Естественно научные аспекты современных технологий

Роль науки в естествознании, ее метод и развитие на рубеже ХХІ века. Характеристика теории самоорганизации и глобального эволюционизма. Основные аспекты биотехнологий: медицинские, сельскохозяйственные, экологические. Возможности генной инженерии.

Рубрика Биология и естествознание
Вид контрольная работа
Язык русский
Дата добавления 01.07.2009
Размер файла 38,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Содержание

  • Введение
  • 1. Роль науки в естествознании
  • 2. Научный метод как эффективный инструмент
  • 3. Естествознание на рубеже 21 века
    • 3.1 Теория самоорганизации (синергетика)
    • 3.2 Глобальный эволюционизм
    • 3.3 На пути к постнеклассической науке ХХI века
  • 4. Понятие биотехнологии
    • 4.1 Медицинские биотехнологии
    • 4.2 Сельскохозяйственные и экологические биотехнологии
    • 4.3 Многообразие сфер применения биотехнологий
    • 4.4 Развитие генной инженерии
    • 4.5 Клонирование и его возможности: вымысел и реальность
  • Заключение
  • Список литературы
  • Приложения
  • Введение
  • Технология -- совокупность методов обработки, изготовления, изменения состояния, свойств, формы сырья или полуфабрикатов, осуществляемых в процессе производства продукции. Слово «технология» означает, кроме того, научную дисциплину, изучающую физические, химические, механические и другие закономерности различных производственных процессов. В последнее время это слово стало ключевым. Часто говорят о технологиях: информационных, микроэлектронных, химических, генных, биотехнологиях и др. Ощущается некое «засилье технологий».
  • Следует различать естественно-научные знания, которые что-то объясняют, и знания, которые вооружают стратегией и тактикой действий: одно дело -- «я знаю», другое -- «я умею». Вот если «я знаю», то это фундаментальная наука, если «я умею» -- это уже технология, некая совокупность действий, процессов, а также процедура управления действиями, процессами, регламент, направленный на достижение заранее предопределенного результата.
  • Рождение той или иной технологии говорит о высоком уровне зрелости соответствующей ей отрасли естествознания, когда она начинает развиваться быстро и оказывается полезной обществу, становится прикладной. В современном обществе развиваются многие виды технологий, среди которых большое внимание уделяется информационным технологиям.
  • Таким образом, тема работы является актуальной.
  • В контрольной работе рассмотрен вопрос: «Естественно научные аспекты современных технологий».

1. Роль науки в естествознании

Познание единичных вещей и процессов невозможно без одновременного познания всеобщего, а последнее в свою очередь познается только через первое. Сегодня это должно быть ясно каждому образованному уму. Точно также и целое постижимо лишь в органическом единстве с его частями, а часть может быть понята лишь в рамках целого. И любой открытый нами "частный" закон - если он действительно закон, а не эмпирическое правило - есть конкретное проявление всеобщности. Нет такой науки, предметом которой было бы исключительно всеобщее без познания единичного, как невозможна и наука, ограничивающая себя лишь познанием особенного.

Всеобщая связь явлений - наиболее общая закономерность существования мира, представляющая собой результат и проявление универсального взаимодействия всех предметов и явлений и воплощающаяся в качестве научного отражения в единстве и взаимосвязи наук. Она выражает внутреннее единство всех элементов структуры и свойств любой целостной системы, а также бесконечное разнообразие отношений данной системы с другими окружающими ее системами или явлениями.

Без понимания принципа всеобщей связи не может быть истинного знания. Осознание универсальной идеи единства всего живого со всем мирозданием входит в науку, хотя уже более полувека назад в своих лекциях, читанных в Сорбонне, В.И. Вернадский отмечал, что ни один живой организм в свободном состоянии на Земле не находится, но неразрывно связан с материально-энергетической средой. "В нашем столетии биосфера получает совершенно новое понимание. Она выявляется как планетное явление космического характера".

Такими открытиями были, например, открытия в ХVII в. законов механики, позволившие создать всю машинную технологию цивилизации; открытие в ХIХ в. электромагнитного поля и создание электротехники, радиотехники, а затем и радиоэлектроники; создание в ХХ в, теории атомного ядра, а вслед за ним - открытие средств высвобождения ядерной энергии; раскрытие в середине ХХ в. молекулярной биологией природы наследственности (структуры ДНК) и открывшиеся вслед возможности генной инженерии по управлению наследственностью; и др. Большая часть современной материальной цивилизации была бы невозможна без участия в ее создании научных теорий, научно-конструкторских разработок, предсказанных наукой технологий и др.

В современном мире наука вызывает у людей не только восхищение и преклонение, но и опасения. Часто можно услышать, что наука приносит человеку не только блага, но и величайшие несчастья. Загрязнения атмосферы, катастрофы на атомных станциях, повышение радиоактивного фона в результате испытаний ядерного оружия, “озонная дыра” над планетой, резкое сокращение видов растений и животных - все эти и другие экологические проблемы люди склонны объяснять самим фактом существования науки. Но дело не в науке, а в том, в чьих руках она находится, какие социальные интересы за ней стоят, какие общественные и государственные структуры направляют ее развитие.

