Проектирование и практическая реализация комплекса лабораторных работ по "Микропроцессорной технике" в программе ElectronicsWorkBench

Компьютерные методы разработки радиоэлектронного оборудования, применение ЕlectronicsWorkbench на предприятии по разработке электрических цепей. Проектирование принципиальной электрической схемы, дешифраторов и шифраторов, сумматора и мультиплексора.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 11.01.2015
Размер файла 539,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

.

ГЛАВА 2. ОХРАНА ТРУДА. МЕРЫ БЕЗОПАСНОСТИ И ПРИ ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ ЭЛЕКТРОННОЙ ТЕХНИКИ

2.1 Характеристика санитарно-гигиенических условий труда

Для создания благоприятных санитарно-гигиенических условий труда все элементы производственной среды должны систематически подвергаться исследованию и приводиться в соответствие с санитарными правилами и нормами.

Действующие санитарно-гигиенические нормативы разрабатываются по отдельным факторам и в основном регламентируют ПДК и ПДУ вредных факторов, т.е. уровни концентрации, которые при ежедневной работе в течение 8 ч. (40 ч. в неделю) не вызывают у работающих профессиональных заболеваний, общих отклонений в здоровье. Однако необходимо иметь в виду, что дозы и уровни вредных факторов, даже значительно меньше предельно допустимых, при комбинированном действии могут становиться опасными для здоровья.

В настоящее время наряду с предельно допустимыми по отдельным факторам разработаны и оптимальные нормы, на которые и следует ориентироваться при осуществлении мероприятий по совершенствованию санитарно-гигиенических условий труда. Если же оптимальные уровни еще не определены в нормативных документах, необходимо предусматривать дозы и уровни вредных факторов значительно более низкими, чем ПДК и ПДУ.

Микроклимат на рабочем месте оказывает большое влияние на состояние здоровья и производительность труда техника. В соответствии ГОСТ 12.1.005-88 работы, выполняемые техником, который пользуется компьютером, относятся к категории 1а. Для помещения, где размещено рабочее место техника, допускаются следующие допустимые микроклиматические условия:

-Температура воздуха в °С - 21- 25

- Влажность воздуха в % - 40- 60

- Скорость движения воздуха в м/с -0.1 - 0.2

Также должна быть обеспечена защита работающих от возможного перегревания и охлаждения, также система местного кондиционирования воздуха в данном помещении с компьютерной техникой.

Вентиляция - это регулируемый воздухообмен в помещении. Различают естественную и механическую вентиляцию, а их сочетание называется смешанной вентиляцией. Механическая вентиляция может быть вытяжной, приточной и приточно-вытяжной. Так же вентиляция может быть общей (если происходит во всем помещении рабочей зоны) и местной (сосредоточена на работу в определенном месте рабочей зоны). По времени действия вентиляция может быть основной и аварийной. Механическая вентиляция осуществляется вентиляторами, забирающими воздух из одного места и направляющими его в другое. Приточная вентиляция обеспечивает лишь подачу чистого воздуха, а вытяжная вентиляция его удаление из рабочей зоны. Приточно-вытяжная вентиляция используется в тех помещениях, где важно наличие систематического воздухообмена.

Кондиционирование - это комплекс технических средств, служащих для приготовления, перемещения, распределения воздуха, а так же для автоматического регулирования его параметров. Кондиционированием в закрытых помещениях и сооружениях можно поддерживать необходимую температуру, влажность и ионный состав, наличие запахов воздушной среды, а так же скорость движения воздуха.

Отопление -- искусственный обогрев помещений в холодный период года с целью возмещения в них теплопотерь и поддержания на заданном уровне температуры, отвечающей условиям теплового комфорта, а также требованиям соответствующих санитарных норм. Система отопления должна компенсировать потери тепла через строительные ограждения, а также нагрев проникающего в помещении холодного воздуха.

Анализ условий труда

Условия труда -- это сложное объектное явление, характеризующее среду протекания трудового процесса, формирующееся под воздействием взаимосвязанных факторов социально-экономического, технико-организационного и естественно-природного характера и влияющее на здоровье, работоспособность человека, его отношение к труду и степень удовлетворен­ности трудом, а следовательно, на эффективность труда и другие экономи­ческие результаты деятельности.

Можно выделить 4 группы факторов, влияющих на формирование и изменение условий труда.

