IP-телефония и видеосвязь
Особенность создания технологии Интернет. Способы передачи голосовых пакетов по IP-сетям. Процедуры обработки речи и методы кодирования. Установление соединения и реализации сценариев в сетях IP-телефонии. Цифровое представление телевизионного сигнала.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | курс лекций |
Язык | русский |
Дата добавления | 23.05.2015 |
Размер файла | 1,1 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Узел управления доступом (gatekeeper) является центральным блоком сети H.323. Через него проходят все запросы обслуживания, при этом он выполняет функцию виртуального переключателя. Узел управления доступом осуществляет преобразование имен терминалов и шлюзов в их IP и IPX-адреса в соответствии со спецификацией RAS. Например, если администратор сети установил верхний предел на число участников конференции, при достижении этого порога узел управления доступом может отказать в установлении соединения. К числу обязательных функций узла управления доступом относится:
- преобразование адресов (например, из стандарта E.164 в транспортный формат);
- осуществление контроля доступа к локальной сети с использованием сообщений Admission Request, Confirm и Reject (возможен режим разрешения доступа для всех запросов) ;
- управление полосой пропускания (поддержка сообщений Bandwidth Request, Confirm и Reject) ;
- управление зоной и реализация всех вышеперечисленных функций для MCU, шлюза и терминалов, зарегистрированных в зоне.
Для организации конференций с числом участников три и более используется блок многоточечного доступа (MCU). MCU включает в себя многоточечный контроллер (MC) и многоточечный процессор (MP). MC осуществляет согласование рабочих параметров терминалов для обеспечения совместимости при передаче видео и аудио информации в рамках протокола H.245. Все терминалы посылают аудио, видео и данные MCU в режиме соединения точка-точка. Управляющая канальная информация H.245 передается непосредственно в MC. MP может выполнять перекодировку в случае использования кодеков различного типа. Конференция может быть организована в централизованном (все обмены идут через MCU) и децентрализованном режиме, когда терминалы непосредственно взаимодействуют друг с другом. Терминалы используют протокол H.245, для того ,чтобы сообщить MC, сколько видео- и аудио- потоков они могут обработать одновременно. MP может осуществлять отбор видеосигналов и смешение аудио-каналов при децентрализованной многоточечной конференции. Допускается и смешенный режим, когда одновременно реализуется централизованная и децентрализованная схема обменов.
Звуковой сигнал передается в оцифрованной и сжатой форме. Алгоритмы компрессии, поддерживаемые H.323, соответствуют требованиям стандартов ITU. Терминалы H.323 должны быть способны работать со стандартом компрессии голоса G.711 (56 или 64 Кбит/c). Голосовой кодек должен следовать рекомендациям G.723, а видео кодек должен соответствовать стандарту H.261 (поддержка H.263 является опционной, этот стандарт обеспечивает более высокое качество изображения). В таблице 1 приведены форматы для видео-конференций стандартов ITU.
Пакетная техника обеспечивает удовлетворительное качество изображения и звукового сопровождения при низкой загрузке канала и малой вероятности ошибок при передаче пакетов. Достижимое сжатие видеосигнала - 1000:1, звукового 8:1.
Для экспериментов с передачей звука и изображения группой IETF (Internet Engineering Task Force) была сформирована структура мультикастинг-сети MBONE. MBONE (Multicast Backbone, до 300 Кбит/с) представляет собой виртуальную сеть, построенную из уникаст-туннелей, которые функционируют поверх Интернет. MBONE составляет около 3,5% от всего Интернет. Рабочие станции для доступа к MBONE должны поддерживать IP-мультикастинг. Следует иметь в виду, что не все маршрутизаторы поддерживают мультикастинг.
При работе с MBONE отправитель не должен знать, кто является получателем, а требуемая пропускная способность канала не зависит от того, обслуживается один клиент или 100.
Требуемая полоса канала для видеоконференций определяется необходимой разрешающей способностью и частотой кадров. Требования к каналу для передачи изображения представлены в таблице 3.
Таблица 2
Частота кадров/с |
Размер экрана (24 цветовых бит) |
||||
1280*1024 |
640*480 |
320*240 |
160*120 |
||
30 |
900 Мбит/с |
211 Мбит/с |
53 Мбит/с |
13 Мбит/с |
В таблице 3 приведены требования на пропускную способность канала при использовании различных степеней сжатия передаваемых видеоданных для частоты кадров 30/с и 24 бит на пиксель для отображения цвета.
