Преобразователь тепловых сигналов

Создание базы данных физических эффектов как основы построения преобразователя тепловых сигналов. Программное обеспечение принципов действия и конструкция технического средства, способного работать при повышенной радиации и низких температурах в космосе.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид монография
Язык русский
Дата добавления 17.11.2018
Размер файла 288,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

7. Фоменков С.А., Петрухин А.В., Камаев В.А., Давыдов Д.А. Представление физических знаний для автоматизированных систем обработки информации. - Волгоград: ТОО «Принт», 1998. - 152 с.

8. Фоменков С.А., Давыдов Д.А., Камаев В.А.. Моделирование и автоматизированное использование структурированных физических знаний.- М.: Машиностроение, 2004. - 297 с.
9. Половинкин А.И., Попов В.В.. Техническое творчество: теория, методология, практика.- Москва: Корпорация «Университетские сети знаний», 2004. - 350 с.
10. Коробкин Д.М.. Автоматизация системы верификации базы данных по физическим эффектам // Информационные технологии, 2004.- №6. - С. 149-152.

11. Соболев А.Н. Физические эффекты: Научное издание.- Йошкар-Ола: МарГТУ, 2001. - 168 с.

12. E. Hartmann, J.W. Bristol. An Introduction to Crystal Physics.- Arrowsmith Ltd., 1984. - 31 p.

13. Кривцов А.М., Кривцова Н.В.. Метод частиц и его использование в механике деформируемого твердого тела // Дальневосточный журнал ДВО РАН, 2002. - Т.3.- №2.- C. 254-276.

14. Никифоров А.Е., Бабушкин А.Н., Захаров А.Ю.. Симметрия и физические свойства кристаллов.- Екатеринбург: Уральский государственный университет, 1999.- 48 c.

15. Алейников А.Ф. Использование принципа подобия при построении преобразователей сигналов // Разработка приборов и устройств для сельскохозяйственной науки: Сб. науч. тр. ВАСХНИЛ. Новосибирск, 1990. - С. 8-15.

16. А.С. №518614 СССР, МКИ F 28 F 13/14 Тепловой диод / Плюхин В.С., Карышевский И. В., Аксютович Г.Ф., Крамаренко В.П., Кринкин А.А (СССР).- № 2102704/24-6; завл. 13.01.75; опубл. 25.06.76, Бюл. №23.- 1 с.: ил.

17. Саламатов Ю.П.. Идеализация технических систем.-Красноярск, КрГТУ, 2000.-110 с.

18. B. Lia, L. Wang, G. Casatic. Thermal diode: Rectification of heat flux // Phys. Rev. Lett, 2004. - 93. - PP. 25-29.

19. M. Terraneo, M. Peyrard, G. Casati. Controlling the energy flow in nonlinear lattices: a model for a thermal rectifier // Phys. Rev. Lett, 2002. - 88. - PP. 22-24.

20. B. Lia, L. Wang, G. Casatic. Negative differential thermal resistance and thermal transistor // Phys. Rev. Lett, 2004. - 94.- PP. 31-33.

21. Киттель Ч. Введение в физику твердого тела. М.: Физматгиз, 1963.- 230 c.

22. Смородинский Я.А. Температура. - 2 - е изд., перераб. и доп. - М.: Наука, 1987. - 310 с.

23. А. с. №290182 СССР, МКИ G 01 K 7/02 Устройство для измерения температуры / Фогельсон И. Б. (СССР).- №1353894/18-10; завл. 1.08.69; опубл. 22.12.70, Бюл. №2 - 1.

Annotation

A.Ph. Aleynikov. Thermotronics as alternative for using microelectronics in extreme conditions

It has been showed a possibility of creating a new trend of microelectronics, i.e. thermotronics, the element operation of which is based on heat signal transforming. It has been considered the operation principle and described the construction of the heat signal transducer being the transistor analogue which can operate under extreme conditions, for example, with elevated radiation and low temperatures in space.

