Научное обоснование создания и разработка ходовых систем транспортных средств на пневмоколесных движителях сверхнизкого давления

Характеристика базовых параметров наиболее распространенных шин сверхнизкого давления. Направления и методы разработки ходовых систем, рекомендации по основным режимам движения транспортных средств на пневмоколесных движителях сверхнизкого давления.

Рубрика Транспорт
Вид автореферат
Язык русский
Дата добавления 08.02.2018
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В целом, расчетно-экспериментальные исследования показали, что применение упругой подвески в сочетании с регулированием давления воздуха в шинах ведет к уменьшению числа пробоев, отрывов колес от дороги и приводит к существенному снижению уровня ускорений и повышению максимальных скоростей движения на всех опорных поверхностей.

Испытания на статическую поперечную устойчивость.

Во время испытаний определялись параметры поперечной статической устойчивости на стенде и динамической управляемости и устойчивости на комплексе специальных дорог НИЦИАМТ.

Результаты проведенных испытаний по определению статической поперечной устойчивости транспортного средства НАМИ-1918 с различным внутренним давлением воздуха в шинах, приведены в соответствующих таблицах. Испытания показали, что машина с жестко заблокированной подвеской имеет на 7-10% больший запас статической поперечной устойчивости по сравнению с машиной со штатной подвеской. Также можно проследить, что снижение давления воздуха в шинах приводит к снижению центра масс на столько, что компенсирует его поперечное смещение, сохраняя запас устойчивости. В целом запас поперечной устойчивости ТС на шинах сверхнизкого давления в обоих вариантах удовлетворителен.

6.3. Испытания на динамическую устойчивость и управляемость.

Расчеты установившегося криволинейного движения по программе, разработанной на кафедре «Автомобили» МГТУ «МАМИ» Е.Е. Баулиной и параметрами шин полученных автором проводились для движения автомобиля с постоянной скоростью по кривой для двух значений радиусов поворота. Результаты расчетов приведены ниже.

Рис. 17. Результаты расчетов по кривой радиусом 20 м

Рис. 17. Результаты расчетов по кривой радиусом 125 м

Расчеты показали, что автомобиль на шинах сверхнизкого давления обладает чрезмерной недостаточной поворачиваемостью. Так при движении на повороте радиусом 125 м и давлении в шинах 0,06 МПа коэффициент недостаточной поворачиваемости равен 0,255 рад, характерная скорость составляет 35 км/ч, коэффициент запаса по управляемости 0,017. На этом радиусе автомобиль не может попасть в занос, так как критическая скорость по заносу автомобиля составляет 116,5 км/ч, что выше максимальной скорости автомобиля.

При движении автомобиля по меньшим радиусам поворота качественная картина поворачиваемости сохраняется, автомобиль обладает теми же характерными скоростями, предельная скорость по заносу при радиусе 20 м составляет 46,5 км/ч.

Таким образом, расчетные исследования управляемости автомобиля на шинах сверхнизкого давления показали, что движение такого автомобиля на дорогах общего пользования возможно, но требует повышенного внимания водителя и приводит к быстрой его утомляемости.

Экспериментальные исследования показали, что для варианта со штатной подвеской при выполнении маневра «переставка» предельная скорость ограничена для давлений с 0,04 МПа до 0,07 МПа заносом автомобиля, для давлений 0,02-0,03 МПа - снижением точности управления и реакции на поворот рулевого колеса, а так же развивающимися креновыми колебаниями с которыми подвеска не в состоянии справится.

Для варианта с заблокированной подвеской при небольшом снижении давления результаты повышаются, а потом резко падают вниз. Объяснить это можно тем, что при заблокированной подвеске роль демпфера выполняет сама шина, и при давлении 0,07-0,06 МПа она достаточно жесткая. При давлении 0,05 МПа демпфирующие свойства шины проявляются лучше всего, а при 0,02-0,04 МПа возникают резонансные явления.

При испытаниях «пробег» для обоих вариантов с уменьшением давления на более низкой скорости возникает резонанс от шины в связи с тем, что шина не успевает распрямляется и начинаются прыжки ТС. При давлении 0,07 МПа можно двигаться со скоростью 60-70 км/ч, а при давлении 0,02-0,03 не более 20 -25 км/ч.