Наука - это социальный институт, и он теснейшим образом связан с развитием всего общества. Сложность, противоречивость современной ситуации в том, что наука, безусловно, причастна к порождению глобальных, и, прежде всего, экологических, проблем цивилизации (не сама по себе, а как зависимая от других структур часть общества); и в то же время без науки, без дальнейшего ее развития решение всех этих проблем в принципе невозможно. И это значит, что роль науки в истории человечества постоянно возрастает. И потому всякое умаление роли науки, естествознания в настоящее время чрезвычайно опасно, оно обезоруживает человечество перед нарастанием глобальных проблем современности.

2. Научный метод как эффективный инструмент

На протяжении последних 400 лет научный метод демонстрировал свою высокую эффективность. Т.о., людям крайне полезно (хочется сказать - необходимо) владеть хотя бы его основами. Владеть не на уровне возможность внятно объяснить, а на уровне применения. Образование, дающее понимание научного метода, разумеется, отличается от простого заучивания "истин". Поэтому его массовость может оказываться под вопросом. С другой стороны, сейчас, когда благодаря технологиям хотя бы частично можно говорить о дистанционном образовании, вполне возможно хотя бы с помощью ТВ и Интернета (и, разумеется, печатного слова) донести до любого желающего необходимую информацию в понятном изложении.

Человек, владеющий научным методом, как правило является вполне востребованным специалистом и вне области своей специализации (заметьте, не просто "выпускник" или "ученый", а именно "человек владеющий"!). Известно, что в нашей стране (и не только) выпускники физико-математических специальностей хороших ВУЗов очень часто востребованы в самых разных областях, далеких от физики и математики. Связано это, на мой взгляд, во многом с тем, что они овладели (если овладели) определенным навыком к подходу к задачам, к их решению, к демонстрации правильности решения и тп. Т.о., опять-таки, можно говорить об очень личной мотивации для получения хорошего естественно-научного образования.

Еще один аргумент в пользу широкого естественно-научного образования (против узкой специализации). Даже если человек чрезвычайно талантлив и овладел методом, тем не менее, он все равно оперирует с информацией. Чем больше объем данных, с которыми человек может работать (в том числе и на подсознательном уровне), тем выше вероятность получения нового знания. Определить заранее необходимый объем и его границы невозможно. Кроме того, обладание хорошо усвоенной базовой информацией в разных областях существенно облегчает получение более детальной информации по ним. Т.о., и общество оказывается заинтересованным в том, чтобы у него были специалисты, способные получать результаты, выходящие за рамки узких уже сформировавшихся направлений, и сам человек заинтересован в этом (например, просто из соображений карьеры и т.п.).

Жизнь в рыночной высокотехнологической экономике

Практически каждый день каждый взрослый человек, живущий в современном обществе, находится под прессингом рекламы и совершает тот или иной выбор как покупатель. Реклама существенно ориентирована на "научно-технические" показатели продаваемого товара. Фраза "новая формула" - типичный элемент рекламного слогана. В интересах человека обладать некоторым базовым набором естественно-научных знаний для осуществления осмысленного выбора.

Здоровье.На особом месте стоит выбор товаров и услуг, так или иначе связанных со здоровьем человека (речь может идти и о "йогурте с новой биокультурой", и о биодобавках, и о гомеопатических средствах, и о вполне традиционной медицине). Опять-таки, осмысленный выбор в этой области требует некоторых знаний, и их наличие - в интересах самого человека.

Обязанности человека в современном обществе. Безусловно стоит говорить о том, что каждый из нас заинтересован в том, чтобы другие вокруг обладали достаточно большим багажом знаний и могли адекватно его применять. Дело в том, что хотим мы этого или нет, но мы живем в, по-крайней мере формально, демократическом обществе. В таком режиме наиболее развитыми оказываются сообщества, в которых достаточно большая доля людей способна к адекватным решениям и поведению. Разумеется, далеко не все решения сводятся в конечно счете к чему-то, связанному с научным знанием или подходом.

Тем не менее важно следующее:

а) Многие решения все-таки требуют именно наличия естественно-научных знаний, поскольку мы живем в постиндустриальном обществе.

б) Владение научным методом позволяет в ряде случаев принимать существенно лучшие решения

в) Наличие критического мышления у граждан (а оно во многом может формироваться именно при хорошем естественно-научном образовании) существенно затрудняет манипулирование ими.

Разумеется, многое, на что претендует естественно-научное образование, в принципе достижимо и другими методами. Например, можно говорить о введение в качестве обязательного школьного предмета шахмат (или другой аналогичной игры). также можно говорить о том, что многое (особенно в области метода) можно прекрасно продемонстрировать в рамках преподавания гуманитарных наук или математики. Все это верно. Но, во-первых, есть достаточно много аспектов, уникальных именно для естественно-научного образования (в первую очередь речь идет о конкретных знаниях, об экспериментальных методах и связанной с ними верификации и фальсифицируемости). Во-вторых, благодаря продолжающемуся научно-техническому развитию естественно-научное направление обладает возможность давать яркие, наглядные, актуальные иллюстрации описываемых понятий. Это очень важный момент при преподавании!

