Навигационные особенности плавания в узкостях и стесненных водах

Анализ условий плавания в стесненных водах и узкостях. Рассмотрение мер обеспечения навигационной безопасности. Определение надежных мест судна радиолокационными и визуальными методами. Изучение плавучих знаков для обеспечения безопасности судоходства.

Рубрика Транспорт
Вид курсовая работа
Язык русский
Дата добавления 21.11.2009
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Установлено, что при этом ЗНБ имеет форму эллипса (рис. 11 в), центр которого совпадает с центром судна, а большая ось направлена по диаметральной плоскости. Размеры эллипса характеризуются следующим образом:

- большая полуось - lg rэ = l + 0.85 0.6 или rэ = 7Lc L;

- малая полуось - lg Sэ = l + 0.48 0.07 или Sэ = 3Lc 0.5L;

где l = lg Lc; Lc - длина судна. Эти размеры справедливы для так называемой "нормальной скорости", под которой имеется в виду скорость движения на напряженных участках водных путей и которая зависит от длины как lg Vн = 0,29?l + 3,78 0,6, где Vн - скорость судна, м/час. Очевиден недостаток этого способа - невозможность оценить размеры ЗНБ при скорости, отличной от "нормальной". Тем не менее, он используется в программах математического обеспечения автоматизированных СУДС в портах Японии, а также в прикладных научных исследованиях.

Рис. 11. Возможные варианты зоны навигационной безопасности

Он подтвержден также в ходе независимого исследования на основе математического моделирования. Несколько лет спустя способ представления ЗНБ также в форме эллипса был предложен группой специалистов Союзморниипроекта под руководством С. Г. Погосова (рис. 11 г). Для обоснования этого способа эта группа проанализировала таблицы маневренных элементов судов Минморфлота середины 1970-х годов с целью определения зависимости тормозного пути и ширины безопасной полосы движения от скорости судна. Установлено, что Sт = 0,335V1,596Lc. Авторы предложили ЗРБ в виде эллипса, большая и малая полуоси которого равны

- большая полуось - rэ = Sт + 2Мs = Lc (0,335V1,596 + 0,25);

- малая полуось - Sэ = 0,9 Lc V0,44,

где Мs - поправка за вероятное отклонение среднего тормозного пути от его фактического значения (Мs = 0,125 Sт).

В отличие от предыдущего способа, в данном случае размеры эллипса зависят от скорости судна. Кроме того, он основан на принципе взаимодействия ЗНБ, т. е., зоны не должны перекрывать друг друга,

тогда как предыдущий способ предусматривает, что встречное судно не должно пересекать границу ЗНБ. В эти же годы английский специалист Е. Гудуин задалась вопросом, почему ЗНБ симметрична относительно диаметральной плоскости судна. Ведь суда при плавании соблюдают МППСС-72, следовательно, справа по носу судна должна быть наиболее опасная зона, и поэтому граница ЗНБ должна отстоять дальше, чем слева или тем более по корме судна. Для проверки этой гипотезы были проведены обширные натурные испытания, в результате которых предложена комбинированная ЗНБ (рис. 11 д), состоящая из трех секторов, размеры которых выбирались из специальных таблиц в зависимости от размера, скорости, типа судна и района плавания. Идея несимметричности ЗНБ получила свое развитие в варианте (рис. 11 е), где был устранен основной недостаток предыдущего способа - разрывы на огибающей ЗНБ границах секторов. Вариант ЗНБ, представленный на рис. 11 ж, был разработан группой дальневосточных ученых и использован в автоматизированной СУДС залива Находка. Вариант, показанный на рис. 11 з, представляющий собой комбинацию полуэллипса и полукруга, используется в японских СУДС. Достоинства всех указанных выше способов представления формы и размеров ЗНБ объединены в общей концепции ЗНБ, которая показана на рис. 13 и. Выбор того или иного метода представления формы и размеров ЗНБ влияет на общую оценку вероятности столкновения. Для примера в табл. 1 показаны значения плотности интенсивного движения, рассчитанные на основе четырех способов представления ЗНБ, показанных на рис. 11 б - д., для трех значений средних длин судов и "нормальной" скорости. При этом значения плотности "нормализованы" таким образом, что за "условную единицу" принята плотность потока судов, ЗНБ которых рассчитаны по способу 11 б.

Таблица 1.

Установлено, что вероятность столкновения находится в прямой квадратичной зависимости от плотности судов. Если с этих позиций проанализировать данные табл. 1, то получится, что при использовании различных способов представления ЗНБ значения вероятности столкновения будут отличаться друг от друга в некоторых случаях в сотни раз (например, способы 13 г, д). Это свидетельствует о чрезвычайно сложной природе ЗНБ и необходимости конкретизации условий ее применения.

Практическое решение задач с помощью универсальной диаграммы качки

Для выбора безопасных курсов и скоростей следует пользоваться универсальной диаграммой качки. Диаграмма показывает характер изменения видимых параметров волн любой длины в зависимости от изменения курса и скорости судна. Построена она для системы волн при регулярном волнении. При волнении, которое принято считать нерегулярным, всегда возможно выделить преобладающую систему волн, измерить направление их бега и видимые периоды. Диаграмма получила название универсальной, так как позволяет решать многие задачи судовождения.

