Зарождение наблюдательной астрономии в Египте, Китае, Индии, Древнем Вавилоне, Древней Греции, Риме

Обозначение причин создания египетской астрономии. Объяснение причины солнечных и лунных затмений астрономами Древнего Китая. Необходимость установления календарных систем в Древнем Вавилоне. Создание пифагорейцами пироцентрической модели Вселенной.

Рубрика Астрономия и космонавтика
Вид реферат
Язык русский
Дата добавления 26.12.2021
Размер файла 65,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1.

Размещено на http://www.allbest.ru/

МАОУ «СШ «КОМПЛЕКС ПОКРОВСКИЙ»

РЕФЕРАТ

Зарождение наблюдательной астрономии в Египте, Китае, Индии, Древнем Вавилоне, Древней Греции, Риме

Выполнил: Иванов Валентин Алексеевич

Ученик 11 класса «И»

Красноярск, 2021

Введение

История астрономии отличается от истории других естественных наук, прежде всего своей особой древностью. В далеком прошлом, когда из практических навыков, накопленных в повседневной жизни и деятельности, еще не сформировалось никаких систематических знаний по физике и химии, астрономия уже была высокоразвитой наукой.

Эта древность и определяет то особое место, которое астрономия занимает в истории человеческой культуры. Другие области естествознания развились в науки только за последние столетия, и этот процесс протекал главным образом в стенах университетов и лабораторий, куда лишь изредка проникал шум бурь политической и общественной жизни. В противоположность этому астрономия уже в древности выступала как наука, как система теоретических знаний, которая значительно превосходила практические потребности людей и стала важным фактором в их идейной борьбе.

История астрономии совпадает с процессом развития человечества, начиная с самого возникновения цивилизации, и относится главным образом к тому времени, когда общество и личность, труд и обряд, наука и религия в основном еще составляли единое неразделимое целое.

На протяжении всех этих столетий учение о звездах было существенной частью философско-религиозного мировоззрения, являвшегося отражением общественной жизни.

Для всех астрономия была не ограниченной отраслью науки, а учением о мире, тесно связанным с их мыслями и чувствами, со всем их мировоззрением в целом. Работу этих ученых вдохновляли не сложившиеся по традиции задачи профессиональной гильдии, а глубочайшие проблемы человечества и всего мира.

История астрономии явилась развитием того представления, которое человечество составило себе о мире.

Астрономия в Древнем Египте

Египетскую астрономию создала необходимость вычислять периоды разлива Нила. Год исчислялся по звезде Сириус, утреннее появление которой после временной невидимости совпадало с ежегодным наступлением половодья. Большим достижением древних египтян было составление довольно точного календаря. Год состоял из 3 сезонов, каждый сезон - из 4 месяцев, каждый месяц - из 30 дней (трех декад по 10 дней). К последнему месяцу прибавляли 5 добавочных дней, что позволяло совмещать календарный и астрономический год (365 дней). Начало года совпадало с подъемом воды в Ниле, то есть с 19 июля, днем восхода самой яркой звезды - Сириуса. Сутки делили на 24 часа, хотя величина часа была не одинаковой, как сейчас, а колебалась, в зависимости от времени года (летом дневные часы были длинными, ночные - короткими, зимой - наоборот). Египтяне хорошо изучили видимое простым глазом звездное небо, они различали неподвижные звезды и блуждающие планеты. Звезды были объединены в созвездия и получили имена тех животных, контуры которых, по мнению жрецов, они напоминали («бык», «скорпион», «крокодил» и др.).

Постоянные наблюдения над небесными светилами дали возможность установить своеобразную карту звездного неба. Такие звездные карты сохранились на потолках храмов и гробниц. В гробнице архитектора и вельможи времени XVIII династии Сенмута изображена интересная астрономическая карта. В центральной ее части можно различить созвездия Большой и Малой Медведицы и известной египтянам Полярной Звезды. В южной части неба изображены Орион и Сириус (Сотис) в виде символических фигур, как обычно изображали созвездия и звезды египетские художники.

Замечательные звездные карты и таблицы расположения звезд сохранились и на потолках царских гробниц XIX и XX династий. При помощи таких таблиц расположения звезд, пользуясь пассажным, визирным инструментом, два египетских наблюдателя, сидящие в направлении меридиана, определяли время ночью. Днем для определения времени пользовались солнечными и водяными часами (позднейшая клепсидра). Древними картами расположения звезд пользовались и позднее, в греко-римскую эпоху; такие карты сохранились в храмах этого времени в Эдфу и Дендера.

К периоду Нового царства относится изложение догадки о том, что соответствующие созвездия находятся на небе и днем; они невидимы только потому, что тогда на небе находится Солнце.

Астрономия в Древнем Китае

Древний Китай

Из стран Восточной Азии наибольшее развитие древняя астрономия получила в Китае. Уже во время легендарной династии Ся (конец III -- начало II тыс. до н. э.) в Китае были две должности придворных астрономов. По легенде, в 2137 г. до н. э. были казнены астрономы Хо и Хи, не сумевшие предсказать затмение. Много астрономических сведений содержится в памятнике китайской литературы «Ши цзин» («Книга песен») (~VI век до н. э.). Примерно в это же время китайцы уточнили продолжительность солнечного года (365,25 дней). Соответственно небесный круг делили на 365,25 градусов или на 28 созвездий (по движению Луны).

