Трубопроводный транспорт нефти

Развитие нефтепроводного транспорта в России. Свойства нефти, влияющие на технологию ее транспорта. Зависимость плотности нефти от температуры. Необходимый перепад давления для осуществления перекачки. Объекты и сооружения магистрального нефтепровода.

Рубрика Транспорт
Вид дипломная работа
Язык русский
Дата добавления 22.10.2018
Размер файла 5,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Протекторная защита

Принцип действия протекторной защиты аналогичен работе гальванического элемента (рис. 16).

Два электрода (трубопровод 1 и протектор 2, изготовленный из более электроотрицательного металла, чем сталь) опущены в почвенный электролит и соединены проводником 3. Так как материал протектора является более электроотрицательным, то под действием разности потенциалов происходит направленное движение электронов от протектора к трубопроводу по проводнику 3. Одновременно ион-атомы материала протектора переходят в раствор, что приводит к его разрушению. Сила тока при этом контролируется с помощью контрольно-измерительной колонки 4.

Таким образом, разрушение металла все равно имеет место. Но не трубопровода, а протектора.

Теоретически для защиты стальных сооружений от коррозии могут быть использованы все металлы, расположенные в электрохимическом ряду напряжений левее от железа, т.к. они более электроотрицательны. Практически же протекторы изготавливаются только из материалов, удовлетворяющих следующим требованиям:

- разность потенциалов материала протектора и железа (стали) должна быть как можно больше;

- ток, получаемый при электрохимическом растворении единицы массы протектора (токоотдача), должен быть максимальным;

- отношение массы протектора, израсходованной на создание защитного тока, к общей потере массы протектора (коэффициент использования) должно быть наибольшим.

Данным требованиям в наибольшей степени удовлетворяют магний, цинк и алюминий, сплавы которых и используются для изготовления протекторов.

Рис. 16. Принципиальная схема протекторной зашиты: 1 - трубопровод; 2 - протектор; 3 - проводник; 4 - контрольно-измерительная колонка

Рис. 17. Принципиальные схемы электрических дренажей: а - прямой; 6 - поляризованный; в - усиленный

Протекторную защиту рекомендуется использовать в грунтах с удельным сопротивлением не более 50 Ом * м.

Применяют защиту протекторами, расположенными как поодиночке, так и группами. Кроме того, защита от коррозии трубопроводов может быть выполнена ленточными протекторами.

Защита от блуждающих токов. Механизм наведения блуждающих токов на подземные металлические сооружения и их разрушения

Появление блуждающих токов в подземных металлических сооружениях связано с работой электрифицированного транспорта и электрических устройств, использующих землю в качестве токопровода. Источниками блуждающих токов являются линии электрифицированных железных дорог, трамваев, линии электропередачи, установки катодной защиты и др.

При работе электрифицированного транспорта ток совершает движение от положительной шины тяговой подстанции по контактному проводу к двигателю транспортного средства, а затем через колеса попадает на рельсы, по которым возвращается к отрицательной шине тяговой подстанции. Однако из-за нарушения перемычек между рельсами (увеличение сопротивления цепи), а также низкого переходного сопротивления «рельсы-грунт» часть тока стекает в землю. Здесь она натекает на подземные металлические сооружения, имеющие низкое продольное сопротивление, и распространяется до места с нарушенной изоляцией, расположенного недалеко от сооружения с еще меньшим продольным сопротивлением. В месте стекания блуждающих токов металл сооружения теряет свои ион-атомы, т. е. разрушается.

Блуждающие токи опасны тем, что они стекают, как правило, с небольшой площади поверхности, что приводит к образованию глубоких язв в металле в течение короткого времени.

Электродренажная защита трубопроводов

Метод защиты трубопроводов от разрушения блуждающими токами, предусматривающий их отвод (дренаж) с защищаемого сооружения на сооружение - источник блуждающих токов, либо специальное заземление - называется электродренажной защитой.

Применяют прямой, поляризованный и усиленный дренажи. Прямой электрический дренаж - это дренажное устройство двусторонней проводимости. Схема прямого электрического дренажа (рис. 17 а) включает: реостат R, рубильник К, плавкий предохранитель П;) и сигнальное реле С(/ Сила тока в цепи «трубопровод-рельс» регулируется реостатом. Если величина тока превысит допустимую величину, то плавкий предохранитель сгорит, ток потечет по обмотке реле, при включении которого включается звуковой или световой сигнал.

Прямой электрический дренаж применяется в тех случаях, когда потенциал трубопровода постоянно выше потенциала рельсовой сети, куда отводятся блуждающие токи. В противном случае дренаж превратится в канал для натекания блуждающих токов на трубопровод.

Поляризованный электрический дренаж (рис. 17 б) - это дренажное устройство, обладающее односторонней проводимостью. От прямого дренажа поляризованный отличается наличием элемента односторонней проводимости (вентильный элемент) ВЭ. При поляризованном дренаже ток протекает только от трубопровода к рельсу, что исключает натекание блуждающих токов на трубопровод по дренажному проводу.

Усиленный дренаж (рис. 17 в) применяется в тех случаях, когда нужно не только отводить блуждающие токи с трубопровода, но и обеспечить на нем необходимую величину защитного потенциала. Усиленный дренаж представляет собой обычную катодную станцию, подключенную отрицательным полюсом к защищаемому сооружению, а положительным - не к анодному заземлению, а к рельсам электрифицированного транспорта.

За счет такой схемы подключения обеспечивается: во-первых, поляризованный дренаж (за счет работы вентильных элементов в схеме СКЗ), а во-вторых, катодная станция удерживает необходимый защитный потенциал трубопровода.

После ввода трубопровода в эксплуатацию производится регулировка параметров работы системы их защиты от коррозии. При необходимости с учетом фактического положения дел могут вводиться в эксплуатацию дополнительные станции катодной и дренажной защиты, а также протекторные установки.

8. Насосно-силовое оборудование

Насосами называются гидравлические машины, которые служат для перекачки жидкостей.

При трубопроводном транспорте нефти используются центробежные насосы. Конструктивно (рис. 18) они представляют собой улитообразный корпус (элементами которого являются спиральная камера 3, всасывающий 2 и нагнетательный 4 патрубки), внутри которого вращается закрепленное на валу рабочее колесо 8. Последнее состоит из двух дисков, между которыми находятся лопатки, загнутые в сторону, обратную направлению вращения.