Таблица 3
Степень сжатия данных |
Размер экрана |
||||
1280*1024 |
640*480 |
320*240 |
160*120 |
||
100:1 |
9 Мбит/с |
2.11 Мбит/с |
0.53 Мбит/с |
0.13 Мбит/с |
|
50:1 |
18 |
4,22 |
1,06 |
0,26 |
|
25:1 |
36 |
8,44 |
2,12 |
0.52 |
|
12:1 |
75 |
17,58 |
4,4 |
1,08 |
|
6:1 |
150 |
35,17 |
8,8 |
2,16 |
Требования при передаче звука определяются необходимым качеством, так для получения полосы 6 Кгц нужно 64 Кбит/с, а для уровня, сопоставимого с CD - 1,4 Мбит/с. Применение сжатия информации позволяет снизить эти требования в 4-8 раз. Общепринятыми стандартами для сжатия изображения при видеоконференциях являются JPEG, MPEG, H.261. Обычно они реализуются программно, но есть и аппаратные реализации.
Если сегодня базовым транспортным протоколом для мультимедиа является UDP, то в самое ближайшее время его потеснит RTR и дополнят RSVP и ST-II, что заметно повысит качество и надежность.
Лекция 13. Цифровое представление телевизионного сигнала
Цель лекции : ознакомить студентов с цифровым представлением телевизионного сигнала.
Цифровая техника стала постепенно проникать в телевидение в семидесятые годы прошлого века. Первыми появились цифровые корректоры временных искажений, затем - кадровые синхронизаторы, генераторы специальных эффектов, микшеры, коммутаторы. Но говорить о возможности полномасштабного перехода к цифровому телевидению стали двадцать лет назад, когда появился первый промышленный цифровой видеомагнитофон, разработанный фирмой Sony. Это - выдающееся событие для телевидения. Прежде всего, надо отметить, что параметры, характеризующие качество воспроизводимого изображения и звука в цифровом аппарате, превосходили те значения, которые были типичными для аналоговых магнитофонов. Но появление цифровой видеозаписи означало не просто значительное улучшение параметров. Эффект накопления искажений, присущий всем аналоговым системам, например, ограничивает предельно допустимое число перезаписей, которые могут быть сделаны на аналоговом магнитофоне. А вот цифровые системы свободны от эффекта накопления искажений.
Но цифровая техника порождает и проблемы. Полоса частот цифровых сигналов значительно шире полосы их аналоговых "предшественников". Например, полоса частот, занимаемая телевизионным видеосигналом в цифровой форме, составляет сотни мегагерц. Так, при передаче полного телевизионного сигнала в цифровой форме требуются каналы связи с пропускной способностью до сотен мегабит в секунду. Использование каналов, не вносящих ошибки в цифровой поток и обладающих столь большой пропускной способностью, может оказаться невозможным или экономически невыгодным. Принципиальный способ решения проблем передачи и записи с высокой степенью помехозащищенности был обоснован Шенноном. Он заключается в кодировании сигнала. К системам кодирования в цифровой видеотехнике предъявляются весьма многочисленные и часто противоречивые требования. Поэтому на практике кодирование всегда выполняется в несколько приемов. Сейчас принято выделять следующие основные виды:
- кодирования источника информации с целью преобразования сигнала в цифровую форму и его экономное представление путем сжатия или, как часто говорят, компрессии;
- кодирования с целью обнаружения и исправления ошибок;
- канального кодирования с целью согласования параметров цифрового сигнала со свойствами канала связи и обеспечения самосинхронизации.
Для преобразования любого аналогового сигнала (звука, изображения) в цифровую форму необходимо выполнить три основные операции: дискретизацию, квантование и кодирование. Дискретизация - представление непрерывного аналогового сигнала последовательностью его значений (отсчетов). Эти отсчеты берутся в моменты времени, отделенные друг от друга интервалом, который называется интервалом дискретизации. Величину, обратную интервалу между отсчетами, называют частотой дискретизации. На рисунке 23 показаны исходный аналоговый сигнал и его дискретизированная версия. Изображения, приведенные под временными диаграммами, получены в предположении, что сигналы являются телевизионными видеосигналами одной строки, одинаковыми для всего телевизионного растра.
Рисунок 23 - Аналого-цифровое преобразование. Дискретизация
Чем меньше интервал дискретизации и, соответственно, выше частота дискретизации, тем меньше различия между исходным сигналом и его дискретизированной копией. Ступенчатая структура дискретизированного сигнала может быть сглажена с помощью фильтра нижних частот.