Обсерватории появились в XII веке до н. э.. Но гораздо раньше китайские астрологи прилежно регистрировали все необычные события на небе (затмения, кометы -- «звёзды-мётлы», метеорные потоки, новые звёзды). Первая запись о появлении кометы относится к 631 г. до н. э., о лунном затмении -- к 1137 г. до н. э., о солнечном -- к 1328 году до н. э., первый метеорный поток описан в 687 г. до н. э.. Самое раннее однозначно идентифицируемое сообщение о комете Галлея датируется 240 г. до н. э. Возможно, что наблюдавшаяся комета 466 г. до н. э. также являются появлением кометы Галлея. Начиная с 87 г. до н. э. отмечены все последующие появления. В 301 г. впервые замечены пятна на Солнце; позже они регистрировались неоднократно.

Из других достижений китайской астрономии отметим правильное объяснение причины солнечных и лунных затмений, открытие неравномерности движения Луны, измерение сидерического периода сначала для Юпитера (12 лет, точное значение: 11.86), а с III века до н. э. -- и для всех прочих планет, как сидерические, так и синодические, с хорошей точностью.

Календарей в Китае было множество. К VI веку до н. э. был открыт метонов цикл и утвердился лунно-солнечный календарь. Начало года -- день зимнего солнцестояния, начало месяца -- новолуние. Сутки делились на 12 часов (названия которых использовались и как названия месяцев) или на 100 частей.

Календарные реформы в Китае проводились постоянно. Годы объединялись в 60-летний цикл: каждый год посвящался одному из 12 животных (Зодиака) и одной из 5 стихий: вода, огонь, металл, дерево, земля. Каждой стихии соответствовала одна из планет; имелась и шестая -- первичная -- стихия «ци» (эфир). Позже ци делили на несколько видов: инь-ци и ян-ци, и другие, согласовывая с учением Лао Цзы (VI век до н. э.).

Древнейший период развития китайской цивилизации относится ко времени царств Шан и Чжоу. Потребности повседневной жизни, развитие земледелия, ремесла побуждали древних китайцев изучать явления природы и накапливать первичные научные знания. Подобные знания, в частности, математические и астрономические, уже существовали в период Шан (Инь). Об этом свидетельствуют как литературные памятники, так и надписи на костях. Предания, вошедшие в «Шу цзин», рассказывают о том, что уже в древнейшие времена было известно деление года на четыре сезона. Путем постоянных наблюдений китайские астрономы установили, что картина звездного неба, если ее наблюдать изо дня в день в одно и то же время суток, меняется. Они подметили закономерность в появлении на небесном своде определенных звезд и созвездий и временем наступления того или иного сельскохозяйственного сезона года.

Установив эту закономерность, они в дальнейшем уже могли сказать земледельцу, что тот или иной сельскохозяйственный сезон начинается тогда, когда на горизонте появится определенная звезда или созвездие. Такие выдающиеся ориентировочные светила (по-китайски называемые «чэн») наблюдались астрономами древности в вечернее время суток сразу же после захода Солнца или в утреннее, перед самым восходом его.

Нужно отметить, что если египтяне для своей календарной системы пользовались восходом Сириуса, халдейские жрецы - гелиакическим восходом Капеллы, то у древних китайцев мы можем проследить смену нескольких «чэн»: звезды «Дахо» (Скорпиона); созвездия «Цан» (Орион); созвездия «Бэй доу» - «Северный ковш» (Большая Медведица). Эти «чэн», как явствует из китайских источников, употреблялись во времена, предшествующие Чжоуской эпохе, т.е. ранее XII в. до н.э.

С древних времен в Китае год делился на четыре сезона. Очень важным было наблюдение акронического восхода «Огненной звезды» (Антарес). Ее восход происходил около момента весеннего равноденствия. За ее появлением на небесном своде следили астрономы и извещали жителей о наступлении весны.

Существует легенда, что император Яо приказал своим ученым составить календарь, которым могли бы пользоваться все жители страны. Для сбора сведений и производства необходимых астрономических наблюдений за Солнцем, Луной, пятью планетами и звездами в разных местах государства он послал четырех своих высших чиновников, ведавших при дворе астрономическими работами, братьев Си и братьев Хэ, в четырех направлениях: на север, юг, восток и запад. В книге «Шуцзин» глава «Яодянь» («Устав владыки Яо») в записи, описывающий период времени между 2109 и 2068 гг. до н.э. говорится: «владыка Яо приказывает своим астрономам Си и Хо поехать на окраины страны на восток, юг, запад и север для определения по звездному небу четырех времен года, а именно весеннего и осеннего равноденствий и зимнего и летнего солнцестояний. Далее Яо указывает, что продолжительность года равна 366 дням и дает распоряжение пользоваться методом «вставочной тринадцатой Луны» для «правильности календаря».

Календарь, связанный с сезонами, определяемыми по движению Солнца, являлся солнечным календарем, он был удобен для земледельца. Продолжительность тропического года китайцы знали уже в глубокой древности. В «Яодянь» говорится: «широко известно, что три сотни дней и шесть декад и шесть дней составляют полный год».

Вместе с тем в Китае, да, очевидно, не только в Китае, а почти у всех народов на известной стадии развития, с незапамятных времен находился в употреблении календарь, связанный со счетом дней по фазам Луны. Древнекитайские астрономы установили, что период от новолуния до следующего новолуния (синодический месяц) равняется примерно двадцати девяти с половиной дням.