Таким образом, можно сказать, что транспортные средства на шинах сверхнизкого давления с подвеской имеют удовлетворительное поведение на твердой опорной поверхности при скоростях движения в диапазоне 50-70 км/ч и внутреннем давлении воздуха в шинах 0,05-0,07 МПа. При этом наличие подвески значительно улучшает динамические показатели управляемости и устойчивости.

6.4. Результаты испытаний и эксплуатации вездеходов семейства ТРЭКОЛ типа 4х4 и 6х6, ВАЗ-1922 и опытных образцов НАМИ-1918 типа 4х4 и «Вектор» типа 8х8 подтвердили правильность выбранной концепции и возможность создания ТС на пневмоколесных движителях сверхнизкого давления с высокими технико-экономическими и экологическими показателями. Базируясь на результатах проведенных научно-исследовательских и опытно-конструкторских работ, можно прогнозировать основные параметры ТС с колесными формулами 4x4, 6x6 и 8x8.

Ниже приведены объекты серийного производства, в создании которых были использованы результаты исследования.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Шина, патент №2005083 Трэкол-3929, патент НАМИ-1918, патент

Колесо, патент №1833316 №42101, №2042561 №49571, №2148500

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

НАМИ-19181, патент Вектор, патент

№47192, №2140363 № 63031

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

1. В диссертационной работе автором на основании экспериментальных и теоретических исследований осуществлено научно обоснованное техническое решение проблемы, заключающейся в обосновании и разработке основных принципов создания ходовых систем транспортных средств на пневмоколесных движителях сверхнизкого давления, вносящее значительный вклад в решение народно-хозяйственных и социальных задач и в повышение обороноспособности страны. Полученные результаты могут быть использованы при выборе рационального типа ТС для эксплуатации в конкретных дорожных условиях, а также при выборе и расчете рациональных параметров и разработке основных технических решений ходовых систем ТС на пневмоколесных движителях сверхнизкого давления на стадии проектирования.

2. Разработаны и обоснованы основные эксплуатационные требования, предъявляемые к ТС, предназначенных для работы на слабонесущих грунтах. Установлено, что при движении по слабонесущим грунтам допустимые давления и касательные напряжения в контакте движителя с опорной поверхностью не должны превышать 0,02 МПа. Экспериментально получены количественные значения коэффициентов сопротивления качению и сцепления шин сверхнизкого давления для ряда опорных поверхностей.

3. Предложены новые методы оценки проходимости (с учетом времени на восстановление транспортного процесса) и подвижности ТС (с учетом показателей экологии и безопасности), а также коэффициенты весомости основных показателей.

4. Впервые экспериментально определены базовые параметры наиболее распространенных шин сверхнизкого давления и установлены регрессионные зависимости для их определения. Разница расчетных (по этим зависимостям) и экспериментальных значений не превышает 10%. Установлено, что все шины теряют работоспособность при внутреннем давлении воздуха 0,01 МПа и ниже. При снижении внутреннего давления воздуха в шине с 0,06 МПа до 0,01-0,02 МПа неравномерность распределения давлений на мягкую опорную поверхность уменьшается с 1,6 до 1,3 или с 0,060-0,082 МПа до 0,029-0,035 МПа. При этом тяговый КПД также снижается на 22-25%. При отсутствии требований к водоизмещению, шина должна быть низкопрофильной с отношением Н/В=0,5-0,55.

5. Разработаны новая математическая модель и программа расчета для исследования динамики ТС на пневмоколесных движителях сверхнизкого давления при движении по неровностям. Особенностью модели является то, что скорость движения центра масс машины не задается, а формируются от движителя. В модели одновременно учитываются продольно-угловые и поперечно-угловые колебания машины, поглощающая и сглаживающая способность шин. Доказано, что для исследования плавности хода машин на шинах сверхнизкого давления такая модель обладает большей адекватность, по сравнению с традиционными моделями. Погрешность при расчетах по этой модели не превышает 8-10%, в отличие от традиционных моделей, ошибка в расчетах которых может доходить до 25-30%.