Универсальная диаграмма качки состоит из двух частей (рис. 14). Нижняя часть диаграммы представляет собой семейство концентрических полуокружностей и пучок лучей из их центра. Каждая полуокружность соответствует определенной скорости судна в узлах, а каждый луч -- определенному курсовому углу в градусах направления фонда волны. Наиболее сильная бортовая качка в секторе 78--102°, а в секторе 0--12° и 168--180° наиболее сильная килевая качка. Курсовые углы фронта волны даны в двух значениях: 6 и 174°; 12 и 188°; 18 и 162° и т. д. Удобство такой разбивки градусной сетки обусловлено тем, что курсовой угол фронта волны относительно ДП судна может быть взят как по правому, так и по левому борту.

Верхняя часть диаграммы представляет собой семейство кривых.

На диаграмме фронт волны расположен из центра О вертикально вверх. По этой вертикальной оси диаграммы нанесены длины волн от 10 до 240 м. Положение ДП судна, параллельное осевой вертикали диаграммы, соответствует судну, идущему лагом к волне, и соответствует курсовому углу q = 0°, а положение, параллельное осевой горизонтали, соответствует курсу, который совпадает с направлением бега волны или навстречу бегу волны q = 90°.

Направление бега волны является исходным для графического решения задач с помощью диаграммы. Горизонтальная ось -- это проекция скорости хода судна на направлении бега волны.

Верхняя часть диаграммы представляет собой семейство кривых, где каждая кривая соответствует определенному значению видимого периода волн т. В левой части нижней половины диаграммы, расположенной левее пунктирной кривой, t = оо соответствует случаям, когда скорость бега волны больше скорости судна, а верхняя половина диаграммы соответствует случаям, когда скорость бега волны меньше скорости судна.

Пассивная штормовая стабилизация корабля достигается за счет заострения ватерлинии в оконечностях корпуса и скругления формы шпангоутов в его средней части. При этом главной архитектурной особенностью такой стабилизации всегда является исключение чрезмерных объемов в надводной части герметичного корпуса, а также всяческое снижение высоты и площади парусности палубных надстроек и мачт. Последнее ограничение неприемлемо для большого класса малых плавсредств и крупных судов, таких как:

· спасательные шлюпки, имеющие относительно малую собственную массу и большой внутренний объем для размещения пассажиров;

· паромы, размещающие в своем корпусе колесную технику;

· авианесущие корабли, нуждающиеся в просторных ангарах и высоких полетных палубах;

· все классы скоростных глиссирующих судов и гидросамолетов.

·

Рис. 12. Универсальная штормовая диаграмма

Большой запас плавучести, по какой бы причине он ни придавался морскому судну, всегда крайне отрицательно влияет на безопасность штормового плавания, так как он всегда приводит к резкой качке, слемингу, зарываемости под гребнями крутых волн и, как следствие, к неизбежной опасности захвата и опрокидывания корабля под ударами шторма в случае выхода из строя его двигателей или движителей. Тем не менее, исторический опыт кораблестроения уверенно демонстрирует эффективность методов активного штормового плавания легконагруженных судов. Все эти методы ориентированы на активное штормовое маневрирование корабля, способного противопоставить штормовой стихии энергию своих двигателей или парусного вооружения, находящихся под непрерывным контролем ходовой вахты и активным управлением.

С каждой из штормовых волн судно с большой парусностью и высоким надводным бортом неизбежно вступает в активное динамическое взаимодействие, интенсивность которого приводит к огромным нагрузкам на корпус, нарушающим его прочность, и к интенсивной качке, делающей условия обитания на борту такого судна невыносимыми. В реальной морской практике ходовая вахта старается выбрать такой курс и такую скорость хода судна, при которых воздействия шторма менее всего угрожают безопасности плавания. В зависимости от архитектуры судна, таким оптимальным режимом штормового плавания будет либо ход по ветру, либо лагом к волне, либо курсом носом на волну. Во всех этих режимах требуется повышенная надежность движителей и рулевых устройств, а также достаточно высокий опыт управления судном у капитана, его вахтенного помощника и рулевого, так как любая малейшая ошибка в штормовом маневрировании, совершенная на ходовом мостике, может привести к катастрофе.

Методы определения места судна

Для надежного определения места с помощью РЛС необходимо быть уверенным в правильном опознании объектов, наблюдаемых на экране индикатора. Наиболее точно могут быть опознаны объекты, называемые точечными ориентирами. К ним относятся обозначенные на карте небольшие островки, отдельно лежащие камни, скалы, плавучие знаки навигационного ограждения, оконечности молов и причалов, а также радиолокационные маяки-ответчики.

Хорошее изображение, отвечающее по форме очертаниям берега на карте, дают высокие обрывистые берега. Такой берег может быть опознан достаточно уверенно. Низменные песчаные мысы, плоское побережье, покрытые снегом пологие берега, плавучий лед рассеивают энергию и могут не давать эхо-сигналов. В результате этого возвышенные полуострова, соединяющиеся с основным берегом низкими перешейками, могут изображаться на экране РЛС как острова. Если мыс имеет пляж, за которым лежит обрывистый склон, то при пеленговании или измерении расстояния до такого мыса легко ошибиться, так как урез воды на определенных расстояниях радиолокатор не обнаружит. Ошибки при измерении расстояний до берега особенно вероятны в морях, имеющих низкие берега и значительные колебания уровня воды.