Трудность сочетания солнечного и лунного календарей состоит в том, что продолжительность тропического года и синодического месяца несоизмеримы. Поэтому для их сочетания применялся вставной месяц. В «Яодянь» сказано: «четыре времени года сочетаются вставным месяцем».

В 104 г. до н. э. в Китае была созвана обширная конференция астрономов, посвященная вопросу улучшения действовавшей в то время календарной системы «Чжуань-сюй ли. После оживленной дискуссии на конференции была принята официальная календарная система «Тайчу ли», названная так в честь императора Тай-чу.

Следует сказать, что если календари эпох Инь и Чжоу давали только сведения о том, какой день следует считать началом года, как распределяются дни по месяцам, каким образом вставляется добавочный месяц или день, то календарь «Тайчу ли» помимо указанных сведений содержал данные о продолжительности года и отдельных сельскохозяйственных сезонов, о моментах новолуния и полнолуния, о продолжительности каждого месяца в году, о моментах затмений Луны, сведения о пяти планетах.

Были вычислены и моменты затмений Солнца, но так как люди в древности боялись этого явления, то данные о затмении Солнца в текст календаря, который получил широкое распространение, не были включены. В календаре были указаны также «удачные дни», когда небесные тела, по мнению астрономов, расположены благоприятно для свершения или начала тех или иных дел.

Календарь «Тайчу ли» был первой официальной календарной системой, принятой китайским правительством.

Астрономия в Древней Индии

Индия

Основная статья: Индийская астрономия

У индийцев заметных успехов в астрономии -- в отличие от математики -- не было; позже они охотно переводили и комментировали греческие сочинения. Наиболее ранние сведения о знаниях индийцев в области естественных наук относятся к эпохе Индской цивилизации, датирующейся III тысячелетием до н. э. В ведийскую эпоху в Индии, Вселенная считалась разделённой на три различные части: небо, небесный свод и Землю, о чём свидетельствует ведийская литература тех времён. Учёные Индии, в отличие от вавилонских и древнекитайских, практически не интересовались изучением звёзд и не составляли звёздных каталогов.

В V веке н. э. астроном и математик Ариабхата высказал догадку, что планеты вращаются вокруг своей оси. Он также правильно объяснил причины солнечных и лунных затмений и предсказал несколько предстоящих затмений. Его взгляды вызвали негодование правоверных индуистов, к которым присоединился даже Брахмагупта:

Последователи Ариабхаты говорят, что Земля движется, а небо покоится. Но в их опровержение было сказано, что если бы это было так, то камни и деревья упали бы с Земли…

Среди людей есть такие, которые думают, что затмения вызываются не Головой [дракона Раху]. Это абсурдное мнение, ибо это она вызывает затмения, и большинство жителей мира говорят, что именно она вызывает их. В Ведах, которые есть Слово Божие, из уст Брахмы говорится, что Голова вызывает затмения. Напротив того, Ариабхата, идя наперекор всем, из вражды к упомянутым священным словам утверждает, что затмение вызывается не Головой, а только Луной и тенью Земли… Эти авторы должны подчиниться большинству, ибо всё, что есть в Ведах -- священно.

Хотя после мусульманского завоевания (XI век) наука в Индии пришла в упадок, некоторые крупные научные достижения принадлежат в XII веке Бхаскара II.

Наиболее ранние сведения о естественнонаучных знаниях индийцев относятся к эпохе Индской цивилизации, датирующейся III тысячелетием до н.э. До нас дошли краткие записи, сделанные на печатях и амулетах и значительно реже на орудиях и оружии. Как правило, крупные города Индии располагались или на берегу океана, или вдоль побережья больших судоходных рек. Для ориентации при передвижении судов в океане требовалось изучать небесные тела и созвездия. Другим побудительным мотивом развития астрономии была потребность измерять интервалы времени.

Вследствие общности черт древнеиндийской цивилизации с древнейшими культурами Вавилона и Египта и наличия между ними контактов, хотя и не регулярных, можно полагать, что ряд астрономических явлений, известных в Вавилоне и Египте, был также известен в Индии.

Сведения по астрономии можно найти в имеющей религиозно-философское направление ведической литературе, относящейся ко II-I тысячелетию до н.э. Там содержатся, в частности, сведения о солнечных затмениях, интеркаляциях с помощью тринадцатого месяца, список накшатр - лунных стоянок; наконец, космогонические гимны, посвященные богине Земли, прославление Солнца, олицетворение времени как начальной мощи, также имеют определенное отношение к астрономии.

В ведическую эпоху Вселенная считалась разделенной на три различные части - региона: Земля, небесный свод и небо. Каждый регион в свою очередь также делился на три части. Солнце во время своего прохождения через Вселенную освещает все эти регионы и их составляющие. Эти идеи неоднократно выражались в гимнах и строфах «Ригведы» - самой ранней по времени составления.

В ведической литературе встречается упоминание о месяце - одной из ранних естественных единиц времени, промежутке между последовательными полнолуниями или новолуниями. Месяц делился на две части, две естественные половины: светлая половина - шукла - от полнолуния до новолуния, и темная половина - кришна - от полнолуния до новолуния. Первоначально лунный синодический месяц определялся в 30 дней, затем он был более точно вычислен в 29,5 дней. Звездный месяц был больше 27, но меньше 28 дней, что нашло свое дальнейшее выражение в системе накшатр - 27 или 28 лунных стоянок.