Таким образом и осуществляется восстановление аналогового сигнала из дискретизированного. Но восстановление будет точным только в том случае, если частота дискретизации по крайней мере в 2 раза превышает ширину полосы частот исходного аналогового сигнала (это условие определяется известной теоремой Котельникова). Если это условие не выполняется, то дискретизация сопровождается необратимыми искажениями.
Дело в том, что в результате дискретизации в частотном спектре сигнала появляются дополнительные компоненты, располагающиеся вокруг гармоник частоты дискретизации в диапазоне, равном удвоенной ширине спектра исходного аналогового сигнала. Если максимальная частота в частотном спектре аналогового сигнала превышает половину частоты дискретизации, то дополнительные компоненты попадают в полосу частот исходного аналогового сигнала. В этом случае уже нельзя восстановить исходный сигнал без искажений.
Пример искажений дискретизации приведен на рисунке 24.
Рисунок 24 - Искажение дискретизации
Аналоговый сигнал (предположим опять, что это видеосигнал ТВ строки) содержит волну, частота которой сначала увеличивается от 0,5 МГц до 2,5 МГц, а затем уменьшается до 0,5 МГц. Этот сигнал дискретизируется с частотой 3 МГц. На рисунке 30 последовательно приведены изображения: исходный аналоговый сигнал, дискретизированный сигнал, восстановленный после дискретизации аналоговый сигнал. Восстанавливающий фильтр нижних частот имеет полосу пропускания 1,2 МГц. Как видно, низкочастотные компоненты (меньше 1 МГц) восстанавливаются без искажений. Волна с частотой 1,5 МГц исчезает и превращается в относительно ровное поле. Волна с частотой 2,5 МГц после восстановления превратилась в волну с частотой 0,5 МГц (это разность между частотой дискретизации 3 МГц и частотой исходного сигнала 2,5 МГц).
Эти диаграммы иллюстрируют искажения, связанные с недостаточно высокой частотой пространственной дискретизации изображения. Если объект телевизионной съемки представляет собой очень быстро движущийся или, например, вращающийся предмет, то могут возникать и искажения дискретизации во временной области. Примером искажений, связанных с недостаточно высокой частотой временной дискретизации (а это частота кадров телевизионного разложения), является картина быстро движущегося автомобиля с неподвижными или, например, медленно вращающимися в ту или иную сторону спицами колеса (стробоскопический эффект).
Если частота дискретизации установлена, то искажения дискретизации отсутствуют, когда полоса частот исходного сигнала ограничена сверху и не превышает половины частоты дискретизации. Если потребовать, чтобы в процессе дискретизации не возникало искажений ТВ сигнала с граничной частотой, например, 6 МГц, то частота дискретизации должна быть не меньше 12 Мгц. Однако, чем ближе частота дискретизации к удвоенной граничной частоте сигнала, тем труднее создать фильтр нижних частот, который используется при восстановлении, а также при предварительной фильтрации исходного аналогового сигнала. Это объясняется тем, что при приближении частоты дискретизации к удвоенной граничной частоте дискретизируемого сигнала предъявляются все более жесткие требования к форме частотных характеристик восстанавливающих фильтров - она все точнее должна соответствовать прямоугольной характеристике.
Следует подчеркнуть, что фильтр с прямоугольной характеристикой не может быть реализован физически. Такой фильтр, как показывает теория, должен вносить бесконечно большую задержку в пропускаемый сигнал. Поэтому на практике всегда существует некоторый интервал между удвоенной граничной частотой исходного сигнала и частотой дискретизации.
Квантование представляет собой замену величины отсчета сигнала ближайшим значением из набора фиксированных величин - уровней квантования. Другими словами, квантование - это округление величины отсчета. Уровни квантования делят весь диапазон возможного изменения значений сигнала на конечное число интервалов - шагов квантования. Расположение уровней квантования обусловлено шкалой квантования. Используются как равномерные, так и неравномерные шкалы. На рисунке 31 показаны исходный аналоговый сигнал и его квантованная версия, полученная с использованием равномерной шкалы квантования, а также соответствующие сигналам изображения.
Искажения сигнала, возникающие в процессе квантования, называют шумом квантования. При инструментальной оценке шума квантования вычисляют разность между исходным сигналом и его квантованной копией, а в качестве объективных показателей шума принимают, например, среднеквадратичное значение этой разности. В отличие от флуктуационных шумов, шум квантования коррелирован с сигналом, поэтому шум квантования не может быть устранен последующей фильтрацией. Шум квантования убывает с увеличением числа уровней квантования.