К первой группе относятся социальные и экономические факторы, действие которых обусловливает положение трудящихся в обществе. В дан­ную группу включают:

* нормативно-правовые факторы (законы о труде, правила, нормы, стандарты в области организации, оплаты, условий и охраны труда, режи­мов труда и отдыха, установления льгот и социальных гарантий от­дельным категориям работников, а также система государственного и общественного контроля за их соблюдением);

* социально-психологические факторы, характеризующие отношение в обществе к сфере трудовой деятельности и условиям труда, совокуп­ность интересов и ценностных ориентацией работников, состав и осо­бенности персонала, стиль руководства и т.п.;

* общественные факторы (общественные организации, движения, за улучшение экологической обстановки, создание благоприятных усло­вий труда и др.);

*экономические факторы (система льгот, гарантий и компенсаций работникам, с одной стороны, а с другой -- система экономических санк­ций за нарушение норм, стандартов и прочее).

Вторая группа факторов -- технические и организационные факторы, непосредственно воздействующие на формирование материально-вещественных элементов условий труда: средства труда, предметы труда, технологические процессы, организационные формы производства, труда и управления, в частности, режимы труда и отдыха, формы разделения и кооперации труда, приемы и методы труда, нормирование труда и т.п.

К третьей группе относятся естественно-природные факторы, характеризующие воздействие на работников географо-климатических, геологических и биологических особенностей местности, где протекает трудовой процесс.

Четвертая группа факторов -- хозяйственно-бытовые, связанные с организацией питания работников, санитарного и бытового их обслуживания.

Зашита от шума и вибрации на рабочих местах

В настоящее время шум становится одним из наиболее распространенных факторов внешней и производственной среды. Шумом называют всякий неблагоприятно действующий на человека звук. Обычно шум является сочетанием звуков различного характера, частоты и интенсивности. Слуховой орган человека воспринимает в виде слышимого звука колебания упругой среды, имеющие частоту примерно от 20 до 20 000 Гц, но наиболее важный для слухового восприятия интервал от 45 до 10 000 Гц.

Для характеристики производственного шума и оценки его воздействия на человека определяется уровень звукового давления (L) в децибелах (дБ), характеризующий громкость или интенсивность шума. Диапазон слухового восприятия человека составляет 130 дБ.

Шум общебиологический раздражитель и в определенных условиях может влиять на все органы и системы организма. Наиболее полно изучено влияние шума на слуховой орган человека. Интенсивный шум при ежедневном воздействии приводит к возникновению профессионального заболевания -- тугоухости.

Установлено, что под влиянием шума наступают изменения в органе зрения человека (снижается устойчивость ясного видения и острота зрения, изменяется чувствительность к различным цветам и др.), в вестибулярном аппарате; нарушаются функции желудочно-кишечного тракта; повышается внутричерепное давление и т.д.

В результате неблагоприятного воздействия шума на человека снижается работоспособность, производительность, увеличивается брак в работе, создаются предпосылки к возникновению несчастных случаев.

Уровни шума на рабочих местах пользователей персональных компьютеров не должны превышать значений, установленных СанПиН 2.2.4/2.1.8.562-96 и составляют не более 50 дБА.

Нормирование шума ведется в двух направлениях: гигиеническое нормирование и нормирование шумовых характеристик машин. Недопустимыми считаются условия труда при уровне шумов:

* низкочастотных -- свыше 100 дБ,

* среднечастотных -- свыше 85-90 дБ,

* высокочастотных -- свыше 80-85дБ.

Защита работников от шума может осуществляться как коллективными средствами и методами, так и индивидуальными средствами. В первую очередь надо использовать коллективные средства. По отношению к источнику шума они подразделяются на средства, снижающие шум в источнике его возникновения, и средства, снижающие шум на пути его распространения. Наиболее эффективны мероприятия, ведущие к снижению шума в источнике его возникновения изменением технологических процессов, применением малошумных машин, изменением конструктивных элементов машин, применением звукопоглощающих материалов в конструкциях механизмов, глушителей, звукоизолирующих кожухов и проч.

Важными мерами борьбы с шумом являются также архитектурно-планировочные методы: рациональное решение планировки зданий, рациональное размещение технологического оборудования, рациональное размещение рабочих мест, зон и режима движения транспортных средств.

Важное значение имеет применение различных акустических средств: средств звукопоглощения (применение звукопоглощающей облицовки потолка, стен, подвесных звукопоглотителей, подвижных звукопоглощающих экранов), средств звукоизоляции (звукоизолирующих ограждений зданий и помещений, звукоизолирующих кожухов, кабин, экранов и т.д.).

Вибрация -- механические колебания, вызываемые работающим оборудованием, механизированными инструментами, транспортом. Основные параметры, характеризующие вибрацию:

* амплитуда смещения -- наибольшее отклонение колеблющейся точки от положения равновесия (м или мм);

* колебательная скорость (м/с);

* колебательное ускорение (м/с ); частота колебания (Гц). При частоте больше 16-20 Гц вибрация сопровождается шумом.

Человек начинает ощущать вибрацию при колебательной скорости, равной 1x10" м/с, а при скорости 1 м/с возникают болевые ощущения.