Сведения о планетах упоминаются в тех разделах ведической литературы, которые посвящены астрологии. Семь адитья, упомянутые в «Ригведе», можно трактовать как Солнце, Луну и пять известных в древности планет - Марс, Меркурий, Юпитер, Венера, Сатурн.

Звезды уже давно использовались для ориентировки в пространстве и во времени. Тщательные наблюдения показали, что расположение звезд в один и тот же час ночи со временем года постепенно изменяется. Постепенно, то же самое расположение звезд наступает раньше; самые западные звезды исчезают в вечерних сумраках, а на рассвете, на восточном горизонте появляются новые звезды, восходя все раньше с каждым последующим месяцем. Это утреннее появление и вечернее исчезновение, определяемое годичным движением Солнца по эклиптике, повторяется каждый год в одну и ту же дату. Поэтому было очень удобно использовать звездные явления для фиксирования дат солнечного года.

В отличие от вавилонских и древнекитайских астрономов, ученые Индии практически не интересовались изучением звезд как таковых и не составляли звездных каталогов. Их интерес к звездам в основном сосредотачивался на тех созвездиях, которые лежали на эклиптике или вблизи нее. Выбором подходящих звезд и созвездий они смогли получить звездную систему для обозначения пути Солнца и Луны. Эта система среди индийцев получила название «системы накшатры», среди китайцев - «системы сю», среди арабов - «системы маназилей».

Самые ранние сведения о накшатрах встречаются в «Ригведе», где термин «накшатра» употребляется как для обозначения звезд, так и для обозначения лунных стоянок. Лунные стоянки представляли собой небольшие группы звезд, удаленные друг от друга примерно на 13°, так что Луна при своем движении по небесной сфере каждую следующую ночь оказывалась в следующей группе.

Полный список накшатр впервые появился в «Черной Яджурведе» и «Атхарваведе», которые были составлены позднее «Ригведы». Древнеиндийские системы накшатр соответствуют лунным стоянкам, приведенным в современных звездных каталогах.

Так, 1-я накшатра «Ашвини» соответствует звездам b и g созвездия Овен; 2-я, «Бхарани» - части созвездия Овен; 3-я, «Криттика» - созвездию Плеяды; 4-я, «Рохини» - части созвездия Телец; 5-я, «Мригаширша» - части созвездия Орион и т.д.

В ведической литературе приводится следующее деление дня: 1 сутки состоят из 30 мухурта, мухурта в свою очередь делится на кшипру, этархи, идани; каждая единица меньше предыдущей в 15 раз.

Таким образом, 1 мухурта = 48 минутам, 1 кшипра = 3,2 минуты; 1 этархи = 12,8 секунды, 1 идани = 0,85 секунды.

Продолжительность года чаще всего составляла 360 дней, которые делили на 12 месяцев. Поскольку это на несколько дней меньше истинного года, к одному или нескольким месяцам прибавляли 5-6 дней или через несколько лет добавляли тринадцатый.

Следующие сведения по индийской астрономии относятся к первым векам нашей эры. Сохранились несколько трактатов, а также сочинение «Ариабхатийа» крупнейшего индийского математика и астронома Ариабхаты I, родившегося в 476 г. В своем сочинении Ариабхата высказал гениальную догадку: ежедневное вращение небес - только кажущееся вследствие вращения Земли вокруг своей оси. Это было чрезвычайно смелой гипотезой, которая не была принята последующими индийскими астрономами.

Астрономия в Древнем Вавилоне

Вавилонская культура - одна из древнейших культур на земном шаре - восходит своими корнями к IV тысячелетию до н. э. Древнейшими очагами этой культуры были города Шумера и Аккада, а также Элама, издавна связанного с Двуречьем. Вавилонская культура оказала большое влияние на развитие древних народов Передней Азии и античного мира. Одним из наиболее значительных достижений шумерийского народа было изобретение письменности, появившейся в середине IV тысячелетия до н.э. Именно письменность позволила установить связь не только между современниками, но даже между людьми различных поколений, а также передать потомству важнейшие достижения культуры.

Развитие хозяйственной жизни, главным образом земледелия, приводило к необходимости установления календарных систем, которые возникли уже в шумерийскую эпоху. Для создания календаря надо было иметь некоторые знания в области астрономии. Древнейшие обсерватории устраивались обычно на верхней площадке храмовых башен (зиккуратов), развалины которых были найдены в Уре, Уруке и Ниппуре. Вавилонские жрецы умели отличать звезды от планет, которым были даны особые названия. Сохранились перечни звезд, которые были распределены по отдельным созвездиям. Была установлена эклиптика (годичный путь Солнца по небесной сфере), которую разделили на 12 частей и соответственно на 12 зодиакальных созвездий, многие названия которых (Близнецы, Рак, Скорпион, Лев, Весы и т. д.) сохранились до наших дней. В различных документах регистрировали наблюдения над планетами, звездами, кометами, метеорами, солнечными и лунными затмениями.

О значительном развитии астрономии говорят данные, фиксирующие моменты восхода, захода и кульминации различных звезд, а также умение вычислять промежутки времени, их разделяющие.

В VIII-VI вв. вавилонские жрецы и астрономы накопили большое количество знаний, имели представление о процессии (предварения равноденствий) и даже предсказывали затмения.