Наверное, к основным, говоря о естественно-научной части программы, стоит отнести такие:

1. Возможность углубления знаний на следующих уровнях обучения

2. Получение и усвоение (!) некоторого минимума знаний, соответствующего нашим базовым представлениям о мире.

3. Получение минимума знаний для осмысленного поведения в современном мире

4. Усвоение основ научного метода как такового (на примере любой естественно-научной области знаний, базирующейся на эксперименте)

5.Развитие определенных творческих способностей, создание предпосылок для их совершенствования

3. Естествознание на рубеже 21 века

В течение последних трех столетий естествознание развивалось невероятно быстро и динамично. Горизонт научного познания расширился до поистине фантастических размеров. На микроскопическом конце шкалы масштабов физика элементарных частиц вышла на уровень изучения процессов, которые происходят за время около 1 0 n сек., где n = - 2 2 и на расстояниях 1 0 n см, где n = - 1 5 . На другом конце шкалы космология и астрофизика изучают процессы, которые происходят за время порядка возраста Вселенной 1 0 n лет, где n = 1 0; современная техника астрономических наблюдений позволяет изучать объекты, которые находятся от нас на расстоянии около 2000 Мпк. Свет от этих объектов “вышел” свыше 6 млрд. лет тому назад, т.е. тогда, когда еще и Земли не существовало. А совсем недавно обнаружены астрономические объекты, свет от которых идет к нам чуть ли не 12 млрд. лет! Человек получает возможность заглянуть в самое начало “творения” Вселенной.

Значительно возросла роль науки в современной обществе. На основе науки рационализируются по сути все формы общественной жизни. Как никогда близки наука и техника. Наука стала непосредственной производительной силой общества. По отношению к практике она выполняет непосредственно программирующую роль. Новые информационные технологии и средства вычислительной техники, достижения генной инженерии и биотехнологии обещают в очередной раз коренным образом изменить материальную цивилизацию, уклад нашей жизни. Под влиянием науки (в том числе) возрастает личностное начало, роль человеческого фактора во всех формах деятельности.

Вместе с тем, радикально изменяется и сама система научного познания. Размываются четкие границы между практической и познавательной деятельностью. В системе научного знания интенсивно проходят процессы дифференциации и интеграции знания, развиваются комплексные и междисциплинарные исследования, новые способы и методы познания, методологические установки, появляются новые элементы картины мира, выделяются новые, более сложные типы объектов познания, характеризующиеся историзмом, универсальностью, сложностью организации, которые раньше не поддавались теоретическому (математическому) моделированию. Одно из таких новых направлений в современном естествознании представлено синергетикой.

3.1 Теория самоорганизации (синергетика)

Классическое и неклассическое естествознание объединяет одна общая черта: предмет познания у них - это простые (замкнутые, изолированные, обратимые во времени) системы. Но, в сущности, такое понимание предмета познания является сильной абстракцией. Вселенная представляет из себя множество систем. И лишь некоторые из них могут трактоваться как замкнутые системы, т.е. как “механизмы”. Во Вселенной таких “закрытых” систем меньшинство. Подавляющее большинство реальных систем открытые. Это значит, что они обмениваются энергией, веществом и информацией с окружающей средой. К такого рода системам относятся и такие системы, которые больше всего интересуют человека, значимы для него - биологические и социальные системы.

Человек всегда стремился постичь природу сложного. Как ориентироваться в сложном и нестабильном мире? Какова природа сложного и каковы законы его функционирования и развития? В какой степени предсказуемо поведение сложных систем?

В 70-е годы ХХ века начала активно развиваться теория сложных самоорганизующихся систем, получившая название синергетики. Результаты исследований в области нелинейного (порядка выше второго) математического моделирования сложных открытых систем привели к рождению нового мощного научного направления в современном естествознании - синергетики. Как и кибернетика, синергетика - это некоторый междисциплинарный подход. Но в отличие от кибернетики, где акцент делается на процессах управления и обмена информацией, синергетика ориентирована на исследование принципов построения организации, ее возникновения, развития и самоусложнения.

Мир нелинейных самоорганизующихся систем гораздо богаче мира закрытых, линейных систем. Вместе с тем, “нелинейный мир” и сложнее поддается моделированию. Большинство возникающих нелинейных уравнений не может быть решено аналитически. Как правило, для их (приближенного) решения требуется сочетание современных аналитических методов с большими сериями расчетов на ЭВМ, с вычислительными экспериментами. Синергетика открывает для исследования - необычные для классического и неклассического естествознания - стороны мира: его нестабильность, многообразие путей изменения и развития, раскрывает условия существования и устойчивого развития сложных структур, делает возможным моделирование катастрофических ситуаций и др.