В зависимости от способа передачи вибрации телу человека различают локальную (местную) и общую вибрацию. Локальная вибрация действует на ограниченный участок тела (в основном через руки человека). Ее воздействию подвергаются работающие с пневматическим инструментом, вращающимися и ударными механизмами. Общая вибрация передается на тело сидящего или стоящего человека через опорные поверхности тела. В реальных условиях часто имеет место сочетание местной и общей вибрации.

Степень и характер воздействия вибрации на организм человека зависит от вида вибрации, ее параметров и направления воздействия. Весьма опасными являются колебания рабочих мест, имеющие частоту, резонансную с колебаниями отдельных органов или частей тела человека.

Наиболее распространены заболевания, вызванные локальной вибрацией. При работе с ручными механизмами, вибрация которых наиболее интенсивна в высокочастотной области спектра (свыше 125 Гц), возникают в основном сосудистые расстройства, сопровождающиеся спазмом периферических сосудов. Локальная вибрация, имеющая широкий частотный спектр, часто связана с наличием ударов (клепка, срубка, бурение), вызывает различную степень сосудистых, нервно-мышечных, костно-суставных и других нарушений.

Общая вибрация неблагоприятно воздействует на нервную систему, наступают изменения в сердечно-сосудистой системе, вестибулярном аппарате, нарушается обмен веществ. Возникновению вибрационных заболеваний способствуют сопутствующие факторы -- охлаждение, большие статические мышечные усилия, пониженное атмосферное давление, производственный шум.

Для ограничения вибрации на рабочих местах применяются дистанционное управление и виброизоляция рабочих мест.

К числу мер по борьбе с вибрацией относятся: техническое усовершенствование инструмента и оборудования, устраняющее или снижающее вибрацию; применение различных приспособлений, гасящих вибрацию или исключающих контакт работающих с вибрирующим инструментом; проектирование технологических процессов и производственных помещений, обеспечивающих соблюдение гигиенических норм вибрации на рабочих местах; осуществление организационно-технических мероприятий, направленных на улучшение эксплуатации машин, своевременный их ремонт и контроль вибрационных параметров; разработка рациональных режимов труда и отдыха и, наконец, применение СИЗ.

2.2 Электробезопасность .Требования безопасности при работе с электрооборудованием

Электробезопасность -- система организационно-технических мероприятий и средств, обеспечивающих защиту людей от вредного и опасного воздействия электрического тока, электрической дуги, электромагнитного поля и статического электричества.

Действие электрического тока на организм человека.

Таблица. 16. Действие электрического тока на организм человека

Сила тока, мА

Переменный ток 50 - 60 Гц

Постоянный ток

0,6 - 1,5

Легкое дрожание пальцев рук

Не ощущается

2 - 3

Сильное дрожание пальцев рук

Не ощущается

5 - 7

Судороги в руках

3yд. Ощущение нагревания

8 - 10

Руки с трудом, но еще можно оторвать от электродов. Сильные боли в руках, особенно в кистях и пальцах

Усиление нагревания

20 - 25

Руки парализуются немедленно, оторвать их от электродов невозможно. Очень сильные боли. Затрудняется дыхание

Еще большее усиление нагревания, незначительное сокращение мышц рук

50 - 80

Паралич дыхания.

Начало трепетания желудочков сердца

Сильное ощущение нагревания. Сокращение мышц рук. Судороги. Затруднение дыхания

90 - 100

Паралич дыхания и сердца при воздействии более 0,1 с.

Паралич дыхания

Электрический удар ведет к возбуждению живых тканей; В зависимости от патологических процессов, вызываемых поражением электротоком, принята следующая классификация тяжести электротравм при электрическом ударе:

a. электротравма I степени - судорожное сокращение мышц без потери сознания;

b. электротравма II степени - судорожное сокращение мышц с потерей сознания,"

c. электротравма III степени - потеря сознания и нарушение функций сердечной деятельности или дыхания (не исключено и то и другое);

d. электротравма IV степени - клиническая смерть.

Степень тяжести электрического поражения зависит от многих факторов: сопротивления организма, величины, продолжительности действия, рода и частоты тока, пути его в организме, условий внешней среды.

Безопасными для человека считаются переменный ток до 10 мА и постоянный - до 50 мА.

Основными причинами электротравматизма являются:

1. Неожиданное возникновение напряжения там, где в нормальных условиях его не должно быть. Под напряжением могут оказаться корпуса электрического оборудования, строительные конструкции и приспособления (полы, подмости, металлические леса и др.). Чаще всего это происходит в результате пробоя или повреждения изоляции кабелей, проводов или обмоток электрических машин и аппаратов при присоединении токоведущих частей с указанными конструкциями.