Принцип работы центробежных насосов следующий. Из всасывающего трубопровода через всасывающий патрубок жидкость поступает на быстровращающиеся лопатки рабочего колеса 8, где под действием центробежных сил отбрасывается к периферии насоса. Таким образом, механическая энергия вращения вала двигателя преобразуется в кинетическую энергию жидкости. Двигаясь по спиральной камере 3, жидкость попадает в расширяющийся нагнетательный патрубок 4, где по мере уменьшения скорости увеличивается давление жидкости. Далее через напорную задвижку 5 жидкость поступает в напорный трубопровод 6. Для контроля за работой насоса измеряют давление в его всасывающем и нагнетательном патрубках с помощью мановакууметра 7 и манометра 9.

Для успешного ведения перекачки на входе в центробежные насосы должен поддерживаться определенный подпор. Его величина не должна быть меньше некоторого значения, называемого допустимым кавитационным запасом.

По величине развиваемого напора центробежные насосы магистральных нефтепроводов делятся на основные и подпорные. В качестве основных используются нефтяные центробежные насосы серии НМ (табл. 5).

Марка насосов расшифровывается следующим образом: Н - насос, М - магистральный, первое число после букв - подача насоса (м:)/ч) при максимальном кпд, второе число - напор насоса (м) при максимальном кпд. Насосы НМ на небольшую подачу (до 710 м:!/ч) - секционные, имеют три последовательно установленных рабочих колеса с односторонним входом жидкости. Остальные насосы являются одноступенчатыми и имеют рабочее колесо с двусторонним входом, обеспечивающим разгрузку ротора от осевых усилий.

Основное назначение подпорных насосов - создание на входе в основные насосы подпора, обеспечивающего их устойчивую работу. При подачах 2500 м:'/ч и более применяются подпорные насосы серии НМП (табл. 5). При меньших подачах используются насосы серии НД (насос с колесом двустороннего всасывания). Цифра в марке - это диаметр всасывающего патрубка, выраженный в дюймах. Применяются также насосы марки НПВ (Н - насос; П - подпорный; В -вертикальный). Это одноступенчатые насосы, располагаемые ниже поверхности земли в металлическом или бетонном колодце («стакане»).

Рис. 18. Принципиальная схема насосной установки на базе центробежного насоса: 1 - всасывающий трубопровод; 2 - всасывающий патрубок насоса; 3 - спиральная камера; 4 - нагнетательный патрубок; 5 - напорная задвижка; 6 - напорный трубопровод; 7 - мановакуумметр; 8 - рабочее колесо; 9 - манометр

Таблица 5. Техническая характеристика насосных агрегатов

Насосы

Электродвигатели

Марка

Подача, м3

Напор, м

Допускаемый к авиационный запас, м

КПД, %

Марка

Мощность, кВт

1

2

3

4

5

6

7

Основные секционные

НМ 125-550

125

550

4

72

2 АРМП 1-400/6000 2АЗМП 1-400/6000

400

НМ 180-500

180

500

4

72

2 АРМП 1-400/6000 2АЗМП 1-400/6000

400

НМ 250-475

250

475

4

75

2АРМП1-500/6000 2АЗМП1 -500/6000

500

НМ 360-460

360

460

4,5

78

2 АРМП 1-630/6000 2АЗМП1-630/6000

630

НМ 500-300

500

300

4,5

80

2АРМП 1-500/6000 2АЗМП 1-500/6000

500

НМ 7 10-280

710

280

6

80

2 АРМП 1-800/6000 2АЗМП 1-800/6000

800

Основные одноступенчатые

НМ 1250-260

1250

260

20

80

СТДП 1250-2

1250

НМ 2500-230

2500

230

32

86

СТДП 2000-2

2000

НМ 3600-230

3600

230

40

87

СТДП 2500-2

2500

НМ 5000-210

5000

210

42 j

88

СТДП 31 50-2

3150

НМ 7000-210

7000

210

52

89

СТДП 5000-2

5000

НМ 10000-210

10000

210

65

89

СТДП 6300-2

6300

НМ 10000-210 (На повыш. подачу)

12500

* 210

87

87

СТДП 8000-2

8000

Подпорные

8НДвН

8НДвН

8НДвН

8НДвН

8НДвН

8НДвН

8НДвН

14НДсН

14НДсН

14НДсН

14НДсН

14НДсН

14НДсН

14НДсН

НМЛ 2500-74

НМЛ 2500-74

НМЛ 2500-74

НМЛ 2500-74

НМЛ 2500-74

НМЛ 2500-74

НМЛ 2500-74

НМЛ 3600-78

НМЛ 3600-78

НМЛ 3600-78

НМЛ 3600-78

НМЛ 3600-78

НМЛ 3600-78

НМЛ 3600-78

НМЛ 5000-1 15

НМЛ 5000-1 15

НМЛ 5000-1 15

НМЛ 5000-1 15

НМЛ 5000-1 15

НМЛ 5000-1 15

НМЛ 5000-1 15

НТО 1250-60

НТО 1250-60

НТО 1250-60

НТО 1250-60

НТО 1250-60

НТО 1250-60

НТО 1250-60

НТВ 2500-80

НТВ 2500-80

НТВ 2500-80

НТВ 2500-80

НТВ 2500-80

НТВ 2500-80

НТВ 2500-80

НПВ 3600-90

НПВ 3600-90

НПВ 3600-90

НПВ 3600-90

НПВ 3600-90

НПВ 3600-90

НПВ 3600-90

НПВ 5000-120

НПВ 5000-120

НПВ 5000-120

НПВ 5000-120

НПВ 5000-120

НПВ 5000-120

НПВ 5000-120

В качестве привода насосов используются электродвигатели синхронного и асинхронного типа. В зависимости от исполнения электродвигатели могут быть установлены в общем зале с насосами или в помещении, отделенном от насосного зала газонепроницаемой стеной. Взрывозащищенное исполнение электродвигателей, применяемых в общих залах нефтенасосных, достигается продувкой корпуса электродвигателя воздухом под избыточным давлением.

Основные и подпорные насосы устанавливаются соответственно в основной и в подпорной насосных.

При обычном исполнении электродвигателей их устанавливают в отдельном зале, герметично изолированном от насосного зала специальной стеной. В этом случае место прохождения через разделительную стену вала, соединяющего насос и электродвигатель, имеет конструкцию, препятствующую проникновению через него паров нефти.

