Основы вейвлет-преобразования сигналов

Истоки вейвлет-преобразования как обобщения спектрального анализа, его закономерности и применение. Функции оконного спектрального анализа. Достоинства и недостатки исследуемого метода, а также условия и особенности его практического использования.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид статья
Язык русский
Дата добавления 15.11.2018
Размер файла 797,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

to =t |z(t)|2 dt,

Dz = --

Если по этим функциям определить центры и радиусы вейвлетов и их фурье-образов, то временная локализация происходит с центрами окон b+ato шириной wint = 2aDy(t),--а частотная - с центрами що/а, и с шириной окна winщ = 2Dy(w),--/а. При этом значение отношения центральной частоты к ширине окна не зависит от местоположения центральной частоты. Частотно-временное окно wint·winщ = 4Dy(t)Dy(w),--сужается при высокой центральной частоте, и расширяется при низкой. Схематическое изображение частотно-временных окон преобразования приведено на рис. 1.2.4. Таким образом, на высоких частотах лучше разрешение по времени, а на низких - по частоте. Для высокочастотной компоненты сигнала мы можем точнее указать ее временную позицию, а для низкочастотной - ее значение частоты.

Изменение частотно-временного окна вейвлета определяет угол влияния значений функции в произвольных точках ti на значения коэффициентов С (а, b). И наоборот, угол влияния из точки С(ai, bi) на ось t определяет интервал значений функции, которые принимают участие в вычислении данного коэффициента С(ai, bi) - область достоверности. Схематически это показано на рис. 1.2.5.

По углу влияния наглядно видно, что высокочастотная (мелкомасштабная) информация вычисляется на основе малых интервалов сигналов, а низкочастотная - на основе больших. Поскольку анализируемые сигналы всегда конечны, то при вычислении коэффициентов на границах задания сигнала область достоверности выходит за пределы сигнала, и для уменьшения погрешности вычислений сигнал дополняется заданием начальных и конечных условий.

Образное представление преобразования. Представим себе длинный и узкий стеклянный ларь, произвольно заполненный шарами трех разных диаметров: 5, 10 и 15 см. Взглянем на ларь сбоку, и линию высоты насыпки будем считать значением сигнала в зависимости от расстояния от одного из торцов ларя (условно - нулевого).

Возьмем первый «вейвлет» - идеальное дифференциальное сито с диаметром отверстий d=5 см, через которое проходят только пятисантиметровые шары (аналог значения ao). Передвигаясь вдоль ларя, «просеем» через это сито шары в ларе, не перемешивая их по расстоянию от нулевого торца ларя и размещая отсеиваемые шары в таком же ларе, сохраняя расстояние от начала ларя. Сменим масштаб «вейвлета» и повторим эту операцию ситом с диаметром отверстий 10, а затем 15 см. Если все три ларя расположить радом, мы получим двумерную «поверхность» насыпки отсеянных шаров, которая наглядно покажет распределение шаров в ларе и по размерам, и по их концентрации в различных участках ларя.

Данная модель разложения является довольно грубой, но интуитивно понятно, что обратная сборка шаров в ларь с сохранением их местоположения с определенной точностью восстановит высоту насыпки. Замените шары короткими фрагментами электронных сигналов произвольной, но одной и той формы в пределах диаметра шаров, например такими, как (t) на рис. 1.2.1, сложите все значения сигналов по текущим значениям t, и Вы получите сложный суммарный сигнал. Используя прямое вейвлет-преобразование с вейвлетами этих же составляющих, Вы можете разложить суммарный сигнал (и любой другой произвольный сигнал) на составляющие в масштабно-временной плоскости. Замените масштабную ось ширины вейвлетов на обратную ей частотную ось, и Вы представите результаты в частотно-временной плоскости. Заметим только, что точность, представительность и информативность результатов анализа во многом будут зависеть как от формы и особенностей анализируемого сигнала, так и от формы выбранных вами вейвлетов и параметров масштабирования и сдвига. Это определяется тем, что дифференциальное сито в примере с шарами - идеальная операция разделения, в то время как при вейвлет-преобразовании «идентификация» составляющих выполняется по скалярному произведению сигнала и функции вейвлета. Скалярное произведение в принципе не может давать однозначного ответа типа «да-нет», а только «наносит» на масштабно-временную плоскость определенные значения величины скалярного произведения. С одной стороны, выбор типа вейвлета вносит определенную субъективность исследователя в методику исследования сигналов, но, с другой стороны, дает исследователю новые возможности и свободу в поиске наиболее эффективных и оптимальных методов обработки сигналов и извлечения из них необходимой информации.

Достоинства и недостатки вейвлетных преобразований.

· Вейвлетные преобразования обладают всеми достоинствами преобразований Фурье.

· Вейвлетные базисы могут быть хорошо локализованными как по частоте, так и по времени. При выделении в сигналах хорошо локализованных разномасштабных процессов можно рассматривать только те масштабные уровни разложения, которые представляют интерес.

· Вейвлетные базисы, в отличие от преобразования Фурье, имеют много разнообразных базовых функций, свойства которых ориентированы на решение различных задач. Базисные вейвлеты могут реализоваться функциями различной гладкости.

· Недостатком вейвлетных преобразований является их относительная сложность.

Практическое использование вейвлет-преобразований связано, в основном, с дискретными вейвлетами как в силу повсеместного использования цифровых методов обработки данных, так и в силу ряда различий дискретного и непрерывного вейвлет-преобразований.