Методами синергетики было осуществлено моделирование многих сложных самоорганизующихся систем в физике и гидродинамике, в химии и биологии, в астрофизике и в обществе: от морфогенеза в биологии и некоторых аспектов функционирования мозга до флаттера крыла самолета, от молекулярной физики и автоколебательных процессов в химии (т. н. реакция самоструктурирования химических соединений Белоусова - Жаботинского) до эволюции звезд и космологических процессов, от электронных приборов до формирования общественного мнения и демографических процессов.

3.2 Глобальный эволюционизм

Одна из важнейших идей европейской цивилизации - идея развития мира. В своих простейших и неразвитых формах (преформизм, эпигенез, кантовская космогония) она начала проникать в естествознание еще в ХVIII веке. И уже ХIХ век по праву может быть назван веком эволюции. Сначала геология, затем биология и социология стали уделять теоретическому моделированию развивающихся объектов все большее и большее внимание.

Но в науках о неорганической природе идея развития пробивала себе дорогу очень сложно. Вплоть до второй половины ХХ века в ней господствовала исходная абстракция закрытой обратимой системы, в которой фактор времени не играет никакой роли. Даже переход от классической ньютоновской физики к неклассической (релятивистской и квантовой) в этом отношении ничего не изменил. Правда, некоторый робкий прорыв в этом направлении был сделан классической термодинамикой, которая ввела понятие энтропии и представление о необратимых процессах, зависящих от времени. Так в науки о неорганической природе была введена “стрела времени”. Но, в конечном счете, и классическая термодинамика изучала лишь закрытые равновесные системы. А на неравновесные процессы смотрели как на возмущения, второстепенные отклонения, которыми следует пренебречь в окончательном описании познаваемого объекта - закрытой равновесной системы.

А, с другой стороны, проникновение идеи развития в геологию, биологию, социологию, гуманитарные науки в ХIХ и первой половине ХХ века осуществлялось независимо в каждой из этих отраслей познания. Философский принцип развития мира (природы, общества, человека) общего, стержневого для всего естествознания (а также для всей науки) выражения не имел. В каждой отрасли естествознания он имел свои (независимые от другой отрасли) формы теоретико-методологической конкретизации.

И только к концу ХХ века естествознание находит в себе теоретические и методологические средства для создания единой модели универсальной эволюции, выявления общих законов природы, связывающих в единое целое происхождение Вселенной (космогенез), возникновение Солнечной системы и нашей планеты Земля (геогенез), возникновение жизни (биогенез) и, наконец, возникновение человека и общества (антропосоциогенез). Такой моделью является концепция глобального эволюционизма.

В концепции глобального эволюционизма Вселенная представляется в качестве развивающегося во времени природного целого. Вся история Вселенной от “Большого взрыва” до возникновения человечества рассматривается в этой концепции как единый процесс, в котором космический, химический, биологический и социальный типы эволюции преемственно и генетически связаны между собой. Космохимия, геохимия, биохимия отражают здесь фундаментальные переходы в эволюции молекулярных систем и неизбежности их превращения в органическую материю.

Концепция глобального эволюционизма подчеркивает важнейшую закономерность - направленность развития мирового целого на повышение своей структурной организации. Вся история Вселенной, от момента сингулярности до возникновения человека, предстает как единый процесс материальной эволюции, самоорганизации, саморазвития материи. Важную роль в концепции универсального эволюционизма играет идея отбора: новое возникает как результат отбора наиболее эффективных формообразований, неэффективные же инновации отбраковываются историческим процессом; качественное новый уровень организации материи окончательно самоутверждается тогда, когда он оказывается способным впитать в себя предшествующий опыт исторического развития материи. Эта закономерность характерна не только для биологической формы движения, но и для всей эволюции материи. Принцип глобального эволюционизма требует не просто знания временного порядка образования уровней материи, а глубокого понимания внутренней логики развития космического порядка вещей, логики развития Вселенной как целого.

3.3 На пути к постнеклассической науке ХХI века

На рубеже ХХI века естествознание, по-видимому, вступает в новую историческую фазу своего развития - на уровень постнеклассической науки.

Для постнеклассической науки характерно выдвижение на первый план междисциплинарных, комплексных и проблемно-ориентировочных форм исследовательской деятельности. Все чаще в определении познавательных целей науки начинают играть решающую роль не внутринаучные цели, а цели экономического и социально-политического характера.