2. Прикосновение человека к неизолированным токоведущим частям.

3. Попадание человека в зону короткого замыкания фазы на землю.

По назначению электрозащитные средства условно делятся на изолирующие, ограждающие и вспомогательные.

Изолирующие защитные средства служат для изоляции человека от токоведущих частей и от земли и подразделяются, в свою очередь, на основные и дополнительные:

- основные средства способны надежно выдерживать рабочее напряжение электроустановки и допускающие касание токоведущих частей, находящихся под напряжением.

В электроустановках напряжением до 1000 В основными электрозащитными средствами являются изолирующие штанги, изолирующие и электроизмерительные клещи, указатели напряжения, диэлектрические перчатки, слесарно-монтажный инструмент с изолирующими рукоятками;

Дополнительные электрозащитные средства - это такие средства защиты, которые при данном напряжении не могут обеспечить защиту от поражения током, поэтому их применяют совместно с основными электрозащитными средствами.

К дополнительным электрозащитным средствам в электроустановках напряжением до 1000 В относятся: диэлектрические галоши, диэлектрические ковры, переносные заземления, изолирующие подставки.

Требования безопасности при работе с электрооборудованием

1. При питании трансформаторов, аккумуляторов и других источников, не имеющих средств взрывозащиты, их следует располагать за пределами взрывоопасной зоны.

2. Во взрывоопасных помещениях и на наружных объектах необходимо заземлять (занулять) электроустановки при всех напряжениях тока, а также электрооборудование, закрепленное на металлических конструкциях, независимо от заземления последних.

3. Заземление необходимо выполнять в соответствии с требованиями действующих государственных стандартов и строительных норм и правил.

4. Каждая часть электроустановки, подлежащая заземлению или занулению, должна быть присоединена к сети заземления или зануления при помощи отдельного ответвления. Последовательное включение в заземляющий или защитный проводник заземляемых или зануляемых частей электроустановки не допускается.

5. Электротехнические устройства и устройства, используемые как производственное оборудование, должны соответствовать требованиям действующих государственных стандартов.

6. При необходимости электротехнические устройства должны быть снабжены сигнализацией, надписями и табличками.

Знаки, используемые на предупредительных табличках и сигнализации, должны выполняться в соответствии с требованиями действующих государственных стандартов и размещаться на устройствах в местах, удобных для обзора.

7. Значение сопротивления между заземляющим болтом (винтом, шпилькой) и каждой, доступной прикосновению, металлической частью изделия, которая может оказаться под напряжением, не должно превышать 0,1 Ом.

8. Ручные взрывозащищенные светильники должны храниться в специальных помещениях, их следует выдавать в исправном состоянии и только на время выполнения работ.

9. Профилактическое обслуживание взрывозащищенных светильников (замену ламп, зарядку или замену аккумуляторов) должны выполнять работники, имеющие соответствующую квалификации, допуск к работам.

10. Компьютеры и оргтехнику следует эксплуатировать в соответствии с требованиями действующих санитарных норм и правил, в помещениях, максимально очищенных и освобожденных от влаги, грязи, пыли.

Статическое электрическое и электромагнитные излучения

Статическое электричество - это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности или в объеме диэлектриков или на изолированных проводниках. Так звучит определение по ГОСТ 12.1.018-93 «Пожаровзрывобезопасность статического электричества».

Средства защиты от статического электричества по принципу действия делятся на следующие виды:

· заземляющие устройства;

· нейтрализаторы;

· увлажняющие устройства;

· антиэлектростатические вещества;

· экранирующие устройства.

Прежде всего, электронное оборудование должно быть качественно заземлено. Цепь утечек на землю работает удовлетворительно, если ее сопротивление не превышает 106 Ом. Заземление эффективно только для материалов, имеющих удельное сопротивление не более 10 Ом*м. Таким образом, если поверхность приборов пластиковая, заземление может быть не всегда эффективно. В этом случае нужно использовать другие методы борьба со статикой. Для разрядки диэлектрических поверхностей применяют ионизаторы воздуха, способные генерировать ионы обеих полярностей.

Такие ионизаторы используются для локальной нейтрализации зарядов непосредственно на рабочих местах или же ими дополняют вентиляционные системы, чтобы поток отфильтрованного воздуха ионизировался и происходила нейтрализация зарядов на стенах, потолках, поверхностях оборудования и др. Электризация диэлектрических материалов резко снижается при увеличении влажности воздуха, однако при этом ухудшаются условия работы оборудования. Поэтому, как правило, влажность не должна превышать 40%. Кроме того, для исключения электризации при ходьбе, а также для организации дополнительного пути «стекания» электростатических зарядов помещение, где находится приемно-контрольное оборудование, следует оснастить напольным антистатическим покрытием.