Некоторые наблюдения и знания в области астрономии позволили построить особый календарь, отчасти основанный на лунных фазах. Основными календарными единицами счета времени были сутки, лунный месяц и год. Сутки делились на три стража ночи и три стража дня. Одновременно с этим сутки делились на 12 часов, а час - на 30 минут, что соответствует шестеричной системе счисления, лежавшей в основе вавилонской математики, астрономии и календаря. Очевидно, и в календаре отразилось стремление разделить сутки, год и круг на 12 больших и 360 малых частей.

Начало каждого лунного месяца и его продолжительность определялись каждый раз специальными астрономическими наблюдениями, так как начало каждого месяца должно было совпадать с новолунием. Различие между календарным и тропическим годом исправлялось при помощи вставочного месяца, что устанавливалось распоряжением государственной власти.

Астрономия в Древней Греции

Древняя Греция

Основная статья: Астрономия Древней Греции

Эллины, судя по всему, ещё в гомеровские времена интересовались астрономией, их карта неба и многие названия остались в современной науке. Первоначально знания были неглубоки -- например, утренняя и вечерняя Венера считались разными светилами (Фосфор и Геспер); уже шумеры знали, что это одно и то же светило. Исправление ошибки «раздвоения Венеры» приписывают Пифагору и Пармениду.

Полюс мира в это время уже ушёл от Альфы Дракона, но ещё не придвинулся к Полярной; может быть, поэтому в Одиссее ни разу не упоминается направление на север.

Пифагорейцы предложили пироцентрическую модель Вселенной, в которой звёзды, Солнце, Луна и шесть планет обращаются вокруг Центрального Огня (Гестии). Чтобы всего получилось священное число -- десять -- сфер, шестой планетой объявили Противоземлю (Антихтон). Как Солнце, так и Луна, по этой теории, светили отражённым светом Гестии. Это была первая математическая система мира -- у остальных древних космогонистов работало скорее воображение, чем логика.

Расстояния между сферами светил у пифагорейцев соответствовали музыкальным интервалам в гамме; при вращении их звучит «музыка сфер», неслышимая нами. Пифагорейцы считали Землю шарообразной и вращающейся, отчего и происходит смена дня и ночи. Впрочем, отдельные пифагорейцы (Аристарх Самосский и др.) придерживались гелиоцентрической системы. У пифагорейцев возникло впервые и понятие эфира, но чаще всего этим словом обозначался воздух. Только Платон обособил эфир как отдельную стихию.

Платон, ученик Сократа, уже не сомневался в шарообразности Земли (даже Демокрит считал её диском). По Платону, Космос не вечен, так как всё, что ощущается, есть вещь, а вещи старятся и умирают. Более того, само Время родилось вместе с Космосом. Далеко идущие последствия имел призыв Платона к астрономам разложить неравномерные движения светил на «совершённые» движения по окружностям.

На этот призыв откликнулся Евдокс Книдский, учитель Архимеда и сам ученик египетских жрецов. В своих (не сохранившихся) сочинениях он изложил кинематическую схему движения планет с несколькими наложенными круговыми движениями, всего по 27 сферам. Правда, согласие с наблюдениями для Марса было плохим. Дело в том, что орбита Марса заметно отличается от круговой, так что траектория и скорость движения планеты по небу меняются в широких пределах. Евдокс также составил звёздный каталог. вселенная астрономия затмение календарный

Аристотель, автор «Физики», тоже был учеником Платона. В его сочинениях было немало рациональных мыслей; он убедительно доказал, что Земля -- шар, опираясь на форму тени Земли при лунных затмениях, оценил окружность Земли в 400 000 стадиев, или около 70 000 км -- завышено почти вдвое, но для того времени точность неплохая. Но встречаются и множество ошибочных утверждений: разделение земных и небесных законов мира, отрицание пустоты и атомизма, четыре стихии как первоосновы материи плюс небесный эфир, противоречивая механика: «стрелу в полёте подталкивает воздух» -- даже в Средневековье это нелепое положение высмеивалось (Филопон, Буридан). Метеоры он считал атмосферными явлениями, родственными молнии.

Концепции Аристотеля часть философов канонизировала ещё при его жизни, и в дальнейшем многие противоречащие им здравые идеи встречались враждебно -- например, гелиоцентризм Аристарха Самосского. Аристарх впервые пытался также измерить расстояние до Солнца и Луны и их диаметры; для Солнца он ошибся на порядок (получилось, что диаметр Солнца в 250 раз больше земного), но до Аристарха все полагали, что Солнце меньше Земли. Именно поэтому он и решил, что в центре мира находится Солнце. Более точные измерения углового диаметра Солнца выполнил Архимед, в его пересказе нам и известны взгляды Аристарха, сочинения которого утрачены.

Эратосфен в 240 г. до н. э. довольно точно измерил длину земной окружности и наклон эклиптики к экватору (т.е наклон земной оси); он также предложил систему високосов, позже названную юлианским календарём.

С III века до н. э. греческая наука усвоила достижения вавилонян, в том числе -- в астрономии и математике. Но греки пошли значительно дальше. Около 230 года до н. э. Аполлоний Пергский разработал новый метод представления неравномерного периодического движения через базовую окружность -- деферент -- и кружащуюся вокруг деферента вторичную окружность -- эпицикл; само светило движется по эпициклу. В астрономию этот метод ввёл выдающийся астроном Гиппарх, работавший на Родосе.