Обычно уже на расстоянии от 15 до 8 миль изображение на экране индикатора достаточно верно передает очертания береговой черты, что позволяет сопоставлять его с картой.

Для определения места могут быть использованы радиолокационные расстояния до опознанных на экране РЛС объектов или пеленги этих объектов.

Радиолокационное измерение расстояний в большинстве случаев производится с помощью подвижного круга дальности (ПКД). Расстояние до объекта можно определить также на глаз по неподвижным кругам дальности (НКД). При этом способе ошибка расстояния составляет в среднем 0,1 интервала между соседними кругами. Для повышения точности наблюдений расстояния следует измерять до выдающихся частей берега, направленных к судну.

Радиолокационные пеленги измеряют при помощи механического или электронного визира, устанавливаемого над серединой эхо-сигнала. Истинный пеленг на объект находят затем путем исправления радиолокационного пеленга поправкой гирокомпаса. Если РЛС не имеет ориентации по норду, то измеряют КУ эхо-сигнала, который переводят в ИП.

Пеленги следует брать на обрывистые оконечности, направленные перпендикулярно к визирной плоскости. Ошибка в пеленге будет тем меньше, чем дальше располагается эхо-сигнал от центра экрана, поэтому при взятии пеленгов следует использовать шкалу наиболее крупного масштаба.

В большинстве случаев точность радиолокационного измерения расстояний значительно выше точности радиолокационного пеленгования, что необходимо иметь в виду при определении места судна. Только на малых расстояниях, не превышающих 0,5 мили, линия пеленга не уступает по точности измеренному расстоянию.

Определение места судна по радиолокационным расстояниям. Если на экране РЛС можно выбрать два или три удачно расположенных точечных или характерных ориентира, то место судна может быть получено по измеренным до этих ориентиров радиолокационным расстояниям. Проведя радиолокационные наблюдения, находят на карте ориентиры, соответствующие эхо-сигналам, от которых наносят вблизи счислимого места судна засечки радиусами, равными измеренным расстояниям в масштабе карты. Место судна получают в пересечении засечек (рис. 13, а).

Если на экране индикатора имеется изображение ровной береговой черты, не имеющей характерных выступающих мысов, и одного точечного ориентира, то место судна получают следующим приемом (рис. 13, б). Измерив расстояние D1 до точечного объекта, подводят подвижной круг дальности касательно к кромке берега, т. е. измеряют кратчайшее расстояние D2 до береговой черты. От точечного ориентира радиусом D1 проводят на карте дугу аа''. Взяв циркулем расстояние D2, находят на дуге аа' такое положение острия циркуля, при котором карандаш опишет окружность bb', касательную к береговой черте. Место накола острия циркуля будет соответствовать положению судна. Полученную с помощью РЛС обсервованную точку обозначают кружком с полукругом над ним.

Во всех случаях судоводитель должен стремиться определять место судна по трем расстояниям, что дает возможность по величине треугольника погрешностей выявить возможные ошибки в наблюдениях или опознании объектов. Для уменьшения ошибок от неодновременного измерения расстояний рекомендуется первыми измерять расстояния до объектов, находящихся вблизи траверза. В последнюю очередь измеряют расстояние до ориентиров, расположенных на курсовых углах, близких к 0 и 180°, замечая время и отсчет лага.

Рис. 13. Определение места судна:

а -- по радиолокационным расстояниям; б -- по точечному ориентиру и ровной береговой черте

Определение места судна по радиолокационному расстоянию и визуальному пеленгу.

На практике широко применяют комбинированный способ определения места по радиолокационному расстоянию и визуальному пеленгу. Если пеленг и расстояние измерены до одного и того же точечного ориентира, то определение места выполняется в том же порядке, что и при визуальных наблюдениях.

Часто пеленгуемый маяк располагается на мысу в некотором удалении от берега. Тогда расстояние на экране РЛС измеряется не до маяка, а до лежащей перед ним береговой черты. В этом случае измеренное расстояние откладывают по линии пеленга от уреза воды.

Когда в районе пеленгуемого объекта берег не имеет характерных ориентиров, измеряют кратчайшее расстояние D до береговой черты. Исправив и проложив на карте линию визуального пеленга растворяют ножки циркуля в масштабе карты на расстояние D. Находят такое положение острия циркуля на линии пеленга, при котором вторая ножка опишет дугу, касательную к береговой черте. Место судна будет находиться в точке накола острия циркуля.

В практике судовождения применяются радиомаяки с ненаправленной или направленной характеристиками излучения. В первом случае для их использования на судне требуется радиопеленгатор, во втором достаточно наличие обычного судового приёмника соответствующего диапазона. Основным параметром, определяющим тип радиомаяка, является его характеристика излучения.

Наиболее широко используются следующие типы:

1. Радиомаяки кругового излучения (ненаправленные);

2. Створные радиомаяки;

3. Секторные радиомаяки;

4. Радиомаяки с вращающейся характеристикой направленности.