Самое простое - настелить специальный электропроводящий линолеум, имеющий по отношению к земле электросопротивление. При соблюдении всех условий мы получаем гарантированную защиту электронного оборудования от поражения электростатическим разрядом.

По-мнению ученых, излучение большинства современных мониторов не оказывает пагубного воздействия для взрослого человека. Тем не менее, исчерпывающих данных по этому вопрос пока нет. Максимальный уровень рентгеновского излучения от монитора составляет в среднем 10 мкБэр ч2 , а интенсивность ультрафиолетового и инфракрасного излучений лежит в интервале 10-100 мВт м2 .

Ниже описаны допустимые значения параметров неионизирующих электромагнитных излучений (в соответствии с СанПиН 2.2.2.542-96).

* Напряженность электрической составляющей электромагнитного поля на расстоянии 50см от поверхности видеомонитора -- 10В/м.

* Напряженность магнитной составляющей электромагнитного поля

на расстоянии 50см от поверхности видеомонитора -- 0,3А/м.

* Для взрослых пользователей напряженность электростатического по-

ля не должна превышать -- 20кВ/м.

Для снижения воздействия этих видов излучения рекомендуется применять мониторы с пониженным уровнем излучения (MPR-II, TCO-92, TCO-99), устанавливать защитные экраны, а также соблюдать регламентированные режимы труда и отдыха.

Причины возникновения коротких замыканий, их профилактика

Короткие замыкания возникают в результате нарушения изоляции токоведущих частей электроустановок.

Опасные повреждения кабелей и проводок могут возникать вследствие чрезмерного растяжения, перегибов, в местах подсоединения их к электродвигателям или аппаратам управления, при земляных работах и т. п.

При нарушении изоляции на жилах кабеля возникают утечки тока, которые затем перерастают в токи короткого замыкания. В зависимости от характера повреждения внутри кабеля может нарастать аварийный процесс короткого замыкания с сопутствующим мощным выбросом в окружающую среду искр и пламени. Так как многие виды электрооборудования не являются влаго- и пыленепроницаемыми, то производственная пыль (особенно токопроводящая), химически активные вещества и влага проникают внутрь их оболочки и оседают на поверхности электроизоляционных частей и материалов. Некоторые нагревающиеся части электрооборудования при остановке охлаждаются, поэтому на них часто выпадает конденсат воды. Все это может привести к повреждению и переувлажнению изоляции и вызвать чрезмерные токи утечки, дуговые короткие замыкания, перекрытия или замыкания как изолированных обмоток, так и других токоведущих частей.

Изоляция электроустановок может повреждаться при воздействии на нее высокой температуры или пламени во время пожара, из-за перенапряжения в результате первичного или вторичного воздействия молнии, перехода напряжения с установок выше 1000 В на установки до 1000 В и т. д.

К возникновению короткого замыкания могут привести ошибочные действия обслуживающего персонала при различных оперативных переключениях, ревизиях и ремонтах электрооборудования.

Наиболее действенным предупреждением короткого замыкания являются правильный выбор, монтаж и эксплуатация электрических сетей, машин и аппаратов. Конструкция, вид исполнения, способ установки и класс изоляции применяемых машин, аппаратов, приборов, кабелей, проводов и прочего электрооборудования должны соответствовать номинальным параметрам сети или электроустановки (току, нагрузке, напряжению), условиям окружающей среды и требованиям ПУЭ (Правила устройства электроустановок). Особенно строго следует соблюдать регулярное проведение осмотров, ремонтов, планово-предупредительных и профилактических испытаний электрооборудования во взрывоопасных установках как при приемке его, так и при эксплуатации. Кроме того, должна быть предусмотрена электрическая защита сетей и электрооборудования.

Основное назначение электрической защиты заключается в том, что питание поврежденной в любом месте проводки должно быть прекращено раньше, чем произойдет опасное развитие аварии. Наиболее эффективными аппаратами защиты являются быстродействующие реле и выключатели, установочные автоматы и плавкие предохранители.

Требования безопасности при пайке

Электрифицированный инструмент (далее - паяльник) для пайки деталей должен соответствовать III классу защиты от поражения электрическим током. Перед началом работ паяльник необходимо проверить:

· внешним осмотром - исправное состояние кабеля и штепсельной вилки, целостность защитного кожуха и изоляции рукоятки;

· работоспособность встроенных в его конструкцию отсосов;

· работоспособность механизированной подачи припоя в случаях ее установки в паяльнике.

Работники, выполняющие пайку деталей паяльником, должны иметь II группу электробезопасности. Проверка исправного состояния паяльника и его испытание осуществляются работником из числа электротехнического персонала, имеющего группу электробезопасности не ниже III.

При пайке крупногабаритных деталей рекомендуется применять паяльник со встроенным отсосом.