6. Экспериментально определены характеристики микропрофиля ряда дорог НИЦИАМТ. Получены коэффициенты аппроксимирующих выражений корреляционных функций и спектральных плотностей. Это позволяет проводить аналитические исследования динамических процессов ТС как непосредственно по реализациям неровностей микропрофиля, так и по аппроксимирующим зависимостям с возможностью проверки адекватности расчетов в реальных дорожных условиях с высокой степенью достоверности.

7. Проведена оценка наиболее распространенных типов ТС высокой проходимости. Установлено, что для работы на слабонесущих грунтах наиболее целесообразным является применение ТС на пневмоколесных движителях сверхнизкого давления.

8. Разработаны методы расчета и выбора рациональных параметров пневмоколесного движителя и способа поворота ходовых систем ТС на шинах сверхнизкого давления. Доказано, что ТС на шинах сверхнизкого давления необходимо оборудовать централизованной подкачкой воздуха, для равномерного распределения давлений по колесам. Нагрузка на шины диаметром 1250-1350 и 1450-1700 не должна превышать соответственно 5,8-8,0 кН и 1,0-2,0 кН. Внутреннее давление воздуха в шинах должно быть: на твердых опорных поверхностях - 0,05-0,07 МПа, грунтовых дорогах - 0,04-0,05 МПа, песке - 0,03-0,04 МПа, снежной целине - 0,01-0,03 МПа и заболоченных участках - 0,006-0,01 МПа.

Установлено, что поворот с помощью управляемых колес и по шарнирно-сочлененной схеме с точки зрения воздействия на опорную поверхность идентичны. Напряжения в контакте движителя с опорной поверхностью при бортовом способе поворота больше вышеуказанных способов на 34%. Доказано, что для качественной оценки способа поворота необходимо учитывать наличие бокового увода шин, так как в противном случае разница в расчетах может отличаться в 1,5-2 раза.

9. Исследованием параметров плавности хода установлено, что ТС с подвеской по общей вибрации на подушке сиденья водителя и локальной вибрации на рулевом колесе являются безопасными в отношения здоровья водителя и соответствует ГОСТ 31191.1-2004 (ИСО 2631-1:1997) и ГОСТ 311992.1-2004 (ИСО 5349-1:2001). ТС без подвески по этим показателям являются опасным в отношении здоровья водителя. СКЗ виброускорений ТС с подвеской на 25-70% (на некоторых режимах в два раза) меньше, чем у ТС с без подвески. Доказано, что при создании ТС на пневмоколесных движителях сверхнизкого давления необходимо устанавливать подвеску.

Установлено, что ТС на шинах сверхнизкого давления обладает чрезмерной недостаточной поворачиваемостью. При движении на повороте радиусом 125 м коэффициент недостаточной поворачиваемости равен 0,255 рад, коэффициент запаса по управляемости - 0,017. Предельная скорость по заносу при радиусе 20 м составляет 46,5 км/ч. Наличие подвески значительно улучшает динамические показатели управляемости и устойчивости.

10. Проведенный комплекс экспериментальных исследований на стендах, в лабораторно-дорожных и эксплуатационных условиях, как пневмоколесных движителей, так и серийных и опытных образцов ТС подтвердил основные теоретические положения и показал удовлетворительную сходимость результатов. Ошибка расчетных и экспериментальных данных не превысила 10%.

ПУБЛИКАЦИИ С ИЗЛОЖЕНИЕМ ОСНОВНЫХ ПОЛОЖЕНИЙ ДИССЕРТАЦИИ

Монографии:

1. Котялренко В.И. Основные направления повышения проходимости колесных машин. - М.: Изд-во МГИУ, 2008. - 284 с.

2. Шихирин В.Н., Ионова В.Ф., Шальнев О.В., Котляренко В.И. Эластичные механизмы и конструкции. - Иркутск: Изд-во ИрГУ, 2006. - 286 с.