Радиомаяки кругового излучения предназначаются для обеспечения навигационных определений в море с помощью судовых радиопеленгаторов. Маломощные маркерные радиомаяки используются, как правило, для обозначения навигационных опасностей или других пунктов, на которых они установлены.

Створные радиомаяки предназначаются для обеспечения вождения судов по прямолинейным фарватерам. Принцип их действия основан на использовании метода равносигнальной зоны. Вождение по зоне осуществляется путём удержания судна в пределах зоны равной слышимости двух сигналов, передающих в "переплёт".

Секторные радиомаяки с веером вращающихся равносигнальных зон по сравнению с обычными круговыми радиомаяками обладают рядом преимуществ и отличают от последних принципом действия, эксплуатационными данными и методикой использования. Достоинства секторных радиомаяков: большая дальность действия, повышенная точность пеленгования и, самое главное, отсутствие потребности в специальной аппаратуре на судне, не считая средневолнового приёмника или радиопеленгатора.

При плавании вблизи берегов возникают трудности выделения и опознания сигналов навигационного знака на фоне сигналов от береговой черты или плавмаяка на фоне отметок судов.

Радиолокационный маяк ответчик (РМО) представляет собой устройство, при поступлении, на вход которого импульсов судовой РЛС излучаются ответные импульсы или их кодовое сочетание. Ответные сигналы воспроизводятся на экране РЛС, позволяя определить местоположение и принадлежность маяка.

В настоящее время получили широкое распространение РМО с медленной перестройкой рабочей частоты в диапазоне 9320 - 9500 МГц (3 см) используемой для работы судовых РЛС всего мирового флота. Сигналы РМО наблюдаются только в те промежутки времени, когда частота РМО совпадает с частотой РЛС. Период изменения частоты РМО составляет 1,5 - 2 мин. Поэтому сигналы РМО наблюдаются в течение 2 - 3 оборотов антенны каждые 1,2 - 2 мин

Определение места судна в море визуальными методами.

Учет перемещения судна путем ведения графического счисления не является достаточно точным методом. Для уточнения своего положения судоводитель должен систематически определять место судна по наблюдениям различных ориентиров, положение которых известно. Место, полученное путем обработки результатов таких наблюдений, называется обсервованным. Если обсервованная точка признается надежной, дальнейшая прокладка ведется от этой точки. Несовпадение обсервованной и счислимой точек называют невязкой.

Значение и направление невязки рассчитывают при каждой обсервации, так как анализ вызвавших ее причин дает возможность установить, какие именно ошибки могли быть допущены в принятых к учету элементах счисления. Все величины, которые измеряют с целью определить обсервованное место судна (пеленги, расстояния, горизонтальные и вертикальные углы), называют навигационными параметрами. По измеренным навигационным параметрам рассчитывают и прокладывают на карте изолинии или заменяющие их линии положения. Навигационной изолинией называют линию равных значений навигационного параметра (рис 14). Точка пересечения двух таких изолиний и будет местом судна. На практике всю изолинию не строят, тем более, что на меркаторских картах она часто имеет вид сложной кривой, а заменяют её линией положения - отрезком прямой, касательной к изолинии вблизи счислимого места.

При визуальных способах определения места судна для наблюдений используют нанесенные на карту хорошо видимые и опознанные береговые и плавучие маяки, огни, неосвещаемые знаки, башни, церкви, а также различные естественные ориентиры: мысы, вершины гор, скалы и т.д. Не следует использовать для обсерваций буи, вехи и другие знаки плавучего ограждения, так как они могут быть снесены со своих штатных мест.

Рис. 14. Изолинии при визуальном пеленговании (а) и при измерении горизонтального угла (б)

Для указания на карте места судна, полученного по обсервациям, применяют условные обозначения:

Навигационные знаки

Надо помнить, что слепо полагаться на положение плавучих знаков нельзя, нужно подстраховывать их контрольными пеленгами, например, при каждом повороте.

Для обеспечения безопасности плавания в узкостях, особенно в штормовых условиях нередко применяют метод ограничительных (опасных) изолиний. Чаще применяют ограничительный пеленг. Для этого от хорошо видимого ориентира проводят на карте линию пеленга, ограничивающую опасность (рис. 15). При проходе мимо этой опасности следят, чтобы пеленги на этот ориентир были больше (меньше) ограждающего пеленга.

Плавучие знаки по сравнению с береговыми более точно указывают кромки судового хода и местоположение отдельных препятствий. Плавучий знак состоит из надводной (надстройки) и подводной (поплавковой) частей в виде плавучего основания, которое удерживается на месте постановки знака с помощью якоря или якорного груза. Надводную часть знака принято называть сигнальной фигурой знака и характеризовать ее видимым силуэтом, формой и окраской.

На внутренних водных путях применяют три разновидности плавучих знаков: вехи, бакены и буи. В зависимости от глубины в месте постановки, ветроволнового режима и течения конструкции этих знаков различны: на водоемах с речными условиями плавания (реки и речная часть водохранилищ) установлены озерно-речные и речные буи, бакены и речные вехи; с озерными условиями плавания - озерные и озерно-речные буи, зимние буи-сигары (ледовые буи) и озерные вехи. Речные буи сконструированы для работы в условиях течения и постоянных ветровых нагрузок, озерно-речные и озерные - в условиях волнения водной поверхности.