Становление постнеклассической науки приводит к изменению методологических установок естественнонаучного познания:

формируются особые способы описания и предсказания возможных состояний развивающегося объекта - построение сценариев возможных линий развития системы ( в том числе и в точках бифуркации);

идеал построения теории как аксиоматическо-дедуктивной системы все чаще сочетается с созданием конкурирующих теоретических описаний, основанных на методах аппроксимации, компьютерных программах и т.д.;

в естествознании все чаще применяются методы исторической реконструкции объекта, сложившиеся в гуманитарном знании;

по отношению к развивающимся объектам изменяется и стратегия экспериментального исследования: результаты экспериментов с объектом, находящимся на разных этапах развития, могут быть согласованы только с учетом вероятностных линий эволюции системы; особенно это относится к системам, существующим лишь в одном экземпляре - они требуют и особой стратегии экспериментального исследования, поскольку нет возможности воспроизводить первоначальные состояния такого объекта;

нет свободы выбора эксперимента с системами, в которые непосредственно включен человек;

изменяются представления классического и неклассического естествознания о ценностно нейтральном характере научного исследования - современные способы описания объектов (особенно таких, в которые непосредственно включен сам человек) не только допускают, но даже предполагают введение аксиологических факторов в содержание и структуру способа описания (этика науки, социальная экспертиза программ и др.).

Есть все основания считать, что по мере дальнейшего развития науки все эти современные особенности естественнонаучного познания будут проявлять себя в еще более контрастных и очевидных формах.

4. Понятие биотехнологии

В XXI в. биология выступает лидером естествознания. Это обусловлено прежде всего возрастанием ее практических возможностей, ее программирующей ролью в аграрной, медицинской, экологической и других сферах деятельности, способностью решать важнейшие проблемы жизнедеятельности человека, в конечном счете даже определять судьбы человечества (в связи с перспективами биотехнологий, генной инженерии) и т.п. Одной из важнейших форм связи современной биологии с практикой являются биотехнологии.

Биотехнологии -- технологические процессы, реализуемые с использованием биологических систем -- живых организмов и компонентов живой клетки. Другими словами, биотехнологии связаны с тем, что возникло биогенным путем. Биотехнологии основаны на последних достижениях многих отраслей современной науки: биохимии и биофизики, вирусологии, физико-химии ферментов, микробиологии, молекулярной биологии, генетической инженерии, селекционной генетики, химии антибиотиков, иммунологии и др. [1]

Сам термин «биотехнология» новый: он получил распространение в 1970-е гг., но человек имел дело с биотехнологиями и в далеком прошлом. Некоторые биотехнологические процессы, основанные на применении микроорганизмов, человек использует еще с древнейших времен: в хлебопечении, в приготовлении вина и пива, уксуса, сыра, различных способах переработки кож, растительных волокон и т.д. Современные биотехнологии основаны главным образом на культивировании микроорганизмов (бактерий и микроскопических грибов), животных и растительных клеток, методах генной инженерии.

Основными направлениями развития современных биотехнологий являются медицинские биотехнологии, агробиотехнологии и экологические биотехнологии. Новейшим и важнейшим ответвлением биотехнологии является генная инженерия.

4.1 Медицинские биотехнологии

Медицинские биотехнологии подразделяются на диагностические и лечебные. Диагностические медицинские биотехнологии в свою очередь разделяют на химические (определение диагностических веществ и параметров их обмена) и физические (определение особенностей физических процессов организма).

Химические диагностические биотехнологии используются в медицине давно. Но если раньше они сводились к определению в тканях и органах веществ, имеющих диагностическое значение (статический подход), то сейчас развивается и динамический подход, позволяющий определять скорости образования и распада представляющих интерес веществ, активность ферментов, осуществляющих синтез или деградацию этих веществ, и др. Кроме того, современная диагностика разрабатывает методы функционального подхода, с помощью которого можно оценивать влияние функциональных воздействий на изменение диагностических веществ, а следовательно, выявлять резервные возможности организма.

В будущем возрастет роль физической диагностики, которая дешевле и быстрее, чем химическая, и состоит в определении физико-химических процессов, лежащих в основе жизнедеятельности клетки, а также физических процессов (тепловых, акустических, электромагнитных и др.) на тканевом уровне, уровне органов и организма в целом. На базе такого рода анализа в рамках биофизики сложных биологических систем будут развиваться новые методы физиотерапии, выяснится смысл многих так называемых нетрадиционных методов лечения, приемов народной медицины и т.д.

Биотехнологии широко используются в фармакологии. В древности для лечения больных применяли животные, растительные и минеральные вещества. Начиная с XIX в. в фармакологии получают распространение синтетические химические препараты, а с середины XX в. и антибиотики -- особые химические вещества, которые образуются микроорганизмами и способны оказывать избирательно токсическое воздействие на другие микроорганизмы. В конце XX в. фармакологи обратились к индивидуальным биологически активным соединениям и стали составлять их оптимальные композиции, а также использовать специфические активаторы и ингибиторы определенных ферментов, суть действия которых -- в вытеснении патогенной микрофлоры невредной для здоровья людей микрофлорой (использование микробного антагонизма).

Биотехнологии помогают в борьбе современной медицины с сердечно-сосудистыми заболеваниями (прежде всего с атеросклерозом), с онкологическими заболеваниями, с аллергиями как патологическим нарушением иммунитета (способность организма защищать свою целостность и биологическую индивидуальность), старением и вирусными инфекциями (в том числе со СПИДом). Так, развитие иммунологии (науки, изучающей защитные свойства организма) способствует лечению аллергии. При аллергии организм отвечает на воздействие некоторого специфического аллергена чрезмерной реакцией, повреждающей его собственные клетки и ткани в результате отека, воспаления, спазма, нарушений микроциркуляции, гемодинамики и др. Иммунология, изучая клетки, осуществляющие иммунный ответ (иммуноциты), позволяет создавать новые подходы к лечению иммунологических, онкологических и инфекционных заболеваний.