3.Котляренко В.И., Сироткина А.В., Сальников В.И., Яценко Н.Н. Моделирование испытаний и сервиса автомобилей. - Братск: Изд-во РИО ГОУ ВПО БрГУ, 2006. - 154 с.

Статьи:

1. Аникин А.А., Донато И.О., Котляренко В.И. Применение некоторых типов средств повышения проходимости при движении колесных машин по снегу // Журнал ассоциации автомобильных инженеров, 2008. - №3. - С. 42-43.

2. Есеновский-Лашков Ю.К., Зеленин Ю.Л., Котляренко В.И, Носенков В.М. Некоторые аспекты создания вездеходных транспортных средств на пневмоколесных движителях сверхнизкого давления // Совершенствование технико-экономических показателей автомобильной техники: Сб. науч. тр./НАМИ, 1996. - С. - 22-29.

3. Есеновский-Лашков Ю.К., Котляренко В.И. Вездеходные транспортные средства для труднодоступной местности // Автомобили, двигатели и экология: Сб. науч. тр./НАМИ, 2000. - Вып. 226 - С. 3-18.

4. Есеновский-Лашков Ю.К., Котляренко В.И. Вездеходные транспортные средства для труднодоступной местности // Конверсия в машиностроении, 2000. - №4. - С. 43-49.

5. Князьков В.Н., Котляренко В.И., Климанов Е.В. Создание внедорожных транспортных средств на пневмоколесных движителях низкого давления // Совершенствование технико-экономических показателей автомобильной техники: Сб. науч. тр./ НАМИ, 1993. - С. 41-46.

6. Котляренко В.И., Сироткин З.Л. Вопросы совершенствования транспортных средств в экстремальных условиях Севера // Технико-экономические вопросы создания и внедрения рациональных и экологически чистых транспортных средств для бездорожных районов Севера: Тез. докл. Всесоюз. науч.-тех. конф.: Москва, 1990, с 49-64

7. Котялренко В.И. Автомобили для экстремальных условий эксплуатации//Автомобильная промышленность, 1991. - №3. - С. 8-10.

8. Котляренко В.И. Внедорожные на пневмоколесах // Автомобильная промышленность, 1992. - №7. - С. 16-17.

9. Котляренко В.И., Князьков В.Н., Климанов Е.В. Внедорожные транспортные средства на пневмоколесах низкого давления // Автомобильная промышленность, 1993. - №11 - С. 5-8.

10. Котляренко В.И. На шинах сверхнизкого давления // Автомобильная промышленность, 1996. - №1. - С. 16-17

11. Котляренко В.И. Обоснование рациональных путей создания транспортных средств с высокими экологическими и технико-экономическими показателями // Полноприводный автомобиль - перспективы развития: Материалы XXIII конф., Дмитров, 1998.: Тез. докл. - с. 17-40

12. Котляренко В.И. Создание вездеходных транспортных средств на пневмоколесных движителях сверхнизкого давления. - Дис. канд. тех. наук. - Москва, 1998. - 222 с.

13. Котляренко В.И., Глинка А.А., Волобуев Е.Ф. Шины и колеса нетрадиционных конструкций для транспортных средств сверхвысокой проходимости // Автомобили, двигатели и экология: Сб. науч. тр./ НАМИ, 2000. - Вып. 226, - С. 48-67.

14. Котляренко В.И. Проходимость АТС и экология // Автомобильная промышленность, 2004. - №3 - С. 8-10.

15. Котляренко В.И., Шихирин В.Н., Шальнев О.В. Мягкие транспортные движители // Торовые технологии: Тез. докл. 2-й Международной науч.-практич. конф. Иркутск, 2005. - С. 110-130.

16. Котляренко В.И., Шальнев О.В., Доронин А.В. Основы проектирования эластичных механизмов // Торовые технологии: Тез. докл. 2-й Международной науч.-практич. конф. Иркутск, 2005. - С. 131-149.

17. Котляренко В.И., Шальнев О.В. Формообразование мягких тороидных оболочек // Торовые технологии: Тез. докл. 2-й Международной науч.-практич. конф. Иркутск, 2005. - С. 197-206.