Паяльник должен проходить проверку и испытания в сроки и объемах в соответствии с ТНПА, устанавливающими требования в данной области.

К эксплуатации допускается паяльник напряжением не выше 42 В, который по своему типу и исполнению соответствует классу зоны в соответствии с Правилами устройства электроустановок, а также характеристике окружающей среды.

Паяльник на рабочих местах должен устанавливаться на огнезащитные подставки, исключающие его падение.

В промежутках времени между паяльными операциями нагрев жала паяльников должен быть снижен до 150-180 °С, а при временном прекращении работ - отключен, для чего постоянные рабочие места следует оборудовать ограничителями (регуляторами) нагрева паяльников.

Кабель паяльника должен быть защищен от случайного механического повреждения и соприкосновения с горячими деталями.

Паяльник, находящийся в рабочем состоянии, постоянно должен находиться в зоне действия местной вытяжной вентиляции.

Излишки припоя и флюса с жала паяльника следует снимать с применением материалов, указанных в технологической документации (хлопчатобумажные салфетки и другие).

При пайке интегральных микросхем должны использоваться оптические приборы, преимущественно бинокулярные стереоскопические микроскопы с телевизионными экранами.

К эксплуатации должны допускаться микроскопы с исправными механическими узлами и юстированными оптическими системами. Микроскопы следует проверять и корректировать не реже одного раза в год.

2.3 Требования пожарной безопасности. Причины возникновения пожаров в электронной аппаратуре

Пожарная безопасность объекта должна обеспечиваться системами предотвращения пожара и противопожарной защиты, в том числе организационно-техническими мероприятиями.

Системы пожарной безопасности должны характеризоватьсяуровнем обеспечения пожарной безопасности людей и материальных ценностей, а также экономическими критериями эффективности этих систем для материальных ценностей, с учетом всех стадий (научная разработка, проектирование, строительство, эксплуатация) жизненного цикла объектов и выполнять одну из следующих задач:

- исключать возникновение пожара;

- обеспечивать пожарную безопасность людей;

- обеспечивать пожарную безопасность материальных ценностей;

- обеспечивать пожарную безопасность людей и материальных ценностей одновременно.

Объекты должны иметь системы пожарной безопасности, направленные на предотвращение воздействия на людей опасных факторов пожара, в том числе их вторичных проявлений на требуемом уровне.

Объекты, пожары на которых могут привести к массовому поражению людей, находящихся на этих объектах и окружающейтерритории, опасными и вредными производственными факторами (по ГОСТ 12.0.004-91), а также опасными факторами пожара и ихвторичными проявлениями, должны иметь системы пожарной безопасности, обеспечивающие минимально возможную вероятность возникновения пожара. Конкретные значения минимально возможной вероятности возникновения пожара определяются проектировщиками и технологами при паспортизации этих объектов в установленном порядке.

Опасными факторами, воздействующими на людей и материальные ценности, являются:

- пламя и искры;

- повышенная температура окружающей среды;

- токсичные продукты горения и термического разложения;

- дым;

- пониженная концентрация кислорода.

К вторичным проявлениям опасных факторов пожара, воздей-ствующим на людей и материальные ценности, относятся:

- осколки, части разрушившихся аппаратов, агрегатов, установок, конструкций;

- радиоактивные и токсичные вещества и материалы, вышедшие из разрушенных аппаратов и установок;

- электрический ток, возникший в результате выноса высокого напряжения на токопроводящие части конструкций, аппаратов, агрегатов;

- опасные факторы взрыва по ГОСТ 12.1.010.90, происшедшего вследствие пожара;

- огнетушащие вещества.

Вероятность возникновения пожара от электрического или другого единичного технологического изделия или оборудования при их разработке и изготовлении не должна превышать значения 10-6 год.

Методики, содержащиеся в стандартах и других нормативно-технических документах и предназначенные для определения показателей пожарной опасности строительных конструкций, их облицовок и отделок, веществ, материалов и изделий (в т. ч. незавершенного производства) должны адекватно отражать реальные условия пожара.

Электроустановки можно объединить в группы по наиболее существенным признакам:

- конструктивному исполнению;

- электрическим характеристикам;

- функциональному назначению и т.д..

Приведенные ниже шесть основных групп электроустановок достаточно полно охватывают практически все многообразие применяемых в практике электроустановок:

- провода и кабели;

- электродвигатели, генераторы и трансформаторы;

- осветительная аппаратура;

- распределительные устройства; электрические аппараты пуска, переключения,

- управления, защиты;

- электронагревательные приборы, аппараты, установки;

- электронная аппаратура и ЭВМ.