9. Резервуары и резервуарные парки в системе магистральных нефтепроводов

Резервуарные парки в системе магистральных нефтепроводов служат:

- для компенсации неравномерности приема-отпуска нефти на границах участков транспортной цепи;

- для учета нефти;

- для достижения требуемого качества нефти (отстаивание от воды и мехпримесей, смешение и др.).

В соответствии с этим резервуарные парки размещаются:

- на головной НПС;

- на границах эксплуатационных участков;

- в местах подкачки нефти с близлежащих месторождений или сброса нефти попутным потребителям.

Резервуарным парком в конце магистрального нефтепровода является либо сырьевой парк НПЗ, либо резервуары крупной перевалочной нефтебазы или пункта налива.

Полезный объем резервуарных парков на НПС рекомендуется принимать следующим (единица измерения - суточный объем перекачки):

- головная НПС 2...3

- НПС на границе эксплуатационных участков 0,3...0,5

- то же при проведении приемо-сдаточных операций 1,0... 1,5 В системе магистральных нефтепроводов применяют вертикальные и горизонтальные стальные, а также железобетонные резервуары.

Резервуары бывают подземные и наземные. Подземными называют резервуары, у которых наивысший уровень взлива не менее чем на 0,2 м ниже наинизшей планировочной отметки прилегающей площадки. Остальные резервуары относятся к наземным.

Вертикальные стальные цилиндрические резервуары со стационарной крышей (типа РВС) являются наиболее распространенными. Они представляют собой (рис. 19) цилиндрический корпус, сваренный из стальных листов размером 1,5x6 м, толщиной 4...25 мм, со щитовой конической или сферической кровлей. При изготовлении корпуса длинная сторона листов располагается горизонтально. Один горизонтальный ряд сваренных между собой листов называется поясом резервуара. Пояса резервуара соединяются между собой ступенчато, телескопически или встык.

Щитовая кровля опирается на фермы и (у резервуаров большой емкости) на центральную стойку.

Днище резервуара сварное, располагается на песчаной подушке, обработанной с целью предотвращения коррозии битумом, и имеет уклон от центра к периферии. Этим обеспечивается более полное удаление подтоварной воды.

Резервуары типа РВС сооружаются объемом от 100 до 50000 м!. Они рассчитаны на избыточное давление 2000 Па и вакуум 200 Па.

Для сокращения потерь нефти от испарения вертикальные цилиндрические резервуары оснащают понтонами и плавающими крышами.

Вертикальные стальные цилиндрические резервуары с плавающей крышей (типа РВСПК) отличаются от резервуаров типа РВС тем, что они не имеют стационарной кровли (рис. 20). Роль крыши у них выполняет диск, изготовленный из стальных листов, плавающий на поверхности жидкости. Известные конструкции плавающих крыш можно свести к четырем основным типам (рис. 21): дисковая, однослойная с кольцевым коробом, однослойная с кольцевым и центральным коробами, двуслойная. Дисковые крыши наименее металлоемки, но и наименее надежны, т. к. появление течи в любой ее части приводит к заполнению чаши крыши нефтью и далее - к ее потоплению. Двуслойные крыши, наоборот, наиболее металлоемки, но и наиболее надежны, т. к. пустотелые короба, обеспечивающие плавучесть, герметично закрыты сверху и разделены перегородками на отсеки.

Для сбора ливневых вод плавающие крыши имеют уклон к центру. Во избежание разрядов статического электричества их заземляют.

Рис. 19. Вертикальный цилиндрический резервуар объемом 5000 м:' со щитовой кровлей: 1 - корпус; 2 - щитовая кровля; 3 - центральная стойка; 4 - шахтная лестница, 5 - днище

Рис. 20. Резервуар с плавающей крышей: 1 - уплотняющий затвор; 2 - крыша; 3 - шарнирная лестница; 4 - предохранительный клапан; 5 - дренажная система; 6 - труба; 7 - стойки; 8 - люк

Рис. 21. Схемы основных типов плавающих крыш: а - дисковая; б - однослойная с кольцевым коробом; в - однослойная с кольцевым и центральным коробами; г - двуслойная

С целью предотвращения заклинивания плавающих крыш диаметр их металлического диска на 100-400 мм меньше диаметра резервуара. Оставшееся кольцевое пространство герметизируется с помощью уплотняющих затворов 1 различных конструкций (рис. 20).

Чтобы плавающая крыша не вращалась вокруг своей оси, в резервуаре устанавливают вертикальные направляющие 6 из труб которые одновременно служат для размещения устройства измерения уровня и отбора проб нефти.

В крайнем нижнем положении плавающая крыша опирается на стойки 7, расположенные равномерно по окружности крыши. Высота опорных стоек равна 1,8 м, что позволяет рабочим проникать внутрь резервуара и выполнять необходимые работы.

Недостатком резервуаров с плавающей крышей является возможность ее заклинивания вследствие неравномерности снежного покрова.

Вертикальные стальные цилиндрические резервуары с понтоном (типа РВСП) - это резервуары, по конструкции аналогичные резервуарам типа РВС (имеют стационарную крышу), но снабженные плавающим на поверхности нефти понтоном (рис. 22). Подобно плавающей крыше понтоны перемещаются по направляющим трубам 6, снабжены опорными стойками 9 и уплотняющими затворами 1, 7, тщательно заземлены.

Понтоны бывают металлические и синтетические. Металлические понтоны конструктивно мало отличаются от плавающих крыш. Синтетический понтон состоит из кольца жесткости с сеткой, опирающегося на поплавки и покрытого ковром из непроницаемой для паров (например, полиамидной) пленки. Понтоны из синтетических материалов в отличие от металлических практически непотопляемы, монтируются в действующих резервуарах без демонтажа части кровли или корпуса, без применения огневых работ в резервуаре, малометаллоемки.

При сооружении резервуаров типов РВС, РВСП и РВСПК используются рулонные заготовки днища и корпуса заводского изготовления.

Горизонтальные стальные цилиндрические резервуары (тип РГС) в отличие от вертикальных изготавливают, как правило, на заводе и поставляют в готовом виде Их объем составляет от 3 до 100 м!. На нефтеперекачивающих станциях такие резервуары используют как емкости дли сбора утечек.

Железобетонные резервуары (типа ЖБР) бывают цилиндрические и прямоугольные (рис. 23). Первые более распространены, поскольку экономичнее, прямоугольные же резервуары более просты в изготовлении.

