относительности Галилея. Относительность одновременности событий. Общая и специальная теория Эйнштейна.

    контрольная работа [27,7 K], добавлен 10.03.2013

  • Предмет и структура естествознания. Понятие естествознания как совокупности наук о природе. История естествознания и интеграция наук от времен древнегреческой натурфилософии, в средневековой культуре, новое время, эпоху глобальной научной революции.

    реферат [54,1 K], добавлен 29.12.2009

  • Цели и задачи курса "Концепции современного естествознания", место данной дисциплины в системе других наук. Классификация наук, предложенная Ф. Энгельсом. Взаимосвязь физических, химических и биологических знаний. Виды атмосферных процессов в природе.

    контрольная работа [28,8 K], добавлен 13.06.2013

  • Социальные функции естественных наук. Естественнонаучная, гуманитарная культуры. Роль естествознания в научно-техническом прогрессе, классификация его методов, их роль в познании. Формы естественнонаучного познания: факт, проблема, идея, гипотеза, теория.

    курс лекций [279,5 K], добавлен 15.11.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.