Гиппарх открыл отличие тропического и сидерического годов, уточнил длину года (365,25 -- 1/300 дней). Методика Аполлония позволила ему построить математическую теорию движения Солнца и Луны. Гиппарх ввёл понятия эксцентриситета орбиты, апогея и перигея, уточнил длительность синодического и сидерического лунных месяцев (с точностью до секунды), средние периоды обращения планет. По таблицам Гиппарха можно было предсказывать солнечные и лунные затмения с неслыханной для того времени точностью -- до 1-2 часов. Кстати, именно он ввёл географические координаты -- широту и долготу. Но главным результатом Гиппарха стало открытие смещения небесных координат -- «предварения равноденствий». Изучив данные наблюдений за 169 лет, он нашёл, что положение Солнца в момент равноденствия сместилось на 2°, или на 47" в год (на самом деле -- на 50,3").

В 134 году до н. э. в созвездии Скорпиона появилась новая яркая звезда. Чтобы облегчить слежение за изменениями на небе, Гиппарх составил каталог для 850 звёзд, разбив их на 6 классов по яркости.

46 год до н. э.: введён юлианский календарь, разработанный александрийским астрономом Созигеном по образцу египетского гражданского.

Систему Гиппарха завершил великий александрийский астроном, математик, оптик и географ Клавдий Птолемей. Он значительно усовершенствовал сферическую тригонометрию, составил таблицу синусов (через 0,5°). Но главное его достижение -- «Мегале синтаксис» (Большое построение); арабы превратили это название в «Аль Маджисти», отсюда позднейшее «Альмагест». Труд содержит фундаментальное изложение геоцентрической системы мира.

Будучи принципиально неверной, система Птолемея, тем не менее, позволяла с достаточной для того времени точностью предвычислять положения планет на небе и потому удовлетворяла, до известной степени, практическим запросам в течение многих веков.

Системой мира Птолемея завершается этап развития древнегреческой астрономии.

Распространение христианства и развитие феодализма в Средние века привели к потере интереса к естественным наукам, и развитие астрономии в Европе затормозилось на многие столетия.

Астрономические знания, накопленные в Египте и Вавилоне заимствовали древние греки. В VI в. до н. э. греческий философ Гераклит высказал мысль, что Вселенная всегда была, есть и будет, что в ней нет ничего неизменного - все движется, изменяется, развивается. В конце VI в. до н. э. Пифагор впервые высказал предположение, что Земля имеет форму шара. Позднее, в IV в. до н. э. Аристотель при помощи остроумных соображений доказал шарообразность Земли. Он утверждал, что лунные затмения происходят, когда Луна попадает в тень, отбрасываемую Землей. На диске Луны мы видим край земной тени всегда круглым. И сама Луна имеет выпуклую, скорее всего, шарообразную форму.

В то же время Аристотель считал Землю центром Вселенной, вокруг которой обращаются все небесные тела. Вселенная, по мнению Аристотеля, имеет конечные размеры - ее как бы замыкает сфера звезд. Своим авторитетом, который и в древности, и в средние века считался непререкаемым, Аристотель закрепил на много веков ложное мнение, что Земля - неподвижный центр Вселенной. И все-таки, не все ученые поддерживали точку зрения Аристотеля по этому вопросу.

Живший в III в. до н. э. Аристарх Самосский полагал, что Земля обращается вокруг Солнца. Расстояние от Земли до Солнца он определил в 600 диаметров Земли (в 20 раз меньше действительного). Однако это расстояние Аристарх считал ничтожным по сравнению с расстоянием от Земли до звезд.

Эти гениальные мысли Аристарха, через много веков подтвержденные открытием Коперника, не были поняты современниками. Аристарха обвинили в безбожии и осудили на изгнание, а его правильные догадки были забыты.

В конце IV в. до н. э. после походов и завоеваний Александра Македонского греческая культура проникла во все страны Ближнего Востока. Возникший в Египте город Александрия стал крупнейшим культурным центром.

В Александрийской академии, объединившей ученых того времени, в течение нескольких веков велись астрономические наблюдения уже при помощи угломерных инструментов. В III в. до н. э. александрийский ученый Эратосфен впервые определил размеры земного шара. Это ему удалось сделать при помощи прибора, называемого скафисом. Скафис представляет собой чашу в форме полушария. В центре ее отвесно укреплялась игла. Тень от иглы падала на внутреннюю поверхность скафиса. Для измерения отклонения Солнца от зенита (в градусах) на внутренней поверхности скафиса проводились окружности, помеченные числами. Если, например, тень доходила до окружности, помеченной числом 40, Солнце стояло на 40° ниже зенита. Построив чертеж, Эратосфен правильно заключил, что Александрия отстоит от Сиены на 1/50 окружности Земли. Чтобы узнать окружность Земли, оставалось измерить расстояние от Александрии до Сиены и умножить его на 50. Это расстояние было определено по числу дней, которые тратили караваны верблюдов на переход между городами.

Размеры земли, определенные Эратосфеном (средний радиус Земли у него получился равным 6290 км - в переводе на современные единицы измерения) близки к тем, которые определены точными приборами в наше время.