По характеру видимого силуэта сигнальной фигуры различают четыре типа плавучих знаков: треугольный, круглый, прямоугольный и линейный. К последнему типу относятся знаки удлиненной формы - буи-сигары и вехи.

Рис. 15. Ограждающие (опасные) изолинии: ИП - опасный пеленг; Б - горизонтальный угол опасности; опасное расстояние D и вертикальный угол опасности a

Буи могут быть только треугольного и прямоугольного силуэтов, их надстройки имеют форму тел вращения - конуса или цилиндра. Бакены могут быть треугольного, прямоугольного или круглого силуэтов, их надстройки - объемными или в виде пересекающихся плоскостей (из реек).

Плавучие знаки по сравнению с береговыми более точно указывают кромки судового хода и местоположение отдельных препятствий. Плавучий знак состоит из надводной (надстройки) и подводной (поплавковой) частей в виде плавучего основания, которое удерживается на месте постановки знака с помощью якоря или якорного груза. Надводную часть знака принято называть сигнальной фигурой знака и характеризовать ее видимым силуэтом, формой и окраской.

На внутренних водных путях применяют три разновидности плавучих знаков: вехи, бакены и буи. В зависимости от глубины в месте постановки, ветроволнового режима и течения конструкции этих знаков различны: на водоемах с речными условиями плавания (реки и речная часть водохранилищ) установлены озерно-речные и речные буи, бакены и речные вехи; с озерными условиями плавания - озерные и озерно-речные буи, зимние буи-сигары (ледовые буи) и озерные вехи. Речные буи сконструированы для работы в условиях течения и постоянных ветровых нагрузок, озерно-речные и озерные - в условиях волнения водной поверхности.

По характеру видимого силуэта сигнальной фигуры различают четыре типа плавучих знаков: треугольный, круглый, прямоугольный и линейный. К последнему типу относятся знаки удлиненной формы - буи-сигары и вехи. Буи могут быть только треугольного и прямоугольного силуэтов, их надстройки имеют форму тел вращения - конуса или цилиндра. Бакены могут быть треугольного, прямоугольного или круглого силуэтов, их надстройки - объемными или в виде пересекающихся плоскостей (из реек).

Представлены вехами (речными), бакенами и буями (речными и озерно-речными).

Рис. 16.

Рис. 17.

Вехи (рис. 17) применяют как дневные плавучие знаки на реках с неосвещаемым навигационным оборудованием; они указывают не только кромки судового хода, но и направление течения за счет наклона свободно плавающего шеста вехи.

Иногда вехи установлены дополнительно к основным плавучим знакам, особенно в меженный период. Вехи используются также в качестве контрольных знаков у бакенов и буев для закрепления их местоположения. Длина надводной части речных вех - 1-2 м. Вместо вех могут быть установлены поплавки (буйки) красного и белого цвета.

Бакены (рис. 16) - основные плавучие знаки на малых реках. В верховьях рек применяют бакены круглого силуэта, на реках с повышенной интенсивностью движения - прямоугольного.

Буи (рис. 18) в речных условиях используют вместо бакенов на участках с сильным волнением. Они могут быть конической или цилиндрической форм. Цилиндрические буи установлены на участках с повышенной интенсивностью движения судов. Все буи пронумерованы.

По назначению речные плавучие знаки могут быть кромочными, разделительными, поворотными, свальными и ограждающими опасность.

Рис. 18

Рис. 19.

Кромочные знаки (рис. 19) - вехи, бакены, буи - установлены на кромках судового хода. Все знаки правого берега окрашены только в красный цвет. У правобережных вех на вершине имеется топовая фигура - черный шар или голик (веник из прутьев). В верховьях рек правосторонние бакены могут иметь круглый или прямоугольный силуэт, на реках с интенсивным движением - только прямоугольный. У левого берега вехи и бакены окрашены в белый цвет, на речных участках водохранилищ бакены могут быть черного цвета, буи, как правило, черные. И бакены, и буи левой кромки - только треугольного силуэта.

Поворотные знаки (рис. 20) установлены на участках рек с ограниченным обзором для обозначения крутого поворота. Это обычные кромочные знаки - бакены или буи - треугольного или прямоугольного силуэта с контрастной черной или белой полосой посредине. Как правило, они стоят у выпуклого берега.

Рис. 20

Знаки обозначения судового хода. На знаках осевого и щелевого створов установлены белые направленные огни: на передних знаках - постоянные, на задних - однопроблесковые. Если же в районе створа имеются посторонние огни, вместо белых огней горят цветные: на правом берегу красные, на левом - зеленые. У передних знаков створов в этом случае могут быть применены линейные постоянно горящие цветные огни в виде светящейся линии. По режиму свечения огни передних знаков могут быть пульсирующими, задних - прерывистыми пульсирующими.

На перевальных знаках горят цветные постоянные огни: справа - красные, слева - зеленые. Но если на данном участке стоят и весенние знаки, цветные постоянные огни заменены белыми одно-проблесковыми.