Наиболее частыми причинами пожаров, возникающих при эксплуатации электроустановок являются:

· короткие замыкания в электропроводниках и электрическом оборудовании;

· воспламенение горючих материалов, находящихся в непосредственной близости от электроприемников,

· включенных на продолжительное время и оставленных без присмотра;

· токовые перегрузки электропроводок и электрооборудования;

· большие переходные сопротивления в местах контактных соединений;

· появление напряжения на строительных конструкциях и технологическом оборудовании,

· попадание раскаленных частиц нити накаливания на легкогорючие материалы и др.

К средствам тушения пожаров относятся: гидранты, огнетушители, средства покрытия огня, песок и другие подручные материалы. Наиболее традиционным средством тушения пожаров является гидрант, который устанавливается внутри всех общественных зданий. Он должен находиться в легкодоступных местах и всегда быть готовым к использованию.

Принцип действия гидранта заключается в подаче больших объемов воды, предназначенной для тушения пожаров, когда горят обычные материалы - дерево, солома, бумага, ткани.

Воду нельзя использовать в случае возгорания электрической аппаратуры, находящейся под напряжением, горючих жидкостей - бензин, ацетон, спирты; для залива веществ, которые при реакции с водой выделяют токсичные или горючие газы, - сода, калий, карбид кальция.

При работе на пожаре также надо следить за тем, чтобы вода не испортила находящиеся рядом не горящие материалы и оборудование.

Число огнетушителей должно соответствовать потенциальным размерам пожара и зоне, которая должна находиться под контролем. Проверка работоспособности огнетушителей должна осуществляться не реже одного раза в полугодие. Огнетушители бывают воздушно-пенные, пенно-химические, углекислотные, а также порошковые. Перед использованием пенного огнетушителя главное - не забыть прочистить спрыск с помощью специальной шпильки, которая привязана к ручке.

Следует также помнить о том, что с помощью пенных огнетушителей нельзя заливать провода, которые находятся под напряжением, а также любые загоревшиеся электроприборы.

Порошковые огнетушители можно также использовать для тушения электроприборов напряжением до тысячи вольт. Для тушения электроприборов наиболее безопасно использование углекислотных огнетушителей, содержащих углекислый ангидрид (сжиженный газ), который способен сильно охлаждать горящую поверхность.

Необходимо только помнить о том, что при тушении загоревшихся электропроводки и электроприборов совершенно необходимо, прежде чем начинать их тушить, выдернуть из розетки сетевой провод.

Не следует также забывать о времени работы различных огнетушителей. Порошковые огнетушители работают 10-15 секунд.

Углекислотные - 25-45 секунд.

Пенные - 60-80 секунд.

В связи с этим приводить огнетушители в действие необходимо в непосредственной близости от очага пожара и следует максимально, без потерь использовать их ресурсы.

Исходя из выше сказанного, можно сделать следующий вывод, что производственная среда, создающая здоровые и работоспособные условия труда, главным образом обеспечивается выбором технологического процесса, материалов и оборудования, распределением нагрузки между работником и оборудованием; режимом труда и отдыха.

Для улучшения организации рабочего места можно применять различные приспособления для удобства работы техника.

Для предотвращения аварийных ситуаций необходимо руководствоваться правилами по технике безопасности и пожарной безопасности.

ЗАКЛЮЧЕНИЕ

В дипломной работе разработан комплекс лабораторных работ по «Микропроцессорной технике» в программе ElectronicsWorkBench. Комплекс состоит из 6 заданий по проектированию цифровых устройств, таких как дешифраторы и шифраторы, мультиплексоры и демультиплексоры, сумматоры, триггеры, двоичные счетчики, а также простейшие логические схемы.

В работе представлен порядок проведения работ для разработки ряда цифровых устройств, их принципиальные схемы и принципы работы. А также рассмотрены основные принципы функционирования. Задания по выполняются соответственно по вариантам.

В дипломной работе была продемонстрирована работа и простота интерфейса пользователя комплекса ElectronicsWorkbench.

На примерах было рассказано о возможностях анализа радиоэлектронных устройств.

Выполняя дипломную работу, можно сделать вывод, что с помощью программы Electronics Workbench можно проводить анализ схем на постоянном и переменном токах, а также исследовать переходные процессы при воздействии на схемы входных сигналов различной формы.

Производственная среда, создающая здоровые и работоспособные условия труда, главным образом обеспечивается выбором технологического процесса, материалов и оборудования, распределением нагрузки между работником и оборудованием; режимом труда и отдыха.

Для улучшения организации рабочего места можно применять различные приспособления для удобства работы техника.

Для предотвращения аварийных ситуаций необходимо руководствоваться правилами по технике безопасности и пожарной безопасности..

СПИСОК ЛИТЕРАТУРЫ

ГЛАВА 1.