In the work [1] a search for new operation principles of sensors is based on assumptions that the foundation for analogue information measuring technique is not only energetic transformations and energy exshange, but also “substantial” transformations proceeding from measuring signal transformation. As this takes place, energetic transformations were recognized as consecutive repeated transformation of different energy type within being created sensor structure, whereas substantial transformations were recognized as properties change, change of parameters of sensitive elements materials and other materials which take place during measurements. The utility of considerating energetic transformations in an analogue signal is determined by the interrelation between its energy and the measuring information. The energy transformation beyond the substance is not possible. The joint consideration of the characteristic features of substantial and energetic transformations when formalizing the sensor structure made it possible to create a new procedure for synthesis of sensor operation principles and to develop the algorithms describing the regularity of such transformations [2].

Considered substantial and energetic transformations of measuring signals can be used for construction of any signal transducers [3]. For example, the structure of substantial and energetic transformations of transistor semiconductor signal transducer made of 2 p - n junctions is based on the algorithm:

Э е= ( В1 . В2 ) n Э е, (1)

Э е

where Э е = is the energy of direct voltage source;

Э е is the energy of input alternating electrical signal of a small size;

Э е is the energy change of output enhanced signal;

(В1. В2) n is the non - line element consisting of the composition of two substantions, i. e. p - n junctions.

On the basis of the algorithm (1) earlier unknown signal transducers of any physical nature can be built. To prove this statement we shall consider the structure of a signal thermotransducer being the analogue of a semiconductor transistor assuming that there is a transducer structure where the thermal type of energy rather than the electric type is used as input and output types of energy. We use the dielectric as a non - line element. Practically there are no free electrons in the dielectrics. The heat is transmitted by the vibrations of the crystal lattice points along the chains of bound points, i. e. atoms. The higner is the temperature within some microfield the bigger is the amplitude of thermal vibrations in it. These vibrations are transmitted to neighbouring points (microfields) through quasi - elastic links, etc. As a result, heat (phonon) waves are extended over the crystal with the sound velocity. Minimum semiwave length therewith is equal to the distance between neighbouring points, maximum semiwave length is equal to the biggest linear size of a sample. The set of possible wave lengths or their associated frequencies form the phonon spectrum, with the energy of one phonon is equal to Э = . h, where is a cyclic frequency of points vibrations , h is an atomic constant. Phonons can be considered as a peculiar kind of quantum gas, “the molecules” of which of h - type have statistical distribution of energy and impulses. Within low temperature field (lower than Debye characteristic temperature ) the phonon gas is governed by the Bose - Einstein statistics, but within high temperature field the phonon gas ig governed by the Maxwell - Boltzmann statistics [4]. The phonons are scattered, reflected and interfered with one another at the internal structure defects, at the individual grain boundaries and chemical impurities. Because of this, average free length in dielectrics is notmore than 50 A and lattice component of the dielectric thermal conduction is two orders of magnitude lower than electron component of the metal thermal conduction. The dielectric thermal resistance within low temperature field equals [4]:

RT = 1 / С1.T. exp (- Td /T) + 1 / С2 . l 0 .T 3 + 1 / С3 . T + С4. T (2)

within high temperature field said resistance equals

RT = С5. T 2/3 (3)

where С1 ... С5 - are the constant coefficiens for chosen dielectric;

l 0 is the smallest linear size of the sample;

Td is Debye temperature;

T is the sample temperature.

Within the lowest temperature field the dielectric thermal resistance during heating first sharply reduces from the linear law (from 0 to 20K), then gradually increases from the inverse proportionality law [4]. Using the thermal resistance dependence of the temperature within the low temperature field makes it possible to create, among other transducer elements, some logic elements where heat waves - phonons are used as information signals.

The transducer (see fig.) consists of two sources 1,2, the receiver 3 of heat field, the source of heat bias 4, the heat diode 5, heat conduits 6 - 9, the material layer 10 with temperature dependence of the thermal resistance (non - linear element) and the thermal isolator 11. The layer 10 represents a crystal dielectric (quartz, sapphire, ice, ruby, mica, ets). The natural space temperature can be used as the exemplary heat bias Qb of low temperature because our universe represents a thermostat with the temperature 2,7 [5].