Во II в. до н. э. великий александрийский астроном Гиппарх, используя уже накопленные наблюдения, составил каталог более, чем 1000 звезд с довольно точным определением их положения на небе. Гиппарх разделил звезды на группы и к каждой из них отнес звезды примерно одинакового блеска. Звезды с наибольшим блеском он назвал звездами первой величины, звезды с несколько меньшим блеском - звездами второй величины и т.д. Гиппарх правильно определил размеры Луны и ее расстояние от Земли. Он вывел продолжительность года с очень малой ошибкой - только на 6 минут. Позднее, в I в. до н. э., александрийские астрономы участвовали в реформе календаря, предпринятой Юлием Цезарем. Этой реформой был введен календарь, действовавший в Западной Европе до XVI - XVII вв., а в нашей стране - до 1917 года.

Гиппарх и другие астрономы его времени много внимания уделял наблюдениям за движением планет. Эти движения представлялись им крайне запутанными. В самом деле, направление движения планет по небу как будто периодически меняется - планеты как бы описывают в небе петли. Эта кажущаяся сложность в движении планет вызывается движением Земли вокруг Солнца - ведь мы наблюдаем планеты с Земли, которая сама движется. И когда Земля «догоняет» другую планету, то кажется, что планета как бы останавливается, а потом движется назад. Но древние астрономы, считавшие Землю неподвижной, думали, что планеты действительно совершают такие сложные движения вокруг Земли.

Во II в. до н. э. александрийский астроном Птолемей выдвинул свою систему мира, позднее названной геоцентрической: неподвижная Земля в ней была расположена в центре Вселенной. Вокруг Земли, по Птолемею, движутся (в порядке удаленности от Земли) Луна, Меркурий, Венера, Солнце, Марс, Юпитер, Сатурн, звезды. Но если движение Луны, Солнца, звезд правильное, круговое, то движение планет гораздо сложнее. Каждая из планет, по мнению Птолемея, движется не вокруг Земли, а вокруг некоторой точки. Точка эта, в свою очередь, движется по кругу, в центре которого находится Земля. Круг, описываемый планетой вокруг точки, Птолемей назвал эпициклом, а круг, по которому движется точка относительно Земли - деферентом.

Система мира Аристотеля-Птолемея казалась правдоподобной. Она давала возможность заранее вычислять движение планет на будущее время - это было необходимо для ориентировки в пути во время путешествий и для календаря. Геоцентрическую систему признавали почти полторы тысячи лет!

Астрономия в Древнем Риме

Знания астрономии древних римлян развивались в точности с эллинской наукой. После поглощения греческой цивилизации римской, происходит дальнейшее развитие всех наук, в том числе и астрономии, под патронатом римской империи.

В 46 году до н.э. вступает в силу юлианский календарь. Выдающийся астроном Гиппарх ввёл методику неравномерного движения сфер по базовой окружности через определённые периоды, уточнил длину года, выстроил математическую теорию движений Солнца и Луны. Также он ввёл такие понятия, как: эксцентриситет орбиты, апогей и перигей, вывел отличия между тропическим и сидерическим годами. Главным результатом работы Гиппарха представилось открытие системы смещение небесных координат, названной «предварением равноденствий». Изучая данные небесных наблюдений за 169 лет, он пришёл к выводу, что положение Солнца в период равноденствий изменяется на несколько градусов. Работу над системой Гиппарха продолжил александрийский учёный-астроном и географ Клавдий Птолемей. Он составил таблицу синусов, значительно усовершенствовав науку тригонометрию, и создал труд «Мегале синтаксис», в котором изложил фундаментальные положения геоцентрической системы мира. Система Птолемея была совершенно неверна, но она позволяла предвычислить местоположение планет на небе, достаточно точно для своего времени. Использованием системы Птолемея заканчивается древний период развития астрономии.

Развитие феодализма и распространение религии христианства в Средние века привели к утрачиванию интереса к естественным наукам, развитие астрономии в странах Европы было приостановлено на несколько столетий. В связи с социальными и политическими потрясениями античного мира и раннего средневековья учения астрономии не находят своего слушателя в странах Средиземноморья.

Однако развитие астрономии на рубеже средних веков происходит в странах Среднего Востока и Центральной Азии, строятся обсерватории и «дома мудрости» в Багдаде и Самарканде. Кульминационным событием в эту эпоху становится построение оригинальной обсерватории учёного Тама Улугбека, внука жестокого завоевателя восточных земель Тамерлана. Он соорудил огромный сектант с радиусом в 40 метров, с помощью которого проводил очень точные наблюдения Солнца, Луны, звёзд и планет. Благодаря построенной обсерватории Улугбек составил каталог положений тысячи звёзд и расчёт движения планет. Этим каталогом пользовались учёные-астрономы вплоть до 17-го века, что подтверждает точность измерительных работ Улугбека и значимость его астрономических открытий для истории.

Заключение

Астрономические явления вошли в быт древнего человека как часть окружающей его среды, тесно связанной со всей его деятельностью. Наука началась не с абстрактного стремления к истине и знанию; она возникла как часть жизни, вызванная зарождением социальных потребностей.

Кочевникам, рыбакам, торговцам-путешественникам необходимо было ориентироваться в пространстве. Для этой цели они использовали небесные тела: днем - Солнце, ночью - звезды. Таким образом, пробудился их интерес к звездам.