У ходовых знаков огни цветные и однопроблесковые: справа - красные, слева - зеленые. У весенних знаков - тоже цветные, но постоянные.

Знаки "Ориентир" (русловые маяки) имеют обычно белые двухпроблесковые огни. Но если на этом участке проходит осевая трасса, белые огни заменены цветными: справа красными, слева зелеными.

У опознавательных знаков вверху горит проблесковый точечный огонь кругового действия, вдоль башни - линейный, постоянно горящий. Цвет огней зависит от того, с какой стороны входящие суда должны оставлять этот знак: если справа, то цвет огней красный, если слева - зеленый.

Судоходные пролеты мостов отмечены цепочками вертикально расположенных зеленых огней постоянного свечения, которые находятся на устоях мостов. Их количество соответствует щитам указателя высоты подмостового габарита. Ось судового хода обозначена створом из двух постоянно горящих огней красного цвета на нижней ферме моста там, где установлены щиты указателя оси судового хода. Передний огонь находится в центре щита, задний - под противоположной кромкой фермы. Минимальное расстояние по вертикали между этими огнями - 1,5 м. Кроме того, со стороны судового хода подсвечиваются русловые опоры моста. Пролет для маломерных судов ночью ничем не обозначен.

Наплавные мосты ночью можно узнать по цепочке огней поперек реки: на мосту через каждые 50 м установлены белые постоянные огни, их не меньше трех. Если подвижный пролет выведен для пропуска судов, то проход обозначен цветными огнями постоянного свечения: справа два или три красных, слева - два или три зеленых. Два огня - на нижнем и верхнем по течению углах пролета. Третий огонь - на конце выведенного пролета, выдающемся в реку со стрежневой стороны. Этот огонь указывает, с какой стороны стоит выведенный пролет. Все указанные цветные огни используются совместно с огнями семафорной мачты (или светофора), регулирующей пропуск судов через мост.

По берегам паромной канатной переправы горят яркие фары, освещающие канат парома. Сам паром несет на флагштоке огонь белого цвета.

Все огни информационных знаков (кроме семафорной мачты и указателя рейда) - желтого цвета. Каждый из стоящих в створе знаков "Якоря не бросать!" обозначен одним частопроблесковым огнем, одиночный знак - парой постоянных огней, установленных вверху и внизу щита. Два таких же огня, но установленных горизонтально, могут гореть по краям щита знака "Соблюдать надводный габарит!". В остальных случаях одиночные огни могут быть постоянными или мигающими. Мигающий огонь свидетельствует об установке знаков: запрещающего - частопроблесковый огонь или предупреждающего - проблесковый. Постоянно горит огонь на знаках "Место оборота судов" и "Пост судоходной инспекции".

Указатели рейда обозначены створными цветными огнями: справа - красными, слева - зелеными. У рейдовых створов, в отличие от осевых, огни горят непрерывно. Сигнальные фигуры семафорных мачт ночью дублируются цветными постоянными огнями: конус - красным, цилиндр - зеленым.

Сигнальные мачты, указатели расстояний и местности ночью огнями не обозначены.

У плавучих знаков строго выдерживается принцип: у правого берега установлены только красные огни.

Огни кромочных знаков левого берега - белые. На реке они могут быть также зелеными, если есть мешающие посторонние огни. В присутствии посторонних огней белые и красные огни могут быть прерывистыми пульсирующими.

Огни поворотных знаков всегда частопроблесковые, причем слева они могут быть белыми или зелеными.

Огни знаков опасности и свальных тоже мигающие: у знаков опасности - двух проблесковые, у свальных - группочастопроблесковые. Слева всегда установлены только зеленые огни.

Огни разделительных знаков парные - они размещены один над другим. Это два однопроблесковых огня: белый над красным или зеленый над красным. Если разделение судового хода на реке обозначено парным знаком (из двух рядом стоящих кромочных), то рядом горят два постоянных огня: красный и белый или красный и зеленый.

Огни осевых и поворотно-осевых знаков водохранилищ всегда белые и мигающие (у осевых - двухпроблесковые, у поворотно-осевых - группочастопроблесковые).

Документами, призванными обеспечить безопасность мореплавания, являются:

Международная ковенция по охране человеческой жизни на море 1974 г. (СОЛАС-74);

Международная конвенция о подготовке и дипломировании моряков и несении вахты 1978 г.; .

Международная конвенция о грузовой марке 1966 г.;

Международные правила предупреждения столкновения судов в море (МППСС-72);

Международный свод сигналов (МСС-65), 2-е изд. 1982 г.;

Международные конвенции, наставления, инструкции, правила по охране окружающей среды;

Правила Регистра Украины;

Правила морской перевозки опасных грузов (МОПОГ);

Наставление по борьбе за живучесть судов морского флота (НБЖС-81);

Наставление по организации штурманской службы на судах морского флота Украины (НШС-82);

Устав службы на судах морского флота Украины;

Устав о дисциплине работников морского транспорта;

Правила техники безопасности на судах морского флота;

Положение о технической эксплуатации морского флота;

Правила технической эксплуатации судовых технических средств (ПТЭ);

Во время плавания в штормовых условиях возникают сложные ситуации для судовождения: столкновение, получение пробоины, возникновение пожара, посадка судна на грунт, смещение груза, разлив нефтепродуктов, утечка (прорыв) хладагента и др. Всегда вахтенная служба должна быть готовой ко всем непредвиденным ситуациям.