Непрерывные вейвлеты дают несколько более наглядное представление результатов анализа в виде поверхностей вейвлет-коэффициентов по непрерывным переменным. На рис. 1.2.6 анализируемый сигнал состоит из двух модулированных гауссианов. Преобразование вейвлетом Морлета четко показывает их пространственную и частотную локализацию, в то время как спектр Фурье дает только частотную локализацию.

Однако базисы на основе непрерывных вейвлетов, как правило, не являются строго ортонормированными, поскольку элементы базиса бесконечно дифференцируемы и экспоненциально спадают на бесконечности. У дискретных вейвлетов эти проблемы легко снимаются, что обеспечивает более точную реконструкцию сигналов.

Выбор конкретного вида и типа вейвлетов во многом зависит от анализируемых сигналов и задач анализа, при этом немалую роль играет интуиция и опыт исследователя. Для получения оптимальных алгоритмов преобразования разработаны определенные критерии, но их еще нельзя считать окончательными, т.к. они являются внутренними по отношению к самим алгоритмам преобразования и, как правило, не учитывают внешних критериев, связанных с сигналами и целями их преобразований. Отсюда следует, что при практическом использовании вейвлетов необходимо уделять достаточное внимание проверке их работоспособности и эффективности для поставленных целей по сравнению с известными методами обработки и анализа.

Литература

1. Астафьева Н.М. Вейвлет-анализ: Основы теории и примеры применения. - Успехи физических наук, 1996, т. 166, №11, стр. 1145-1170.

3. Дьяконов В., Абраменкова И. MATLAB. Обработка сигналов и изображений. Специальный справочник. - СПб.: Питер, 2002, 608 с.

4. Илюшин. Теория и применение вейвлет-анализа. - http://atm563.phus.msu.su/Ilyushin/index.htm.

7. Левкович-Маслюк Л, Переберин А. Введение в вейвлет-анализ: Учебный курс. - Москва, ГрафиКон'99, 1999.

8. Алексеев К.А. Очерк «Вокруг CWT». http://support.sibsiu.ru/MATLAB_RU/wavelet/book3/ index.asp.htm.

9. Переберин А.В. О систематизации вейвлет-преобразований. - Вычислительные методы и программирование, 2002, т. 2, с. 15-40.

10. Новиков Л.В. Основы вейвлет-анализа сигналов: Учебное пособие. - СПб, ИАнП РАН, 1999, 152 с.

Размещено на Allbest.ru


Подобные документы

  • Общие понятия об информационной организации структур организма. Принципы передачи регистрируемой физиологической информации от биообъекта к средствам обработки. Приложение математических методов вейвлет-преобразования к медико-биологическим задачам.

    курсовая работа [812,2 K], добавлен 25.11.2011

  • Обзор особенностей речевых сигналов, спектрального анализа и способов его применения при обработке цифровых речевых сигналов. Рассмотрение встроенных функций и расширений Matlab по спектральному анализу. Реализация спектрального анализа в среде Matlab.

    курсовая работа [2,2 M], добавлен 25.05.2015

  • Опис процедури обчислення багатовіконного перетворення, етапи її проведення, особливості сигналів та вейвлет-функцій для різних значень. Дослідження властивості розрізнювання вейвлет-перетворення. Апроксимуюча і деталізуюча компоненти вейвлет-аналізу.

    реферат [410,9 K], добавлен 04.12.2010

  • Розгляд методу математичного аналізу – вейвлет-перетворення, застосування якого дозволяє оброблювати сигнали будь-якого виду (в даному випадку медико-біологічного, а саме – фотоплетизмограми). Порівняння з Фурьє-аналізом. Переваги вейвлет-перетворенння.

    курсовая работа [1,9 M], добавлен 03.12.2009

  • Методика анализа преобразования сигналов линейными цепями, их физические процессы в различных режимах. Особенности применения дискретного преобразования Фурье и алгоритма быстрого преобразования Фурье в инженерных расчетах. Выходная реакция линейной цепи.

    курсовая работа [171,1 K], добавлен 19.12.2009

  • Основные методы анализа преобразования и передачи сигналов линейными цепями. Физические процессы в линейных цепях в переходном и установившемся режимах. Нахождение реакции цепи операционным методом, методами интеграла Дюамеля и частотных характеристик.

    курсовая работа [724,2 K], добавлен 04.03.2012

  • Изучение свойств спектрального анализа периодических сигналов в системе компьютерного моделирования. Проведение научных исследований и использование измерительных приборов. Изучение последовательности импульсов при прохождении через интегрирующую RC-цепь.

    лабораторная работа [2,8 M], добавлен 31.01.2015

  • Методы спектрального и корреляционного анализа сигналов и радиотехнических цепей. Расчет и графическое отображение характеристик непериодических и периодических видеосигналов и заданной цепи. Анализ сигналов на выходе заданной радиотехнической цепи.

    курсовая работа [765,7 K], добавлен 10.05.2018

  • Сигнал - материальный носитель информации и физический процесс в природе. Уровень, значение и время как основные параметры сигналов. Связь между сигналом и их спектром посредством преобразования Фурье. Радиочастотные и цифровые анализаторы сигналов.

    реферат [118,9 K], добавлен 24.04.2011

  • Методи й засоби комп'ютерної обробки зображень. Розгляд двох існуючих методів покращення якості зображень, основаних на суб’єктивному сприйнятті роздільної здатності і кількості кольорів. Порівняльна характеристика вейвлет-методу та градієнтського потоку.

    реферат [317,1 K], добавлен 03.12.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.