Информационно-измерительные системы

Структурная схема информационно-измерительных систем (ИИС). Измерительная информация, сигналы и помехи. Разновидности входных величин. Разделение ИИС по виду выходной информации и по принципам построения. Защита входных измерительных цепей ИИС от помех.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 11.12.2015
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

При изучении даже детерминированных систем экспериментальными методами из-за погрешностей результатов измерений невозможно получить точные значения измеряемых величин, получаются лишь некоторые оценки этих значений. Поэтому и здесь необходимо применять методы математической статистики для получения «хороших» оценок, определения их достоверности и т.п.

Математическая модель должна с определенной точки зрения отражать исследуемый объект. Поэтому для одного и того же объекта может быть построено много математических моделей, отражающих разные подходы к описанию свойств исследуемого объекта.

Однако при описании сложных систем не всегда имеется возможность сформулировать и обосновать некоторые априорные гипотезы, поэтому в таких случаях широко используются так называемые полиномиальные модели. Система при этом представляется в виде некоторого «черного ящика» с доступными для измерения входными и выходными параметрами. Задача состоит в том, чтобы установить связь между выходным параметром и множеством входных параметров системы, ничего фактически не зная о механизме явлений в системе. При этом предполагается, что механизм этот можно описать дифференциальными уравнениями, но из-за сложности системы даже не делается попытка составить уравнения; предполагается, что дифференциальные уравнения можно решить, но решение неизвестно, неизвестен даже аналитический вид функции, являющийся решением дифференциального уравнения. В этих условиях зависимость выходного параметра системы от входных (искомая функциональная зависимость) представляется в виде полинома (линии регрессии), коэффициенты которого (коэффициенты регрессии) определяются по данным эксперимента. Методика получения решения и анализа экспериментальных данных при полиномиальной модели разработана в математической статистике: это регрессионный анализ.

При планировании экспериментов используется концепция рандомизации. Суть этой концепции состоит в том, чтобы обеспечить случайность действия различных факторов, т.е. план эксперимента составляется таким образом, чтобы все воздействующие факторы оказывали случайное влияние на изучаемое явление.

Математическая статистика внесла в теорию эксперимента идею оптимального использования пространства независимых переменных, или, как ее часто называют, идею многофакторного эксперимента. Суть этой идеи состоит в том, что при планировании экспериментов, в которых необходимо учитывать влияние многих независимых переменных, экспериментатору предлагается ставить эксперимент так, чтобы изменять все факторы сразу, тогда как при традиционном планировании экспериментатор изучает влияние каждого фактора в отдельности, изменяя только его значения при фиксированных значениях остальных факторов. Оказывается, что такое многофакторное планирование является более эффективным, чем однофакторное, т.е. позволяет значительно уменьшить погрешности определения интересующих экспериментатора величин.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.