Основных действий вахтенного помощника капитана при чрезвычайных обстоятельствах

Столкновение, получение пробоины

1. Сманеврировать судном таким образом, чтобы свести возможные повреждения к минимуму.

2. Объявить общесудовую тревогу с указанием места предполагаемой пробоины.

3. Закрыть водонепроницаемые и противопожарные закрытия.

4. В темное время суток включить палубное освещение.

5. С момента прибытия на мостик капитана и остального штурманского состава действовать согласно расписанию по общесудовой тревоге.

Возникновение пожара (взрыва)

1. После получения сигнала или доклада о пожаре (взрыве) объявить общесудовую тревогу с указанием места пожара (взрыва). Произвести запись в судовом журнале с указанием широты, долготы, характера пожара (взрыва).

2. Остановить ход судна, лечь в дрейф, если позволяют погодные условия.

3. Выключить вентиляцию помещений при наличии дистанционного управления с мостика.

4. Закрыть водонепроницаемые и противопожарные закрытия при наличии дистанционного управления с мостика.

5. В темное время суток включить палубное освещение.

6. С момента прибытия на мостик капитана и остального штурманского состава действовать согласно расписанию по общесудовой тревоге.

Посадка судна на грунт

1. Остановить главный двигатель.

2. Объявить общесудовую тревогу. Произвести запись в судовом журнале с указанием широты и долготы места происшествия.

3. Закрыть водонепроницаемые и противопожарные закрытия при наличии дистанционного управления с мостика.

4. Выставить огни и знаки согласно МППСС-72 для судна на мели.

5. В темное время суток включить палубное освещение.

6. С момента прибытия на мостик капитана и остального штурманского состава действовать согласно расписанию по общесудовой тревоге.

Внезапное возникновение большого статического крена (смещение груза)

1. Снизить ход судна, лечь носом на волну, объявить общесудовую тревогу.

2. Закрыть водонепроницаемые и противопожарные закрытия при наличии дистанционного управления с мостика.

3. Уточнить координаты судна, выставить их на АПСТБ.

4. В темное время суток включить палубное освещение.

5. С прибытием на мостик капитана и остального штурманского состава действовать согласно расписанию по общесудовой тревоге.

Аварийный разлив нефтепродуктов

1. Остановить главный двигатель.

2. Объявить общесудовую тревогу. Произвести запись в судовом журнале с указанием широты и долготы места происшествия.

3. С прибытием на мостик капитана действовать согласно расписанию по борьбе с загрязнением морской среды.

Аварийная утечка (прорыв) хладагента

1. Дать сигнал общесудовой тревоги и объявить по радиотрансляции об утечке (прорыве) хладагента с указанием места сбора всех лиц экипажа, не имеющих конкретных обязанностей по этому сигналу.

2. Изменить курс судна, обеспечивающий безопасность экипажа от поражения парами хладагента.

3. Дать указание о герметизации трюмов и помещений, где хранятся продукты.

4. С момента прибытия на мостик капитана действовать по его указанию.

Падение человека за борт

1. Дать команду рулевому переложить руль на борт, с которого упал человек, сбросить спасательный круг со светодымящимся буйком.

2. Дать указание матросу-впередсмотрящему постоянно следить за упавшим за борт (в темное время суток впередсмотрящий должен включить прожектор и направить его в сторону места падения человека).

3. Объявить тревогу: "Человек за бортом", продублировать гудком или тифоном и известить о случившемся капитана.

4. Когда судно отвернет от первоначального курса на необходимый угол, дать команду матросу-рулевому переложить руль на противоположный борт.

5. Включить РЛС на подготовку.

6. Получая беспрерывно доклады рулевого о положении судна по компасу, лечь вовремя на контркурс и до выхода на него режим работы главного двигателя не менять.

7. Распорядиться, чтобы приготовленная к спуску дежурная шлюпка (спасательная шлюпка) не спускалась, пока судно не потеряет инерцию.

8. При подходе к упавшему за борт маневрировать по обстановке или по указанию прибывшего на мостик капитана.

Примечание. Для судна с орудием лова за бортом первоочередной мерой при падении человека за борт является остановка движения судна, чтобы по возможности уменьшить расстояние до упавшего. Одновременно с началом торможения судна оценивается возможность спасения человека силами самого судна или других судов, находящихся поблизости.

Вывод

Стесненные воды - это воды, в которых плавание судна стеснено навигационными условиями и (или) интенсивным судоходством. Это сложнейший по своим условиям район плавания, где в полной мере проверяются опыт и искусство судоводителя.

При плавании в стесненных водах курс судна должен проходить по безопасным глубинам на безопасном расстоянии от навигационных опасностей и судов, а скорость судна должна быть безопасной.

При высокой динамике развития ситуации снижение скорости увеличивает резерв времени на оценку ситуации, уменьшает нагрузку на наблюдателей и судоводителей.

Главной предпосылкой безаварийного плавания судна является его тщательная и заблаговременная подготовка к плаванию в стесненных водах.

Поворот судна - один из наиболее ответственных моментов при плавании в стесненных водах.