18. Котляренко ВИ., Зимнюхов А.В. Задачи технических регламентов для повышения безопасности и качества автомобилей в условиях Севера и Сибири // Журнал ассоциации автомобильных инженеров, 2005. - №5. - С. 6-10.

19. Котляренко В.И. Эластичные механизмы и новые концепции движителей в транспортном машиностроении // Торовые технологии: Тез. докл. 3-й Международной науч.-практич. конф. Иркутск, 2007. - С. 65-71.

20. Котляренко В.И. Общие задачи проектирования транспортно-технологических машин на торовых движителях // Торовые технологии: Тез. докл. 3-й Международной науч.-практич. конф. Иркутск, 2007. - С. 72-78.

21. Котляренко В.И. Оценка проходимости колесных машин по деформируемым опорным поверхностям // Журнал ассоциации автомобильных инженеров, 2008. - №1. - С. 30-34.

22. Котляренко В.И., Васева Т.Б. Анализ методов измерений и оценки ровности поверхности автомобильных дорог // Журнал ассоциации автомобильных инженеров, 2008. - №2. - С. 32-34.

23. Котляреноко В.И. Общие задачи проектирования вездеходных транспортных машин на высокоэластичных торовых движителях // Журнал ассоциации автомобильных инженеров, 2008. - №3. - С. 30-33.

24. Котляреноко В.И. Некоторые аспекты расчета торовых движителей // Журнал ассоциации автомобильных инженеров, 2008. - №4. - С. 19.

25. Котляренко В.И. Математическая модель системы подрессоривания и оценка плавности хода колесных машин на шинах сверхнизкого давления // Журнал ассоциации автомобильных инженеров, 2008. - №5. - с. 32-37

26. Котляренко В.И. Исследование управляемости и устойчивости транспортных средств (ТС) на шинах сверхнизкого давления // Журнал ассоциации автомобильных инженеров, 2009. - №1. - с. 34-35

27. Сироткин З.Л., Котляренко В.И. Транспортные средства для Крайнего Севера // Автомобильная промышленность, 1990. - №9. - С. 8-10.

28. Kotlyarenko V.I. Some aspects to be considered designing environmental all-terrain vehicles // Journal of Kones powertrain and transport, Warsaw, vol. 13, №1, 2006: c-27-30

29. Котляренко В.И. Исследование управляемости и устойчивости транспортных средств (ТС) на шинах сверхнизкого давления // Журнал ассоциации автомобильных инженеров, 2009. - №1. - с. 34-35

Патенты:

1. Глинка А.А., Котляренко В.И., Князьков В.Н., Климанов Е.В., Опрышко В.Ф Колесо транспортного средства. Патент на изобретение №1833316, 1992 - 9 с.

2. Князьков В.Н., Глинка А.А., Климанов Е.В., Котляренко В.И., Опрышко В.Ф. бескамерная пневматическая шина. Патент на изобретение №2005083, 1993. - 8 с.

3. Князьков В.Н., Климанов Е.В., Котляренко В.И., Михайлов Н.В., Павленко А.В., Молоденов С.Л. Вездеход экологически надежный. Патент на промышленный образец №42101, 1995. - 3 с.

4. Михайлов Н.В., Князьков В.Н., Котляренко В.И., Климанов Е.В., Опрышко В.Ф., Печеркин А.Н. Шестиколесное транспортное средство. Патент на изобретение №2042561, 1995. - 5 с.

5. Котляренко В.И., Ипатов А.А., Глинка А.А. Колесное плавающее средство. Патент на изобретение №2140363, 1999. - 18 с.

6. Котляренко В.И., Глинка А.А. Колесо плавающего транспортного средства. Свидетельство на полезную модель №10371, 1999. - 2 с.

7. Котляренко В.И., Глинка А.А. Колесное плавающее средство. Свидетельство на полезную модель №10373, 1999. - 2 с.

8. Ипатов А.А., Котляренко В.И., Глинка А.А. Колесное плавающее средство.

Патент на изобретение №2148500, 2000. - 18 с.

9. Ипатов А.А., Котляренко В.И., Пономарев А.К. Вездеходное транспортное средство. Патент на промышленный образец №47192, 2000. - 2 с.