A natural or an artificial source with the steady temperature Q0 of any value can be used as the source of the heat field. The heat conduit 7 is constructed in the form of “the divider“ of the heat flow with the help of which it can achieve the necessary temperature at the place of thermal contact between the heat conduit 7 and the layer of the non - linear element. The heat conduits 6-9 material has a temporally constant coefficient of a thermal conduction (throughout the temperaturerange of using heat signal transducer). In principle, the individual parts of the heat conduit - divider of the heat flow can consist of some materials even being in different phase states. The thermal isolator material is called upon to meet the following conditions, i. e. the quantity of heat outgoing through the thermal isolator has to be several orders smaller than the quantity of heat outgoing through the heat conduits. The heat absorbing surface of the heat conduits provides the small temperature difference between their ends surface and corresponding absorbers or sources of the heat field. In addition to this, the heat conduit material has to be heat - resistant and chemically inert. The heat conduits can be made of gold. The overall dimensions of the heat signal transducer elements can be small if they made using the methods of the integral technology. The heat diode [3] consists of two materials having the great and small temperature coefficient of the linear expansion. With the help of the sources 2,4 and the system of heat conduits 7-9 the process of temperature change in the layer 10 takes place ( choosing the transducer “work” point in the mode “closed”). This conductive heat exchange takes place in the second “shoulder” of the heat conduit 7, in the heat conduit 6. The stabilization of the “work” point is achieved by choosing the temperature values of the sources 2,4; the coefficient of the heat conduit 7 divider ; the heat conduit materials and their sections (with the aim of providing the necessary thermal resistance of the heat conduits 6-9) in the design. And the temperature in the second “shoulder” of the heat conduit 7 is increased with the spatial approach from the layer of the non-linear element to the source. Of course, if the heat conduction of the heat conduits were ideal, the temperature of the absorber would be comparable with the temperature of the heat conduits 7,8 heat contact. But the temperature of the absorber differs from the layer 10 temperature because the heat conduits have different thermal resistances. Therefore the heat flow from the source looks like as though it were branched out. On the one hand, it comes into play in the regulation of the non-linear element layer temperature, and on the other hand there is a conductive heat exchange from source Q0 to the absorber Qa because the latter, like the bias source, has the lower temperature. And the regulation of the non - linear element layer temperature is carried out with regard to the reflux of heat to the absorber Qa. The thermal resistance of the heat conduit 8 in this mode is smaller than the thermal resistance of the segment consisting of the second “shoulder” of the heat conduit 7, the non - linear element layer and the heat conduit 9. Because of this, the major part of the energy is transfered from the source to the absorber, the temperature therewith increases. In such a manner a steady ”mode” is established within the transducer and an overall abstraction of heat exactly balances the outgoing power of the source Q0. The thermal resistance of the layer 10 is decreased when the input signal of the source Qin is transmitted, the temperature of the source Qin can be smaller in size than the heat signal of the source Q0. Therefore the thermal resistance of the segment consisting of the second “shoulder” of the heat conduit 7, the layer 10 and the heat conduit 9, is also decreased. As this takes place, the thermal resistance of the heat conduit 9 is much smaller than the thermal resistance of the heat conduit8. Because of this, although the absorber 3 is also placed in the low temperature field, its heat link (through the segment ”the heat conduit 8 - the second “shoulder” of the heat conduit 7”) has a fair effect on the regulation of the layer 10 temperature. Said heat link is an “effecting value” in the process of establishing the transducer work mode. No doubt, by analogy with the transistor operation there is corresponding heat signal “leakage” within the heat transducer. In such a manner a peculiar “amplification” and transformation of a heat signal is achieved. As this takes place, the heat flows from the source Q0 are redistributed and the major part of the heat energy already “flows” to the bias source. And the absorber temperature decreases. It should be noted that “the zero” levels of heat signals for the bias source and for the absorber can be different because a part of the heat energy even in the transducer mode “open” transmits to the absorber.

The process of heat signal transformation in the suggested transducer is more temporally prolonged in comparision with an electronic one. If the input signal changes to “zero” value, it will take definite time during which the transducer reverts to its original state. Such transducers can be used in low temperature spheres where the ordinary electron semiconductor elements are inefficient. They will moderately respond to a radioactive radiation. On the basis of such heat transducers different automatic and logical devices operating under severe conditions, for example, in space, etc., can be created. The heat transducers can be also used while executing logical and automatic operations if there is no need for high speed of response. However the demagnification of heat conduits (making them, for example, with the integral technology), the provision for good heat contact with the methods of the sources and the absorbers of the heat signals, the reduction of signal leakage helps to create miniature heat microcircuits having varied logical functions and necessary responsiveness. Such heat microsircuits will have normal operation under low temperature conditions with elevated radiation; they can be made in combination with executive devices, the operation principle of which is based on the heat exspansion of substances. The transducers can control different processes and carry out emergency stopping of some devices. The heat transducer requires a minimum expenditure of energy because natural sources can be used as the sources of constant heat field and bias (with low temperature). For example, an aircraft engine can be used as the source of constant heat field. In such a manner the algorithm (1) can be used while developing non - traditional signal transducers of different physical nature ( acoustic, chemical, etc.).