Подготовка к плаванию в стесненных водах должна быть заблаговременной и плановой.

Экстремальные ситуации, особенно при плавании в стесненных условиях, чреваты неожиданным, непредсказуемым ходом развития событий, и любой стереотип действий здесь неприемлем.

Использованная литература

1. Баранов Ю. К., Гаврюк М. И., Логиновский В. А., Песков Ю. А. Навигация. Учебник для вузов - 3-е изд., перераб. и доп. - СПб.: Издательство "Лань", 1997.

2. Баскин А. С., Блинов И. А., Елисеев Б. В. и др. Навигационно-гидрографическое обеспечение мореплавания. - М.: Транспорт, 1980.

3. Баскин А. С., Москвин Г. И. Береговые системы управления движением судов. - М.: Транспорт, 1986.

4. Ермолаев Г. Г. Морская лоция. Учебник для вузов морского транспорта. 4-е изд., перераб. и доп. - М.: Транспорт, 1982.

5. Жерлаков А. В., Ильин А. А., Румянцев Г. Е. Радиотехнические средства обеспечения безопасности морского судоходства. - М.: Транспорт, 1992.

6. Конвенция о континентальном шельфе. Женева, 1958 г. "Сборник международных договоров СССР по вопросам мореплавания". ГУНиО, № 9050, МО СССР. - 1988.

7. Конвенция Организации объединенных наций по морскому праву. Монтего-Бей, 1982 г. "Сборник международных договоров СССР по вопросам мореплавания". ГУНиО, № 9050, МО СССР. - 1988.

8. Лентар?в А. А. Развитие средств и методов управления движением судов. - Владивосток: МГУ им. адм. Г. И. Невельского, 2001.

9. Международные правила предупреждения столкновений судов в море, 1972 г. (МППСС-72). МО РФ. ГУНиО, № 9018Р. - 1996.

10. Общие положения об установлении путей движения судов. (Резолюция А.572(14) от 20 ноября 1985 г.). ГУНиО, МО СССР. - 1987.

11. Парфентьев О. С., Причкин О. Б. Системы управления движением судов и их роль в современном судоходстве // Морские вести России, 2000


Подобные документы

  • Методы навигационной безопасности плавания на маршруте. Оценка вероятности нахождения судна в заданной полосе движения. Статистический прогноз вероятности навигационного происшествия и столкновений судов. Анализ точности судовождения по маршруту.

    дипломная работа [975,4 K], добавлен 24.02.2013

  • Допуск судов службой безопасности мореплавания к самостоятельному плаванию во льдах. Правила безопасного судовождения, борьба с обледенением. Методы определения местонахождения судна. Разновидности плавучих знаков. Знаки обозначения судового хода.

    реферат [608,8 K], добавлен 21.11.2009

  • При плавании в районе возможной встречи со льдом на судне следует принять меры для своевременного обнаружения льда, положение которого не всегда точно известно. Навигационный особенности во время плавания судна во льду - маяки, буи, навигационные знаки.

    реферат [620,1 K], добавлен 02.10.2008

  • Навигационные условия плавания судов в каналах и фарватерах. Анализ аварийности на Бугско-Днепровско-Лиманском канале. Система управления движением судна, маневренные характеристики. Факторы, влияющие на аварийность в судоходстве; охранные мероприятия.

    дипломная работа [5,0 M], добавлен 06.02.2014

  • Обеспечение безаварийного плавания судна во время шторма - навигационные особенности. Практическое решение задач с помощью универсальной диаграммы качки. Основных действий вахтенного помощника капитана при чрезвычайных обстоятельствах во время шторма.

    реферат [915,7 K], добавлен 02.10.2008

  • Навигационно-гидрографический обзор района плавания, перечень государств, которые омываются Карибским морем и Мексиканским заливом. Рекомендованные пути и их расстояния. Безопасные проливы, ведущие в район плавания, его метеорологическое обслуживание.

    дипломная работа [1,9 M], добавлен 03.11.2013

  • Главные характеристики судна. Навигационно-гидрографический обзор района плавания. Правила плавания по акватории Астраханского порта. Управление судами смешанного плавания в штормовых условиях. Особенности режима плавания. Расчет безопасных курсов.

    дипломная работа [3,6 M], добавлен 18.04.2010

  • Подготовка технических средств навигации. Маневренные характеристики и лоцманская карточка. Выбор пути на морском и прибрежном участке. Плавание на участках пути с лоцманской проводкой. Основные способы контроля места судна в стесненных условиях.

    курсовая работа [3,1 M], добавлен 25.11.2014

  • Требования к современному состоянию морских карт, руководств, пособий для плавания. Гидрометеорологические условия по району плавания. Обеспечение судна навигационной, гидрометеорологической и иной информацией на внутренних водных путях и на морские воды.

    курсовая работа [465,8 K], добавлен 05.11.2015

  • Корректура карт и руководств для плавания. Особенности корректуры карт в рейсе. Навигационно-географический и гидрометеорологический очерки. Правила плавания в водах Кипра, Сирии, Ливана, Греции и Италии (извлечения из законов, правил и инструкций).

    курсовая работа [244,7 K], добавлен 11.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.