Железобетонные резервуары изготавливают, как правило, из предварительно напряженных железобетонных панелей, швы между которыми замоноличивают бетоном. Плиты перекрытия опираются на стены, а в ряде случаев - и на балки. Днище, в основном, изготавливается монолитным бетонным толщиной 50 см.

Цилиндрические резервуары типа ЖБР сооружают объемом от 100 до 40000 м3. Они рассчитаны на избыточное давление 200 Па и на вакуум 100 Па.

Резервуары типа ЖБР требуют меньших металлозатрат, чем стальные. Однако в процессе их эксплуатации выявился ряд недостатков. Прежде всего, существующие конструкции перекрытия железобетонных резервуаров не обладают достаточной герметичностью и не предотвращают проникновение паров нефти (нефтепродукта) из резервуара в атмосферу. Другая проблема -борьба со всплыванием резервуаров при высоком уровне грунтовых вод. Существуют трудности с ремонтом внутреннего оборудования железобетонных резервуаров.

В силу перечисленных и ряда других причин резервуары типа ЖБР в настоящее время не сооружаются.

Оборудование резервуаров

На резервуарах устанавливаются (рис. 24):

- оборудование, обеспечивающее надежную работу резервуаров и снижение потерь нефти;

- оборудование для обслуживания и ремонта резервуаров;

- противопожарное оборудование;

- приборы контроля и сигнализации.

Оборудование для обеспечения надежной работы резервуаров и снижения потерь нефти

К этой группе оборудования относятся:

- дыхательная арматура;

- приемо-раздаточные патрубки с хлопушкой;

- средства защиты от внутренней коррозии;

- оборудование для подогрева нефти.

Дыхательная арматура резервуаров включает дыхательные и предохранительные 14 клапаны. Назначение дыхательной арматуры состоит в следующем. При заполнении резервуаров или повышении температуры в газовом пространстве давление в них возрастает. Так как резервуары рассчитаны на давление, близкое к атмосферному, их может просто разорвать. Чтобы этого не происходило на резервуарах установлены дыхательные и предохранительные клапаны. Первые открываются, как только избыточное давление в газовом пространстве достигнет 2000 Па, предел срабатывания вторых - на 5-10% выше, они страхуют дыхательные клапаны.

Рис. 22. Резервуар с плавающим металлическим понтоном: 1 - уплотняющий затвор; 2 - периферийный короб понтона; 3 - мембрана из листового металла; 4 - стяжка; 5 - центральный короб понтона; 6 - направляющая труба; 7 - уплотнение направляющей трубы; 8 - люк-лаз; 9 - опоры для понтона; 10 - приемо-раздаточный патрубок с хлопушкой

Рис. 23. Общий вид сборного цилиндрического железобетонного резервуара: 1 - боковые панели; 2 - центральная опорная колонна; 3 - периферийная опорная колонна; 4 - металлическая облицовка; 5 - монолитное железобетонное днище; 6 - крыша

Рис. 24. Схема расположения оборудования на вертикальных резервуарах для маловязких нефтепродуктов: 1 - световой люк; 2 - вентиляционный патрубок; 3 - дыхательный клапан; 4 - огневой предохранитель; 5 - замерный люк; б - прибор для замера уровня; 7 - люк - лаз; 8 - сифонный кран; 9 - хлопушка; 10 - приемо-раздаточный патрубок; 1 - перепускное устройство; 12 - управление хлопушкой; 13 - крайнее положение приеме - раздаточных патрубков по отношению к оси лестницы; 14 - предохранительный клапан

Дыхательная арматура защищает резервуары и от смятия при снижении давления в них при опорожнении, либо при уменьшении температуры в газовом пространстве. Как только вакуум достигает допустимой величины открываются дыхательные клапаны, в газовое пространство резервуаров поступает атмосферный воздух. Если их пропускная способность недостаточна и вакуум продолжает увеличиваться, то открываются предохранительные клапаны.

Дыхательная арматура является также первичным средством сокращения потерь нефти от испарения. Во-первых, эта арматура находится в нормально закрытом состоянии, чем предотвращается вентиляция газового пространства резервуаров. Во-вторых, впуск свежей порции воздуха в резервуар (для насыщения которой должно испариться некоторое количество нефти), как и выпуск паровоздушной смеси из него, происходит не в момент изменения давления в газовом пространстве, а с запаздыванием, определяемым пределами срабатывания дыхательной арматуры. Тем самым объем «дыханий», а значит, и потери нефти уменьшаются.

Приемо-раздаточные патрубки 10 служат для приема и откачки нефти из резервуаров. Их количество зависит от производительности закачки-выкачки. На концах приемо-раздаточных патрубков устанавливают хлопушки 9, предотвращающие утечку нефти из резервуара в случае повреждения приемо-раздаточных трубопроводов и задвижек. Хлопушки на раздаточных патрубках в обязательном порядке оснащаются системой управления 12, включающей трос с барабаном, управляемым снаружи с помощью штурвала, поскольку иначе нельзя произвести откачку. Хлопушки на приемных патрубках, как правило, открываются потоком закачиваемой нефти.

В резервуарах всегда имеет отстоявшаяся подтоварная вода. Ее наличие приводит к внутренней коррозии днища и первого пояса резервуаров. Для борьбы с внутренней коррозией производят периодическое удаление воды через сифонный кран 8 и монтируют протекторы на днище резервуара.

При транспортировке высоковязких и высокозастывающих нефтей резервуары оборудуются средствами подогрева. В основном применяют секционные подогреватели, где в качестве теплоносителя используется насыщенный водяной пар или горячая вода. Секции подогревателя устанавливаются с уклоном но ходу движения теплоносителя.

Оборудование для обслуживания и ремонта резервуаров

Для указанных целей используется следующее оборудование:

- люк-лаз;

- люк замерный;

- люк световой;

- лестница.

Люк-лаз 7 размещается в первом поясе и служит для проникновения обслуживающего персонала внутрь резервуара. Через него в резервуар также доставляется оборудование, требующее монтажа (протекторы, детали понтонов и т. д.), и извлекаются донные отложения при ручной зачистке.

Люк замерный 5 служит для ручного замера уровней нефти и подтоварной воды, а также для отбора проб пробоотборником.

Люк световой 1 предназначен для обеспечения доступа солнечного света внутрь резервуара и его проветривания при дефектоскопии, ремонте и зачистке.