Рисунок 25- Квантование
Еще несколько лет назад вполне достаточным казалось использовать 256 уровней для квантования телевизионного видеосигнала. Сейчас считается нормой квантовать видеосигнал на 1024 уровня. Число уровней квантования при формировании цифрового звукового сигнала намного больше: от десятков тысяч до миллионов.
Квантованный сигнал, в отличие от исходного аналогового, может принимать только конечное число значений. Это позволяет представить его в пределах каждого интервала дискретизации числом, равным порядковому номеру уровня квантования. В свою очередь это число можно выразить комбинацией некоторых знаков или символов. Совокупность знаков (символов) и система правил, при помощи которых данные представляются в виде набора символов, называют кодом. Конечная последовательность кодовых символов называется кодовым словом. Квантованный сигнал можно преобразовать в последовательность кодовых слов. Эта операция и называется кодированием. Каждое кодовое слово передается в пределах одного интервала дискретизации. Для кодирования сигналов звука и изображения широко применяют двоичный код. Если квантованный сигнал может принимать N значений, то число двоичных символов в каждом кодовом слове n ? log2N. Один разряд, или символ слова, представленного в двоичном коде, называют битом. Обычно число уровней квантования равно целой степени числа 2, т.е. N = 2n.
Кодовые слова можно передавать в параллельной или последовательной формах (см. рисунок 26). Для передачи в параллельной форме надо использовать n линий связи (в примере, показанном на рисунке 32, n = 4).
Рисунок 26 - Цифровое кодирование
Символы кодового слова одновременно передаются по линиям в пределах интервала дискретизации. Для передачи в последовательной форме интервал дискретизации надо разделить на n подинтервалов - тактов. В этом случае символы слова передаются последовательно по одной линии, причем на передачу одного символа слова отводится один такт.
Каждый символ слова передается с помощью одного или нескольких дискретных сигналов - импульсов. Преобразование аналогового сигнала в последовательность кодовых слов называют импульсно-кодовой модуляцией. Форма представления слов определенными сигналами определяется форматом кода. В параллельном цифровом потоке по каждой линии в пределах интервала дискретизации передается 1 бит 4-разрядного слова. В последовательном потоке интервал дискретизации делится на 4 такта, в которых передаются (начиная со старшего) биты 4-разрядного слова.
Операции, связанные с преобразованием аналогового сигнала в цифровую форму (дискретизация, квантование и кодирование), выполняются одним устройством - аналого-цифровым преобразователем (АЦП). Сейчас АЦП может быть просто интегральной микросхемой. Обратная процедура, т.е. восстановление аналогового сигнала из последовательности кодовых слов, производится в цифро-аналоговом преобразователе (ЦАП). Сейчас существуют технические возможности для реализации всех обработок сигналов звука и изображения, включая запись и излучение в эфир, в цифровой форме. Однако в качестве датчиков сигнала (например, микрофон, передающая ТВ трубка или прибор с зарядовой связью) и устройств воспроизведения звука и изображения (например, громкоговоритель, кинескоп) пока используются аналоговые устройства. Поэтому аналого-цифровые и цифро-аналоговые преобразователи являются неотъемлемой частью цифровых систем.
Цифровые сигналы можно описывать с помощью параметров, типичных для аналоговой техники, например таких, как полоса частот. Но их применимость в цифровой технике является ограниченной. Важным показателем, характеризующим цифровой поток, является скорость передачи данных. Если длина слова равна n, а частота дискретизации FD, то скорость передачи данных, выраженная в числе двоичных символов в единицу времени (бит/с), находится как произведение длины слова на частоту дискретизации:
C = nFD.
Список используемой литературы
1. Кузнецов А.Е., Пинчук А. В., Суховицкий А.Л. Построение сетей IP-телефонии / Компьютерная телефония.- 2000.- №6.
2. Кульгин М. Технологии корпоративных сетей: Изд. «Питер», 1999.
3. Будников В.Ю., Пономарев Б.А. Технологии обеспечения качества обслуживания в мультисервисных сетях / Вестник связи.-, 2000.- №9.
4. Варакин Л. Телекоммуникационный феномен России / Вестник связи International.- 1999.-№4.
5. Варламова Е. IP-телефония в России / Connect! Мир связи.-1999.- №9.
6. Гольдштейн Б.С. Сигнализация в сетях связи. -т. 1.- М.: Радио
и связь, 1998.
7. Гольдштейн Б.С. Протоколы сети доступа. -т. 2.- М.: Радио и связь, 1999.