10. Ипатов А.А., Котляренко В.И., Пономарев А.К. Вездеход на шинах сверхнизкого давления. Патент на промышленный образец №49571, 2001. - 2 с.

11. Анкинович Г.Г., Боенков А.И., Бакалов Е.И., Демченко В.И., Котляренко В.И. Вездеход многоколесный плавающий. Патент на промышленный образец №63031, 2007. - 4 с.

12. Котляренко В.И. Тороидный движитель. Заявка о выдаче патента Российской Федерации на изобретение №2008115979, 2008. - 5 с.

13. Котляренко В.И., Максименко Р.В., Шальнев О.В. Тороидальное колесо. Заявка о выдаче патента Российской Федерации на изобретение №2008115980, 2008. - 6 с.

14. Котляренко В.И., Максименко Р.В. Привод тороидного движителя. Заявка о выдаче свидетельства Российской Федерации на полезную модель №2008116456, 2008. - 5 с.

Размещено на Allbest.ru


Подобные документы

  • Электроника и электрооборудование транспортных, транспортно-технологических машин. Датчики электронных информационных систем. Магнитоэлектрические указатели на автомобилях. Датчик сигнализатора аварийного давления. Отличие датчиков давления друг от друга.

    реферат [682,0 K], добавлен 07.06.2011

  • Работа датчика давления топлива. Отклонение давления топлива от заданной величины. Срабатывание регулирующего клапана в топливной рампе. Датчик давления в шинах. Основной элемент системы прямого контроля давления. Основные виды датчиков давления масла.

    презентация [943,9 K], добавлен 29.11.2016

  • Анализ протоколов обмена электронных систем, применяемых на автомобилях. Разработка модулей микроконтроллера и индикатора, схемы питания. Подключение драйвера CAN интерфейса. Программное обеспечение датчика давления. Алгоритм работы основной программы.

    дипломная работа [1,3 M], добавлен 26.06.2016

  • Увеличивающееся количество автомобилей как основная проблема транспортных заторов. Решение ключевых проблем, связанных с парковкой автомобилей. Правила дорожного движения, относящиеся к выполнению остановки и стоянки транспортных средств, их нарушение.

    доклад [522,8 K], добавлен 10.10.2014

  • Дорожные знаки и дорожная разметка, регулирование дорожного движения при помощи светофоров. Проезд перекрёстков, порядок движения, остановки и стоянки. Проезд пешеходных переходов, остановок маршрутных транспортных средств, железнодорожных переездов.

    контрольная работа [1,8 M], добавлен 20.09.2012

  • Ознакомление с конструкцией и принципом действия регулятора давления АК-11Б в отечественных электровозах и мотор-вагонных подвижных составах. Основное назначение устройства - автоматическое поддержание давления сжатого воздуха в установленном диапазоне.

    лабораторная работа [4,3 M], добавлен 01.12.2010

  • Оптимальный маршрут движения транспортных средств при перевозке грузов в смешанном сообщении с применением автомобильного и железнодорожного подвижного состава. Анализ транспортных характеристик, упаковки груза. Расчет параметров перевозочного процесса.

    реферат [727,6 K], добавлен 01.06.2014

  • Характеристика видов транспорта: сухопытный, водный, авиационный. Признаки классификации транспортных путешествий, рейтинг привлекательности транспортных средств. Анализ развития транспортной отрасли и и туристический потенциал Тверской области.

    курсовая работа [25,4 K], добавлен 29.06.2010

  • Характеристика пешеходных и транспортных потоков на перекрестке. Анализ конфликтных ситуаций. Расчет пропускной способности дороги, коэффициента загрузки движения, средней задержки транспортных средств и пешеходов, циклов светофорного регулирования.

    курсовая работа [757,4 K], добавлен 08.01.2016

  • Расчет приведенной интенсивности транспортных средств. Предварительное определение числа полос движения на подходах к перекрестку. Построение картограммы интенсивности транспортных и пешеходных потоков. Разработка вариантов схемы пофазного разъезда.

    курсовая работа [356,7 K], добавлен 10.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.