Замерный и световые люки монтируются на крыше резервуара.

Лестница 15 служит для подъема персонала на крышу резервуара. Различают лестницы следующих типов: прислонные, спиральные (идущие вверх по стенке резервуара) и шахтные. Лестницы имеют ширину не менее 0,7 м и наклон к горизонту не более 60", снабжены перилами высотой не менее 1 м. У места присоединения лестницы к крыше резервуара располагается замерная площадка, рядом с которой размещается замерный люк.

Противопожарное оборудование

Резервуары являются объектом повышенной пожарной опасности, поэтому они в обязательном порядке оснащаются противопожарным оборудованием: огневыми предохранителями, средствами пожаротушения и охлаждения.

В тех случаях, когда огневые предохранители не встроены в корпус клапанов, они устанавливаются между клапаном и монтажным патрубком резервуара. Принцип действия огневых предохранителей основан на том, что пламя или искра не способны проникнуть внутрь резервуара через отверстия малого сечения в условиях интенсивного теплоотвода. Конструктивно огневой предохранитель представляет собой стальной корпус с фланцами, внутри которого в кожухе помещена круглая кассета, состоящая из свитых в спираль гофрированной и плоской лент из алюминиевой фольги, образующих множество параллельных каналов малого сечения.

В случае возникновения пожара тушение горящей в резервуарах нефти производят пеной, изолирующей поверхность горючей жидкости от кислорода воздуха. Для подачи пены в резервуары используются пеносливные камеры (химическая пена) или пеногенераторы типа ГВПС (воздушно-механическая пена), монтируемые в верхнем поясе резервуаров.

В последнее время начинает внедряться способ подслойной подачи пены в очаг горения. Имеющийся опыт показывает, что эффективность пожаротушения указанным способом существенно выше по сравнению с верхней подачей пены.

Приборы контроля и сигнализации

Для сигнализации и контроля за работой резервуаров применяются:

- местные и дистанционные измерители уровня нефти;

- сигнализаторы максимального оперативного и аварийного уровней нефти;

- дистанционные измерители средней температуры нефти в резервуаре;

- местные и дистанционные измерители температуры жидкости в районе приемо-раздаточных патрубков (при оснащении резервуаров средствами подогрева);

- сниженный пробоотборник и др.

Измерители уровня и температуры углеводородной жидкости, а также сниженные пробоотборники применяются для целей учета и контроля ее качества. Зная уровень взлива жидкости в резервуаре, по калибровочным таблицам находят ее объем. Умножая объем на среднюю плотность нефти, находят массу продукта в резервуаре. Средняя плотность находится на основе отбора средних проб и с учетом средней температуры жидкости по высоте резервуара. Для измерения массы, уровня и отбора проб нефти в резервуарах применяются системы дистанционного замера уровня; «Уровень», «Утро-3», «Кор-Вол» и др., местные уровнемеры типа УДУ, сниженные пробоотборники типа ПСР.

Измерительно-вычислительная система «Кор-Вол» обеспечивает измерение уровня и средней температуры, сигнализацию оперативных уровней, вычисление количества нефти в резервуарах.

Система действует по принципу следящего регулирования за перемещением поплавка на поверхности нефти. Для измерения средней температуры используется комплект термометров сопротивления, смонтированных на несущей трубе, следящей за изменением уровня жидкости при помощи поплавка.

Для местного контроля за уровнем взлива нефти в резервуарах со станционной крышей применяются указатели уровня типа УДУ 6, принцип работы которых основан на определении положения поплавка, плавающего на поверхности нефти и перемещающегося вместе с ее уровнем.

Для отбора средних проб нефти из резервуаров применяются стационарные пробоотборники типа ПСР или типа «перфорированная труба».

Особенности оборудования резервуаров с плавающими крышами

Отличительной особенностью этих резервуаров является то, что световой и замерный люки, дыхательные клапаны монтируются непосредственно на плавающей крыше. Необходимость в установке дыхательных клапанов возникает в связи, с тем, что при опорожнении резервуара ниже высоты опорных стоек под плавающей крышей образуется газовое пространство. При последующем заполнении резервуара эта газовая «подушка», вытесняясь через зазор между стенкой и коробом, может создать перекосы плавающей крыши и вызвать ее заклинивание. Чтобы этого не происходило, выпуск газовой фазы из-под плавающей крыши производят организованно - через дыхательные клапаны.

Дополнительно на плавающей крыше монтируются водоприемник дренажной системы, катучая лестница с направляющими, патрубки для крепления опорных стоек, устройства для заземления и люк-лаз.

Дренажная система служит для отвода ливневых вод в канализацию. Сток воды к центру крыши обеспечивается за счет постоянного уклона к водоприемнику. Водоприемник приварен к плавающей крыше и снабжен запорным устройством поплавкового типа. Системой водоспуска, выполненной из шарнирно состыкованных стальных труб или гибких резинотканевых рукавов, водоспуск соединяется с дренажным патрубком, вваренным в первый пояс резервуара. Эта система является слабым звеном плавающих крыш особенно в холодное время года.

Катучая лестница служит для спуска персонала на поверхность плавающей крыши. Верхним концом катучая лестница шарнирно опирается на переходную площадку, соединенную с шахтной лестницей, служащей для подъема на кольцевую площадку резервуара. Нижний конец лестницы, снабженный катками, при вертикальном перемещении крыши движется горизонтально по специальным направляющим (рельсам).

В центральной части плавающей крыши установлен дополнительный люк-лаз. Люк-лаз и световой люк располагают диаметрально противоположно.

10. Системы перекачки

В зависимости от того как организовано прохождение нефти через нефтеперекачивающие станции различают следующие системы перекачки (рис. 25):

- постанционная;

- через резервуар станции;

- с подключенными резервуарами;

- из насоса в насос.

При постанционной системе перекачки (рис. 25 а) нефть принимается поочередно в один из резервуаров станции, а ее подача на следующую станцию осуществляется из другого резервуара. Это позволяет организовать учет перекачиваемой нефти на каждом перегоне между станциями и, благодаря этому своевременно выявлять и устранять возникающие утечки. Однако при этой системе перекачки значительны потери от испарения.

Система перекачки «через резервуар станции» (рис. 25б) исключает учет нефти по перегонам. Зато потери нефти от испарения меньше, чем при постанционной системе перекачки. Но все равно из-за усиленного перемешивания нефти в резервуаре ее потери от испарения очень велики.