Вторым побудительным мотивом, приведшим к тщательному наблюдению небесных явлений, была потребность измерять интервалы времени. Старейшим практическим применением астрономии, помимо навигации, был счет времени, из которого позднее развилась наука. Периоды Солнца и Луны (т.е. год и месяц) являются естественными единицами счета времени.

Кочевые народы регулируют свой календарь целиком по синодическому периоду 29 1/2 дней, через который фазы Луны повторяются. Луна стала одним из наиболее важных объектов естественного окружения человека. Это послужило основой для установления культа Луны, поклонению ей как живому существу, которое своим возрастанием и убыванием регулировало время.

Лунный период является самой древней календарной единицей. Но даже при чисто лунном счете такой важный период природы, как год, проявляется уже в самом факте существования двенадцати месяцев и двенадцати последовательных названий месяцев, указывающих на их сезонный характер: месяц дождей, месяц молодых животных, месяц сева или жатвы. Постепенно развивается тенденция к более близкому согласованию лунного и солнечного счета.

Земледельческие народы, по характеру своей работы тесно связаны с солнечным годом. Сама природа как бы навязывает его народам, живущим в высоких широтах.

Большинство земледельческих народов используют в своих календарях, как месяц, так и год. Здесь, однако, возникают затруднения, потому что даты полнолуния и новолуния смещаются в солнечном году относительно календарных дат, так что фазы Луны не могут указать определенной сезонной даты. Лучшее решение в этом случае дают звезды, движение которых уже было известно, поскольку их использовали для ориентировки в пространстве и во времени.

Необходимость разделять и регулировать время разными путями приводили различные первобытные народы к наблюдению небесных тел и, следовательно, к началу астрономического знания. Из этих истоков на заре цивилизации и возникла наука, прежде всего среди народов наиболее древней культуры - на Востоке.

Список использованной литературы

1. Арманд Д. Л. Как впервые измерили окружность Земли. Детская энциклопедия. В 12 т. Т 1. Земля. М.: Просвещение, 1966.

2. Бакулин П. И., Кононович Э. В., Мороз В. И. Курс общей астрономии. М.: Наука, 1977.

3. Перель Ю. Г. Астрономия в древности. Детская энциклопедия. В 12 т. Т 2. Мир небесных тел. М.: Просвещение, 1966.

4.Википедия. https://ru.wikipedia.org (Статья: «Истории астрономии»).

Размещено на Allbest.ru


Подобные документы

  • Астрономия - наиболее древняя среди естественных наук, история ее развития. Изучение видимых движений Солнца и Луны в Древнем Китае за 2 тысячи лет до н.э. Система мира Птолемея. Возникновение науки астрофизики. Современные достижения астрономии.

    презентация [9,1 M], добавлен 05.11.2013

  • История возникновения астрономии, первые записи астрономических наблюдений. Создание греческими астрономами геометрической теории эпициклов, которая легла в основу геоцентрической системы мира Птолемея (II в. н.э.). Гелиоцентрическая система мира Коперник

    презентация [794,1 K], добавлен 28.05.2012

  • Основные этапы в истории астрономии. История создания астрономических приборов. Развитие конструкций астрономических инструментов в Китае и Древней Греции. Распространение армиллярных сфер. Первые телескопические наблюдения, астрономические часы.

    контрольная работа [1,1 M], добавлен 26.05.2010

  • Древнее представление о Вселенной. Объекты астрономического исследования. Расчеты небесных явлений по теории Птолемея. Особенности влияния астрономии и астрологии. Гелиоцентрическая система мира с Солнцем в центре. Исследование Дж. Бруно в астрономии.

    реферат [22,7 K], добавлен 25.01.2010

  • Предмет астрономии. Источники знаний в астрономии. Телескопы. Созвездия. Звездные карты. Небесные координаты. Работа с картой. Определение координат небесных тел. Кульминация светил. Теорема о высоте полюса мира. Измерение времени.

    учебное пособие [528,1 K], добавлен 10.04.2007

  • Наблюдения затмившегося Солнца и их научное значение. Проблемы изучения солнечных затмений. Ранний период постановки задач (ХХ век). Задачи, решаемые при наблюдениях солнечных затмений на современном этапе развитии науки. Представление о коронографах.

    реферат [896,6 K], добавлен 26.07.2010

  • История создания лазера. Принцип действия и устройство лазера. Применение лазеров в астрономии. Лазерная система стабилизации изображений у телескопов. Создание искусственных опорных "звезд". Лазерный термоядерный синтез. Измерение расстояния до Луны.

    реферат [1,4 M], добавлен 17.03.2015

  • Зарождение теории о движении Солнца и планет в Древней Греции. Первые научные знания в области астрономии. Гелиоцентрическая система в варианте Н. Коперника, характеристика произведения "О вращениях небесных сфер". Значение гелиоцентризма в истории науки.

    контрольная работа [1,9 M], добавлен 18.05.2009

  • Астрономия каменного века и древних цивилизаций. Особенности развития астрономии как науки от Средневековья до ХХ века. Разделы современной астрономии. Экспертная оценка будущего астрономии. Современная популярность и востребованность данной профессии.

    реферат [56,6 K], добавлен 03.03.2012

  • Изучение пироцентрической, геоцентрической и гелиоцентрической моделей Вселенной. Современные исследования космологических моделей. Нобелевская премия за открытие ускоренного расширения Вселенной. Измерения гравитационного поля в скоплениях галактик.

    курсовая работа [3,7 M], добавлен 03.06.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.