4.2 Сельскохозяйственные и экологические биотехнологии

Произошла «зеленая революция» -- за счет использования минеральных удобрений, пестицидов и инсектицидов удалось добиться резкого повышения продуктивности растениеводства. Но сейчас понятны и ее отрицательные последствия, например насыщение продуктов питания нитратами и ядохимикатами. Основная задача современных агробиотехнологий -- преодоление отрицательных последствий «зеленой революции», микробиологический синтез средств защиты растений, производства кормов и ферментов для кормопроизводства и др. При этом упор делается на биологические методы восстановления плодородия почвы, биологические методы борьбы с вредителями сельскохозяйственных культур, на переход от монокультур к поликультурам (что повышает выход биомассы с единицы площади сельхозугодий), выведение новых высокопродуктивных и обладающих другими полезными свойствами (например, засухоустойчивостью или устойчивостью к засолению) сортов культурных растений.

4.3 Многообразие сфер применения биотехнологий

Биотехнологии успешно применяются в некоторых «экзотических» отраслях. Так, во многих странах микробная биотехнология используется для повышения нефтеотдачи. Микробиологические технологии исключительно эффективны и при получении цветных и благородных металлов. Если традиционная технология включает в себя обжиг, при котором в атмосферу выбрасывается большое количество вредных серосодержащих газов, то при микробной технологии руда переводится в раствор (микробное окисление), а затем путем электролиза из него получают ценные металлы.

Использование метанотрофных бактерий позволяет снизить концентрацию метана в шахтах. А для отечественной угледобычи проблема шахтного метана всегда была одной из самых острых: по статистике, из-за взрывов метана в шахтах каждый добытый 1 млн т угля уносит жизнь одного шахтера.

Созданные биотехнологическими методами ферментные препараты находят широкое применение в производстве стиральных порошков, в текстильной и кожевенной промышленности.

Космическая биология и медицина изучают закономерности функционирования живых организмов, прежде всего человеческого, в условиях космоса, космического полета, пребывания на других планетах и телах Солнечной системы. Одним из важных направлений в этой области является разработка космических биотехнологий -- замкнутых биосистем, предназначенных для функционирования в условиях длительного космического полета. Созданная отечественной наукой система такого рода способна обеспечить жизнедеятельность космонавтов в течение 14 лет. Этого вполне достаточно для реализации космической мечты человечества -- полета к ближайшим планетам Солнечной системы, прежде всего к Марсу.

4.4 Развитие генной инженерии

Генная инженерия возникла в 1970-е гг. как раздел молекулярной биологии, связанный с целенаправленным созданием новых комбинаций генетического материала, способного размножаться (в клетке) и синтезировать конечные продукты. Решающую роль в создании новых комбинаций генетического материала играют особые ферменты (рестриктазы, ДНК-лигазы), позволяющие рассекать молекулу ДНК на фрагменты в строго определенных местах, а затем «сшивать» фрагменты ДНК в единое целое. Только после выделения таких ферментов стало практически возможным создание искусственных гибридных генетических структур -- рекомбинантных ДНК. Рекомбинантная молекула ДНК содержит искусственный гибридный ген (или набор генов) и «вектор-фрагмент» ДНК, обеспечивающий размножение рекомбинированной ДНК и синтез ее конечных продуктов -- белков. Все это уже происходит в клетке-хозяине (бактериальной клетке), куда вводится рекомбинированная ДНК.

Методами генной инженерии сначала были получены трансгенные микроорганизмы, несущие гены бактерии и гены онко-генного вируса обезьяны, а затем -- микроорганизмы, несущие в себе гены мушки дрозофилы, кролика, человека и т.д. Впоследствии удалось осуществить микробный (и недорогой) синтез многих биологически активных веществ, присутствующих в тканях животных и растений в весьма низких концентрациях: инсулина, интерферона человека, гормона роста человека, вакцины против гепатита, а также ферментов, гормональных препаратов, клеточных гибридов, синтезирующих антитела желаемой специфичности, и т.п.

Генная инженерия открыла перспективы конструирования новых биологических организмов -- трансгенных растений и животных с заранее запланированными свойствами. По сути, непреодолимых природных ограничений для синтеза генов нет (так, существуют программы по созданию трансгенной овцы, покрытой вместо шерсти шелком; трансгенной козы, молоко которой содержит ценный для человека интерферон; трансгенного шпината, который вырабатывает белок, подавляющий ВИЧ-инфекции, и др.). Возникла новая отрасль промышленности -- трансгенная биотехнология, занимающаяся конструированием и применением трансгенных организмов. В неразрывной связи с разработкой технологий генной инженерии развиваются фундаментальные исследования в молекулярной биологии. Одним из важнейших направлений молекулярной биологии и генной инженерии является изучение геномов растительных и животных видов и разработка способов их реконструкции. Геном -- это совокупность генов, характерных для гаплоидного, т.е. одинарного набора хромосом данного вида организмов. В отличие от генотипа геном представляет собой характеристику вида, а не отдельной особи. Общая логика исследования ведет молекулярную биологию от выяснения способов воссоздания генома вида к разработке способов воссоздания генотипа особи.