Более совершенна система перекачки «с подключенными резервуарами» (рис. 25 в). Резервуары здесь, как и в предыдущих системах, обеспечивают возможность перекачки на смежных перегонах с разными расходами. Но в данном случае основная масса нефти проходит, минуя резервуары, и поэтому потери от испарения меньше.

Наиболее предпочтительна с точки зрения сокращения потерь нефти система перекачки «из насоса в насос» (рис. 25 г). В этом случае резервуары промежуточных станций задвижками отключаются от магистрали и используются только для приема нефти во время аварии или ремонта. Однако при этой системе перекачки все станции должны вести перекачку с одинаковыми расходами. Это не страшно при нормальной работе всех станций. Однако выход из строя одной из станций (например, из-за нарушения электроснабжения) на трубопроводах большой протяженности вынуждает останавливать и часть других, что отрицательно сказывается на работе трубопровода и насосно-силового оборудования. Именно поэтому нефтепроводы большой протяженности, работающие по системе «из насоса в насос», делят на эксплуатационные участки, разделенные резервуарными парками.

Рис. 25. Системы перекачки: а - постанционная; б - через резервуары; в - с подключенными резервуарами; г - из насоса в насос I - предыдущая НПС; II - последующая НПС 1 - резервуар; 2 - насосная станция

Рис. 26. Схема прохождения нефти по эксплуатационному участку современного нефтепровода: ГНС - головная нефтеперекачивающая станция; ПНС - промежуточная нефтеперекачивающая станция

В настоящее время система перекачки «через резервуар станции» не применяется. Постанционная система перекачки используется на коротких нефтепроводах, имеющих только одну головную нефтеперекачивающую станцию. На протяженных нефтепроводах одновременно применяются сразу несколько систем перекачки.

На рис. 26 показана схема прохождения нефти по эксплуатационному участку современного нефтепровода. Из нее видно, что система перекачки «из насоса в насос» применяется только на промежуточных нефтеперекачивающих станциях, расположенных внутри эксплуатационного участка (ПНС 1 и ПНС 2). На головной нефтеперекачивающей станции (ПНС) применяется постанционная система перекачки, а на станции, расположенной в конце эксплуатационного участка - система перекачки «с подключенными резервуарами».

11. Перекачка высоковязких и высокозастывающих нефтей

В настоящее время добываются значительные объемы нефтей, обладающих высокой вязкостью при обычных температурах или содержащие большое количество парафина и вследствие этого застывающие при высоких температурах. Перекачка таких нефтей по трубопроводам обычным способом затруднена. Поэтому для их транспортировки применяют специальные методы:

- перекачку с разбавителями;

- гидротранспорт высоковязких нефтей;

- перекачку термообработанных нефтей;

- перекачку нефтей с присадками;

- перекачку предварительно подогретых нефтей.

Перекачка высоковязких и высокозастывающих нефтей с разбавителями

Одним из эффективных и доступных способов улучшения реологических свойств высоковязких и высокозастывающих нефтей является применение углеводородных разбавителей - газового конденсата и маловязких нефтей. Использование разбавителей позволяет довольно существенно снизить вязкость и температуру застывания нефти. Это связано с тем, что, во-первых, понижается концентрация парафина в смеси, т. к. часть его растворяется легкими фракциями разбавителя. Во-вторых, при наличии в разбавителе асфальто-смолистых веществ последние, адсорбируясь на поверхности кристаллов парафина, препятствуют образованию прочной структурной решетки.

Первые в нашей стране опыты по перекачке нефтей с разбавителем (керосиновый дистиллят) были проведены инженерами А.Н. Сахановым и А.А. Кащеевым в 1926 г. Полученные результаты были настолько впечатляющими, что были использованы при проектировании нефтепровода «Грозный-Черное море». В настоящее время перекачка высоковязких и высокозастывающих нефтей с разбавителями широко применяется в нашей стране и за рубежом, Например, высокопарафинистая мангышлакская нефть перекачивается в район г. Самары в подргретом состоянии, а потом смешивается с маловязкими нефтями Поволжья и закачивается в нефтепровод «Дружба».

В общем случае выбор типа разбавителя производится с учетом эффективности его воздействия на свойства высоковязкой и высокозастывающей нефти, затрат на получение разбавителя, его доставку на головные сооружения нефтепровода и на смешение.

Любопытно, что на реологические свойства нефтяной смеси оказывает влияние температура смешиваемых компонентов. Однородная смесь получается, если смешение производится при температуре на 3-5 градусов выше температуры застывания вязкого компонента. При неблагоприятных условиях смешения эффективность разбавителя в значительной степени уменьшается и может произойти даже расслоение смеси.

Гидротранспорт высоковязких и высокозастывающих нефтей

Гидротранспорт высоковязких и высокозастывающих нефтей может осуществляться несколькими способами:

- перекачка нефти внутри водяного кольца;

- перекачка водонефтяной смеси в виде эмульсии типа «нефть в воде»;

- послойная перекачка нефти и воды.

Еще в 1906 г И.Д. Исааке осуществил в США перекачку высоковязкой (п = 25» 10'1 мг/с) калифорнийской нефти с водой по трубопроводу диаметром 76 мм на расстояние 800 м. К внутренней стенке трубы была приварена спирально свернутая проволока, обеспечивающая закрутку потока. В результате более тяжелая вода отбрасывалась непосредственно к стенке, а поток нефти двигался внутри водяного кольца, испытывая минимальное трение. Было установлено, что максимальная производительность трубопровода при постоянном перепаде давления достигалась при соотношении расходов нефти и воды, равном 9:1. Результаты эксперимента были использованы при строительстве промышленного нефтепровода диаметром 203 мм и протяженностью 50 км. Винтовая дорожка в нем имела высоту 24 мм и шаг около 3 м.

Однако широкого распространения данный способ транспорта не получил из-за сложности изготовления винтовых нарезок на внутренней поверхности труб. Кроме того, в результате отложения парафина нарезка засоряется и водяное кольцо у стенки не формируется, что резко ухудшает параметры перекачки.

Сущность другого способа гидротранспорта состоит в том, что высоковязкая нефть и вода смешиваются перед перекачкой в такой пропорции, чтобы образовалась эмульсия типа «нефть в воде». В этом случае капли нефти окружены водяной пленкой и поэтому контакта нефти со стенкой трубы не происходит.