8. Гольдштейн Б.С., Ехриель И.М., Рерле Р.Д. Интеллектуальные сети.- М.: Радио и связь, 2000.
11. Ломакин Д. Технические решения IP-телефонии / Мобильные системы.-1999.- №8.
12. Мюнх Б., Скворцова С. Сигнализация в сетях IP-телефонии. -ч I, 2/Сети и системы связи.- 1999. - №13(47), 14(48).
13. Уиллис Д. Интеграция речи и данных. В начале долгого пути./Сети и системы связи, 1999.-№16.
14. Шнепс-Шнеппе М.А. Интеллектуальные услуги - это ДВО / Информ - курьер-связь.-2000 - №9.
15. Armitage Grenville. Quality of Service in IP Networks. - Macmillan Technical Publishing, 2000.
16. Anquetil L-P., Bouwen J., Conte A., Van Doorselaer. B. Media Gateway Control Protocol and Voice over IP Gateway. - Alcatel Telecommunications Review, 2nd Quarter 1999.
17. Caputo R. Cisco Packetized Voice and Data Integration. - McGraw-Hill Cisco Technical Expert, 2004.
18. Curtin P., Whyte B. Tigris - A gateway between circuit-switched and IP networks / Ericson Rewiew.- 1999.- №2.
19. DavidsonJ., Peters J. Voice Over IP Fundamentals. - Cisco Press, 2000.
Размещено на Allbest.ru
Подобные документы
Согласование различных сценариев IP-телефонии. Осуществление передачи голоса и видеоизображения с помощью IP-телефонии. Способы осуществления просмотра изображения, которое передается собеседнику. Размер звуковых буферов и задержка вызова абонента.
контрольная работа [1,7 M], добавлен 20.02.2011Факторы, влияющие на показатели качества IP-телефонии. Методы борьбы с мешающим действием токов электрического эха. Оценка методов эхоподавления способом имитационного моделирования на ЭВМ. Построение сети передачи данных на базе IP-телефонии в г. Алматы.
дипломная работа [3,3 M], добавлен 30.08.2010Анализ цифровых устройств формирования видеоизображения. Основные форматы представления видеосигнала. Цифровое представление телевизионного сигнала. Принципиальный способ решения проблем передачи и записи с высокой степенью помехозащищенности сигнала.
курсовая работа [1,6 M], добавлен 23.06.2015Расчёт производительности узла доступа с учётом структуры нагрузки поступающей от абонентов, пользующихся различными видами услуг телефонии. Факторы, влияющие на качество речи и выбор кодека. Расчет математической модели эффекта туннелирования в MPLS.
курсовая работа [776,9 K], добавлен 20.02.2011Характеристики семейства xDSL - технологий соединения пользователя и телефонной станции. Виды кодирования сигнала. Архитектуры организации сетей передачи данных на базе волоконно-оптических линий связи. Виды услуг телефонии. Оформление заявки абонентом.
курсовая работа [633,7 K], добавлен 16.01.2013Понятие и история развития IP-телефонии, принцип ее действия и структура, необходимое оборудование. Качество связи IP-телефонии, критерии его оценивания. Технические и экономические аспекты связи в России. Оборудование для современной Интернет-телефонии.
курсовая работа [1,3 M], добавлен 29.11.2010История развития IP-телефонии. Принцип действия. Качество IP-телефонии. Интернет-телефония - частный случай IP-телефонии. Система для звонков по телефону и посылки факсов средствами IP. Стандарт Media Gateway Control. Voice Profile Internet Mail.
реферат [66,9 K], добавлен 10.04.2007Применение систем IP-телефонии. Интеграция телефонии с сервисами Интернета. Передача голоса по сети с помощью персонального компьютера. Совместимость мобильных номеров. Минимальная стоимость звонка. Номера экстренных вызовов. Регистрация IP-устройства.
творческая работа [1,3 M], добавлен 05.06.2012Типология телефонных станций. Цифровой терминал Avaya IP Phone. Схема IP-телефонии в компьютерных сетях. Конвергентная IP-система. Реализация по принципу "все в одном". Семейство IP Office от Avaya. Связь без проводов. Оборудование для IP-телефонии.
реферат [32,4 K], добавлен 18.05.2011Базовые понятия IР-телефонии и ее основные сценарии. Межсетевой протокол IP: структура пакета, правила прямой и косвенной маршрутизации, типы и классы адресов. Автоматизация процесса назначения IP-адресов узлам сети. Обобщенная модель передачи речи.
дипломная работа [2,0 M], добавлен 02.04.2013