Огромное значение имеет изучение генома человека. В рамках одного из самых трудоемких и дорогостоящих в истории науки международного проекта «Геном человека» (начат в 1988 г., задействовано несколько тысяч ученых из более чем 20 стран; стоимость -- до 9 млрд долл.) была поставлена задача -- выяснить последовательность нуклеотидных оснований во всех молекулах ДНК человека и локализовать их, т.е. полностью картировать все гены человека. Ожидается, что затем исследователи определят все функции генов и разработают технологические способы использования этих данных.

К настоящему времени удалось установить, что геном человека состоит из 3 млрд нуклеотидов, 30 млн из которых (около 10% всей хромосомной ДНК) объединяется в 40 тысяч генов. (Можно предложить такую аналогию. Геном человека -- это созданный природой грандиозный текст, состоящий из 3 млрд букв, в качестве которых выступают молекулы-нуклеотиды -- аденин, гуанин, цитозин и тимин.) В 2003 г. было объявлено о завершении важной части проекта -- выявлены последовательности нуклеотидов в 40 тыс. генов человека. (Функции остальных 90% нуклеотидов ДНК не вполне понятны, и сейчас они выясняются.) Интересно, что различия между двумя людьми на уровне ДНК составляют в среднем один нуклеотид на тысячу, они и обусловливают наследственные индивидуальные особенности каждого человека.

4.5 Клонирование и его возможности: вымысел и реальность

В последнее время в средствах массовой информации распространяется много предсказаний, пожеланий, догадок и фантазий о клонировании живых организмов. Особую остроту этим дискуссиям придает обсуждение возможности клонирования человека. Вызывают интерес технологические, этические, философские, юридические, религиозные, психологические аспекты этой проблемы; последствия, которые могут возникнуть при реализации такого способа воспроизводства человека. Как нередко бывает в подобных случаях, стремление к сенсации нередко затемняет сущность проблемы, особенно когда высказываются неспециалисты. И в то же время ее серьезность не вызывает сомнений, поэтому рассмотрим ее детальнее.

Клон -- совокупность клеток или организмов, генетически идентичных одной родоначальной клетке. Клонирование -- метод создания клонов путем переноса генетического материала из одной (донорской) клетки в другую клетку (энуклеированную яйцеклетку) [1]. При этом следует различать перенос ядра эмбриональной клетки и перенос ядра соматической клетки взрослого организма.

1 Энуклеация -- методы, включающие полное удаление ядерного материала из яйцеклетки.

Прежде всего следует отметить, что клоны существуют в природе. Они образуются при бесполовом размножении (партеногенез) микроорганизмов (митоз, простое деление), вегетативном размножении растений. В генетике растений клонирование давно освоено и выяснено, что члены одного клона значительно отличаются по многим признакам; более того, иногда эти различия даже больше, чем в генетически разных популяциях.

Общеизвестный пример естественного клонирования -- однояйцевые близнецы, развившиеся из одной яйцеклетки. У человека это всегда младенцы одного пола и всегда удивительно похожие друг на друга. Рождение однояйцевых близнецов возможно потому, что эмбрион млекопитающего (в том числе человека) на самых ранних стадиях (фазе дробления яйца, именуемой бластуляцией) может быть без видимых отрицательных последствий разделен на отдельные бластомеры (у человека по крайней мере до стадии 8 бластомеров), из которых при определенных условиях могут развиться идентичные по своему генотипу особи. Иначе говоря, из одного 8-клеточного эмбриона у человека можно получить до 8 абсолютно идентичных младенцев. (или девочек, или мальчиков). Но и однояйцевые близнецы хотя и очень похожи друг на друга, но далеко не во всем идентичны.

Заключение

Новые информационные технологии прошли несколько этапов, смена которых определилась развитием научно-технического прогресса, проявлением новых технических средств переработки информации. Основным средством переработки информации является компьютер, который существенно повлиял на использование технических процессов и на качество результатов переработки информации. Введение персональных компьютеров в сферу деятельности и применения телекоммуникационных средств связи определили новый этап развития информационных технологий.

Проблемы использования современных информационных технологий связаны в первую очередь с устареванием информационных технологий. Для самих информационных технологий является вполне естественным то, что они устаревают и заменяются новыми.

Поэтому на современном этапе очень важно выбрать правильное направление прогресса информационных технологий. Это касается и развития материальной базы информационных технологий.