Для стабилизации эмульсий и придания стенкам трубопровода гидрофильных свойств, т. е. способности удерживать на своей поверхности воду, в них добавляют поверхностно - активные вещества (ПАВ). Устойчивость эмульсии типа «нефть в воде» зависит от типа и концентрации ПАВ, температуры, режима течения потока, соотношения воды и нефти в смеси.

Уменьшение объема воды в смеси ухудшает устойчивость эмульсии. В результате экспериментов установлено, что минимально допустимое содержание воды равно 30 %.

Недостатком данного способа гидротранспорта является опасность инверсии фаз, т. е. превращения эмульсии «нефть в воде» в эмульсию «вода в нефти» при изменении скорости или температуры перекачки. Такая эмульсия имеет вязкость даже большую, чем вязкость исходной нефти. Кроме того, при прохождении эмульсии через насосы она очень интенсивно перемешивается и впоследствии ее сложно разделить на нефть и воду.

Наконец, третий способ гидротранспорта - это послойная перекачка нефти и воды. В этом случае вода, как более тяжелая жидкость, занимает положение у нижней образующей трубы, а нефть - у верхней. Поверхность раздела фаз в зависимости от скорости перекачки может быть как плоской, так и криволинейной. Уменьшение гидравлического сопротивления трубопровода в этом случае происходит в связи с тем, что часть нефти контактирует не с неподвижной стенкой, а с движущейся водой. Данный способ перекачки также не может быть применен на трубопроводах с промежуточными насосными станциями, т.к. это привело бы к образованию стойких водонефтяных эмульсий.

Перекачка термообработанных нефтей

Термообработкой называется тепловая обработка высокопарафинистой нефти, предусматривающая ее нагрев до температуры, превышающей температуру плавления парафинов, и последующее охлаждение с заданной скоростью, для улучшения реологических параметров.

Первые в нашей стране опыты по термообработке нефтей были выполнены в 30-х годах. Так, термическая обработка нефти Ромаш-кинского месторождения позволила снизить ее вязкость более чем в 2 раза и уменьшить температуру застывания на 20 градусов.

Установлено, что улучшение реологических свойств нефтей связано с внутренними изменениями в них, происходящими в результате термообработки. В обычных условиях при естественном охлаждении парафинистых нефтей образуется кристаллическая парафиновая структура, придающая нефти свойства твердого тела. Прочность структуры оказывается тем больше, чем выше концентрация парафина в нефти и чем меньше размеры образующихся кристаллов. Осуществляя нагрев нефти до температуры, превышающей температуру плавления парафинов, мы добиваемся их полного растворения. При последующем охлаждении нефти происходит кристаллизация парафинов. На величину, число и форму кристаллов парафина в нефти оказывает влияние соотношение скорости возникновения центров кристаллизации парафина и скорости роста уже выделившихся кристаллов. Асфальто-смолистые вещества, адсорбируясь на кристаллах парафина, снижают его поверхностное натяжение. В результате процесс выделения парафина на поверхности уже существующих кристаллов становится энергетически более выгодным, чем образование новых центров кристаллизации. Это приводит к тому, что в термообработанной нефти образуются достаточно крупные кристаллы парафина. Одновременно из-за наличия на поверхности этих кристаллов адсорбированных асфальтенов и смол силы коагуляционного сцепления между ними значительно ослабляются, что препятствует образованию прочной парафиновой структуры.

Эффективность термообработки зависит от температуры подогрева, скорости охлаждения и состояния нефти (статика или динамика) в процессе охлаждения. Оптимальная температура подогрева при термообработке находится экспериментально, наилучшие условия охлаждения - в статике.

Следует иметь в виду, что реологические параметры термообработанной нефти с течением времени ухудшаются и в конце концов достигают значений, которые нефть имела до термообработки. Для озексуатской нефти это время составляет 3 суток, а для мангышлакской -45. Так что не всегда достаточно термически обработать нефть один раз для решения проблемы ее трубопроводного транспорта. Кроме того, капитальные вложения в пункт термообработки довольно высоки.

Перекачка нефтей с присадками

Депрессорные присадки уже давно применяются для снижения температуры застывания масел. Однако для нефтей такие присадки оказались малоэффективны.

Значительно больший эффект улучшения реологических свойств достигается при применении специально полученных присадок. Для высокопарафинистых нефтей эффективным депрессатором является отечественная присадка ДН-1, являющаяся полимерным поверхностно-активным веществом. За рубежом получили распространение присадки типа «Paramins», разработанные фирмой «ЭССО Кемикл». Их добавляют к нефтям в количестве 0,02-0,15% мае. По внешнему виду они представляют собой нарафинообразную массу, приобретающую подвижность лишь при 50-60 "С.

Присадки вводятся в нефть при температуре 60-70 "С, когда основная масса парафинов находится в растворенном состоянии. При последующем охлаждении молекулы присадок адсорбируются на поверхности выпадающих из нефти кристаллов парафина, мешая их росту. В результате образуется текучая суспензия кристаллов парафина в нефти.

Нефти, обработанные присадками, перекачиваются по ряду западноевропейских трубопроводов.

Перекачка предварительно подогретых нефтей

Наиболее распространенным способом трубопроводного транспорта высоковязких и высокозастывающих нефтей в настоящее время является их перекачка с подогревом («горячая перекачка»).

В этом случае резервуары оборудованы системой подогрева нефти до температуры, при которой возможна ее откачка подпорными насосами. Они прокачивают нефть через дополнительные подогреватели и подают на прием основных насосов. Ими нефть закачивается в магистральный трубопровод.

По мере движения в магистральном трубопроводе нефть за счет теплообмена с окружающей средой остывает. Поэтому по трассе трубопровода через каждые 25-100 км устанавливают пункты подогрева. Промежуточные насосные станции размещают в соответствии с гидравлическим расчетом, но обязательно совмещают с пунктами подогрева, чтобы облегчить их эксплуатацию. В конце концов нефть закачивается в резервуары конечного пункта, также оборудованные системой подогрева.

Перекачка нефти по «горячим» трубопроводам ведется с помощью обычных центробежных насосов. Это связано с тем, что температура перекачиваемой нефти достаточно высока, и поэтому ее вязкость невелика. При выталкивании остывшей нефти из трубопроводов используются поршневые насосы, например марки НТ-45. Для подогрева нефти используют радиантно-конвекционные печи, КПД которых достигает 77 %.