Literature

1. Aleynikov A.Ph. Development of new measuring devices for Agricultural and Industrial Complex (AIC). - Novosibirsk: Trina, 1993. - 160 p.

2. Aleynikov A.Ph. The structural synthesis of principles and measuring devices // Sib. news agr. science. 1996, 2, p. 124 - 134.

3. Aleynikov A. Ph. Using the principle of similarity when constructing signal transducers // Development of instruments and devices for apricultural science: Coll. vol. of sc. works / VASKHNIL, Novosibirsk, 1990. - p. 8-15.

4. Kittel Ch. Introduction into solid - state physics. - M.: Physmatgiz, 1963 - 230 p.

Размещено на Allbest.Ru


Подобные документы

  • Временные функции, частотные характеристики и энергия сигналов. Граничные частоты спектров сигналов. Технические характеристики аналого-цифрового преобразователя. Информационная характеристика канала и расчёт вероятности ошибки оптимального демодулятора.

    курсовая работа [1,2 M], добавлен 06.11.2011

  • Исследование принципов разработки генератора аналоговых сигналов. Анализ способов перебора адресов памяти генератора аналоговых сигналов. Цифровая генерация аналоговых сигналов. Проектирование накапливающего сумматора для генератора аналоговых сигналов.

    курсовая работа [513,0 K], добавлен 18.06.2013

  • Аналого-цифровой преобразователь, дешифратор адреса, запросчик прерываний. Устройство ввода сигналов с термосопротивлений. Поддержка протокола шины приоритетных прерываний. Генерация сигналов записи базового вектора прерываний в регистры запросчика.

    курсовая работа [198,9 K], добавлен 28.12.2013

  • Концепция построения системы сбора данных. АЦП микроконтроллера ATmega8L: основные характеристики и принцип работы. Спектральный анализ сигналов. Быстрое преобразование Фурье. Схема сопряжения микроконтроллер-компьютер, его программное обеспечение.

    курсовая работа [1,6 M], добавлен 18.08.2014

  • Радиотехнические системы передачи информации: методы передачи, регистрации и хранения двоичных сигналов. Неидентичность характеристик канала, действия помех, виды искажения сигналов. Общие принципы и закономерности построения РТС, техническая реализация.

    реферат [92,1 K], добавлен 01.11.2011

  • Аналого-цифровой преобразователь, разрешение и типы преобразования. Точность и ошибки квантования. Частота дискретизации и наложение спектров. Подмешивание псевдослучайных сигналов и передискретизация. Основные аппаратные характеристики микроконтроллера.

    дипломная работа [635,4 K], добавлен 23.03.2013

  • Разработка адаптера аналого-цифрового преобразователя и активного фильтра низких частот. Дискретизация, квантование, кодирование как процессы преобразования сигналов для микропроцессорной секции. Алгоритм работы устройства и его электрическая схема.

    реферат [847,2 K], добавлен 29.01.2011

  • Обзор особенностей обеспечения тепловых режимов в конструкциях ЭВС. Моделирование тепловых режимов. Выбор структурного построения системы и формулирование требований к ее структурным компонентам. Анализ взаимодействия технических и программных средств.

    дипломная работа [2,2 M], добавлен 29.06.2010

  • Изучение основ построения математических моделей сигналов с использованием программного пакета MathCad. Исследование моделей гармонических, периодических и импульсных радиотехнических сигналов, а также сигналов с амплитудной и частотной модуляцией.

    отчет по практике [727,6 K], добавлен 19.12.2015

  • Состав нормирующего преобразователя. Формирователь опорного напряжения. Анализ работы входной цепи. Анализ работы масштабирующего и суммирующего усилителей. Расчёт измерительной цепи нормирующего преобразователя. Формирователь выходных сигналов.

    курсовая работа [132,8 K], добавлен 06.02.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.