Удовлетворение все возрастающих потребностей общества при неуклонном росте народонаселения земного шара требует резкого повышения эффективности всех сфер деятельности человека, непременным условием которого выступает адекватное повышение эффективности информационного обеспечения. Под информационным обеспечением понимается предоставление необходимой информации с соблюдением требований ее своевременности и актуальности. Предоставление необходимой информации -- одна из важнейших составляющих информатизации общества. Концепция информатизации включает прежде всего создание унифицированной в широком спектре приложений и полностью структурированной информационной технологии, включающей процессы сбора, накопления, хранения, поиска, переработки и выдачи всей информации, необходимой для информационного обеспечения деятельности.

Возможности унификации информационных технологий открывают широкие перспективы развития как самих технологий, так и информатики в целом. На основе естественно-научных знаний уже в настоящее время можно создать и реализовать информационные технологии, унифицированные до такой степени, что, с одной стороны, информация может использоваться в различных сферах деятельности без дополнительной трансформации и адаптации, а с другой -- она может быть стабильной, не нуждаться в принципиальном совершенствовании достаточно продолжительное время.

При любом подходе к постановке целей и задач информационных технологий вычислительные средства в разнообразных формах, начиная от мини ЭВМ, персональных компьютеров и кончая суперЭВМ и сложнейшими вычислительными системами и комплексами, играют первостепенную, основную роль в информационном обеспечении и развитии общества. Информационные технологии прямо или косвенно касаются каждого из нас. Информация стала постоянным спутником человека. Она помогает нам не только ориентироваться в окружающей среде, но и активно воздействовать на нее, выбирая наиболее рациональные и оптимальные способы и применяя современные вычислительные средства.

Список литературы

1. Биотехнология. М., 1984; Сассон А. Биотехнология: свершения и надежды. М.,2.

2. Дубнищева Т.Я. «Концепции современного естествознания». Издательство «ЮКЕА», Новосибирск, 2002.

3. Пуанкаре А. О науке. М., 2002.

4. Хакен Г. Информация и самоорганизация. Макроскопический подход к сложным системам. М., 2000.

5. Капица С.П., Курдюмов С.П., Малинецкий Г.Г. Синергетика и прогнозы будущего. М. 2003.

6. Ващекин Н.П. Концепции современного естествознания. М.: МГУК, 2000 г.

7. Потеев М.И. Концепции современного естествознания, Санкт-Петербург, Питер, 2004 г.


Подобные документы

  • Возможности генной инженерии растений. Создание гербицидоустойчивых растений. Повышение эффективности фотосинтеза, биологической азотфиксации. Улучшение качества запасных белков. Экологические, медицинские и социально-экономические риски генной инженерии.

    контрольная работа [47,1 K], добавлен 15.12.2011

  • Генная инженерия - метод биотехнологии, который занимается исследованиями по перестройке генотипов. Возможности генной инженерии. Перспективы генной инженерии. Уменьшение риска, связанного с генными технологиями.

    реферат [17,3 K], добавлен 04.09.2007

  • Крупнейшие открытия в естествознании на рубеже XIX-XX вв. Вторая половина XX в. как период стремительного развития науки и техники. Основные направления научно-технической революции: изменения в средствах труда, связь науки с материальным производством.

    контрольная работа [18,9 K], добавлен 27.08.2012

  • Понятие глобального эволюционизма, его виды, принципы. Современные научные подходы обоснования глобального эволюционизма. Теория нестационарной Вселенной. Глобальный эволюционизм как мировоззрение. Концепция биосферы и ноосферы. Современная картина мира.

    презентация [2,4 M], добавлен 10.03.2015

  • Понятие картины мира, ее сущность и особенности, история изучения. Сущность принципа глобального эволюционизма, его влияние на изменение представлений о картине мира в XIX веке. Синергетика как теория самоорганизации, ее роль в современном представлении.

    контрольная работа [21,5 K], добавлен 09.02.2009

  • Сущность генной и клеточной инженерии. Основные задачи генной модификации растений, анализ вредности их употребления в пищу. Особенности гибридизации растительных и животных клеток. Механизм получения лекарственных веществ с помощью генной инженерии.

    презентация [615,8 K], добавлен 26.01.2014

  • Развитие науки ХХ в. под влиянием революции в естествознании на рубеже ХIХ–ХХ вв.: открытия, их практическое применение - телефон, радио, кинематограф, изменения в физике, химии, развитие междисциплинарных наук; Психика, интеллект в философских теориях.

    презентация [864,1 K], добавлен 20.02.2011

  • Научные революции и их роль в развитии науки. Планеты Солнечной системы. Основные проблемы антидарвинизма конца XIX - начала XX века. Разработка промышленного пенициллина. Естественнонаучные основы современных технологий: биотехнология, генная инженерия.

    реферат [19,2 K], добавлен 19.04.2017

  • Предпосылки возникновения генетики. Основание мутационной теории. Генетика как наука о наследственности: ее исходные законы и развитие. Генная инженерия: научно-исследовательские аспекты и практические результаты. Клонирование органов и тканей.

    реферат [28,9 K], добавлен 02.01.2008

  • Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.

    курсовая работа [2,5 M], добавлен 11.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.