В настоящее время в мире эксплуатируются более 50 «горячих» магистральных трубопроводов. Крупнейшим из них является нефтепровод «Узень-Гурьев-Куйбыщев».

Список литературы

транспорт нефтепровод перекачка

1. Абдурашитов С.А., Тупиченков А.А. Трубопроводы для сжиженных газов,- М.: Недра, 1965.- 215 с.

2. Бобрицкий И.В., Юфин В.А. Основы нефтяной и газовой промышленности.- М.: Недра, 1988.- 200 с.

3. Бобровский С.А., Яковлев Е.И. Газовые сети и газохранилища. - М.: Недра, 1980.-413 с.

4. Бородавкин П.П., Березин В.Л. Сооружение магистральных трубопроводов.- М.: Недра, 1987.- 471 с.

5. Гаврилов В.П. Черное золото планеты.- М.: Недра, 1990.-160 с.

6. Гужов С.С. Как ищут и добывают нефть и газ.- М.: Недра, 1973.-144 с.

7. Зорькин Л.М., Суббота М.И., Стадник Е.В. Метан в нашей жизни.- М.: Недра, 1986.-151 с.

8. Калинин А.Г., Левицкий А.З., Никитин Б.А. Технология бурения разведочных скважин на нефть и газ.- М.: Недра, 1998.- 440 с.

9. Короткий P.M., Лобанов В.А., Нейдинг М.М. Рудники Нептуна.- Л.: Судостроение, 1986.- 152 с.

10. Кострин К.В. Почему нефть называется нефтью.- М.: Недра, 1967.-158 с.

11. Кострин К.В. Человек соревнуется с природой.- Уфа: Башкнигоиздат, 1975.-183 с.

12. Межирицкий Л.М. Оператор нефтебазы.- М.: Недра, 1976.-239с.

13. Нечваль М.В., Новоселов В.Ф., Тугунов П.И. Последовательная перекачка нефтей и нефтепродуктов по магистральным трубопроводам.- М.: Недра, 1976.- 221 с.

14. Плитман И.Б. Справочное пособие для работников автозаправочных и автогазонаполнительных станций.-М.: Недра, 1982.- 189 с.

15. Рыбаков К.В., Митягин В.А. Автомобильные цистерны для нефтепродуктов: устройство и особенности эксплуатации.- М.: Транспорт, 1989.- 400 с.

16. Середа Н.Г., Муравьев В.М. Основы нефтяного и газового дела.- М.: Недра, 1980.- 287 с.

17. Техника и технология транспорта и хранения нефти и газа/ Ф.Ф. Абузова, Р.А. Алиев, В.Ф. Новоселов и др.- М.: Недра, 1992.- 320 с.

18. Трубопроводный транспорт нефти и газа / Р.А. Алиев, В.Б. Белоусов, А.Г. Немудров и др.- М.: Недра, 1988.- 368 с.

19. Хотимский Б.Г., Топорский В.Г., Махолин О.А. Нефть вчера и сегодня.- Л.: Недра, 1977.-175 с.

20. Цыркин Е.Б., Олегов С.Н. О нефти и газе без формул.- Л.: Химия, 1989.-160 с.

21. Элияшевский И.В. Технология добычи нефти и газа.- М.: Недра, 1976.-256 с.

Размещено на Allbest.ru


Подобные документы

  • Общая характеристика трубопроводного транспорта как способа транспортировки газа и нефти. Рассмотрение правил выбора трассы; изучение физических параметров нефти. Технологический и гидравлический расчет нефтепровода; определение возможных станций.

    курсовая работа [153,3 K], добавлен 26.04.2014

  • Характеристика трубопроводного транспорта России, а также определение перспектив его развития. Рассмотрение сети крупных нефте- и газопроводов, проектов по развитию трубопроводного транспорта. Экспорт Российской Федерации сырой нефти за 2001–2010 годы.

    реферат [2,2 M], добавлен 09.11.2013

  • Роль трубопроводного транспорта в системе транспорта нефти и газа. Планирование показателей по труду и заработной плате. Расчет материально-технического обеспечения. Планирование себестоимости, прибыли и рентабельности. Мероприятия по сокращению затрат.

    курсовая работа [1013,6 K], добавлен 18.03.2013

  • Характеристика и анализ пассажиро- и грузооборота железнодорожного, автомобильного, морского и авиатранспорта в России. Основные технико-экономические особенности различных видов транспорта. Грузооборот трубопроводного транспорта в части нефти и газа.

    реферат [1,2 M], добавлен 16.12.2014

  • Характеристика трассы трубопровода. Определение температуры перекачки и характеристик нефти. Подбор насосного оборудования. Технологический расчёт трубопровода и защита от коррозии. Расстановка насосных станций на профиле трассы с режимом перекачки.

    курсовая работа [3,3 M], добавлен 14.02.2016

  • Зарождение трубопроводного транспорта как основы развития нефтяной промышленности. Рассмотрение строения гидравлических, пневматических установок, технологических и магистральных трубопроводов. История создания нефтепровода Баку-Тбилиси-Джейхан.

    реферат [152,8 K], добавлен 27.02.2010

  • Общая характеристика транспорта. Развитие отрасли в РБ. Динамика перевозок грузов. Анализ показателей функционирования магистрального и промышленного трубопроводного транспорта. Перспективы и направления его развития. Политика концерна "Белнефтехим".

    контрольная работа [185,3 K], добавлен 07.06.2013

  • Транспортирование нефти от мест добычи к местам потребления: по железной дороге в специальных цистернах или в крытых вагонах в таре. Типы нефтеналивных судов. Автомобильный транспорт для транспортирования нефтепродуктов и сжиженных углеводородных газов.

    курсовая работа [831,3 K], добавлен 06.12.2009

  • Основная задача транспорта и его виды: сухопутный (железнодорожный, автомобильный, трубопроводный и средства связи), водный и воздушный. Роль разных видов транспорта в транспортной системе России. Использование канатных дорог и гужевого транспорта.

    презентация [1,3 M], добавлен 24.04.2015

  • История развития автомобильного, морского, речного и железнодорожного транспорта в Российской Федерации. Основные транспортные узлы Южного Федерального округа. Изучение современного состояния речного и морского судоходства, трубопроводного транспорта.

    курсовая работа [750,4 K], добавлен 14.01.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.