1. Амосов В. Схемотехника и средства проектирования цифровых устройств; БХВ-Петербург - Москва, 2007. - 560 c.

2. Ашихмин А. С. Цифровая схемотехника. Шаг за шагом; Диалог-МИФИ - , 2008. - 304 c.

3. ЗагидуллинР. Ш. Multisim, Labview, Signal Express. Практика автоматизированного проектирования электронных устройств; Горячая Линия - Телеком - , 2009. - 368 c.

4. Карлащук В.И., Электронная лаборатория на IBM PC. Программа ElectronicsWorkbench и ее применение. - Москва: СОЛОН-Пресс, 2003. - 736 с.

5. Останин Б.П. Руководство к компьютерным лабораторным работам по электротехнике. - Владивосток: Издательство ВГУЭС, 2005.

6. Прянишников В.А., Петров Е.А., Осипов Ю.М. Электротехника и ТОЭ в примерах и задачах: Практическое пособие. - СПб.: КОРОНА принт, 2006.

7. Титце У. Полупроводниковая схемотехника; Книга по Требованию - Москва, 2008. - 942 c.

8. Шустов М. А. Практическаясхемотехника. Книга 3. Преобразователи напряжения; Альтекс, Додэка XXI - Москва, 2007. - 192 c.

9. ГОСТ 11073.915-80. Микросхемы интегральные. Классификация и система условных обозначений.

10. ГОСТ 17467-88 (СТ СЭВ 5761-86). Микросхемы интегральные. Основные размеры.

ГЛАВА 2.

11. Основы законодательства РФ “Об охране труда”.

12. Закон ПМР “Об охране и безопасности труда”.

13. Правила пожарной безопасности в ПМР ППБ-01-06.

14. СанПин 2.2.2/2.4.1340-03 «Требования к освещению».

15. Организация охраны труда. Трудовой кодекс ПМР, раздел 10, глава 35.

16. ГОСТ 12..1.005 88 (Общие санитарно гигиенические требования к воздуху рабочей зоны).

17. ГОСТ 12.012 - 90 (Вибрационная безопасность).

18. ГОСТ 12.003 83 (Шум. Общие требования безопасность).

19. ГОСТ 12.1.019-79 изменение 01-86 «Элетробезопасность. Общие требования».

Размещено на Allbest.ru


Подобные документы

  • Проектирование лабораторного стенда и методического комплекса для проведения лабораторных и практических работ. Выбор элементной базы. Сборка принципиальной схемы дешифратора на логических элементах в EWB512. Изготовление действующего макета устройства.

    курсовая работа [2,1 M], добавлен 11.07.2015

  • Разработка микропроцессорной системы для контроля и индикации параметров изменяющегося по случайному закону 8-ми разрядного двоичного кода. Проектирование принципиальной схемы микроконтроллера, описание работы схемы. Разработка блок-схемы программы.

    курсовая работа [752,4 K], добавлен 10.01.2013

  • Порядок описания и разработки структурной и функциональной схемы микропроцессорной системы на основе микроконтроллера К1816ВЕ31. Обоснование выбора элементов, разработка принципиальной схемы данной системы, программы инициализации основных компонентов.

    курсовая работа [260,4 K], добавлен 16.12.2010

  • Синтез структурной схемы радиоприемного устройства. Решение задачи частотной селекции. Выбор количества преобразований, значений промежуточных частот, структуры и параметров селективных цепей преселектора. Расчет принципиальной электрической схемы РПУ.

    курсовая работа [564,6 K], добавлен 22.12.2013

  • Краткое описание РЭС. Создание файла принципиальной электрической схемы. Проектирование библиотеки элементов. Формирование 3D-модели ПП и Gerber-файлов. Создание печатной платы. Проверка правильности электрических соединений. Компиляция проекта.

    курсовая работа [5,2 M], добавлен 17.05.2014

  • Описание алгоритма работы и разработка структурной схемы микропроцессорной системы управления. Разработка принципиальной схемы. Подключение микроконтроллера, ввод цифровых и аналоговых сигналов. Разработка блок-схемы алгоритма главной программы.

    курсовая работа [3,3 M], добавлен 26.06.2016

  • Выбор микросхемы и его обоснование, внутренняя структура и элементы. Построение принципиальной и электрической схемы. Выбор материала печатной платы, методы и закономерности ее разработки, принципы работы. Расчет надежности и оценка ее показателей.

    курсовая работа [249,3 K], добавлен 02.10.2015

  • Логические схемы комбинационных устройств, реализованных на дешифраторах и мультиплексорах на основе дешифраторов с восемью выходами, на основе мультиплексора с восемью информационными входами и на основе мультиплексора с четырьмя информационными входами.

    отчет по практике [166,0 K], добавлен 18.10.2012

  • Электронный замок: общая характеристика и принцип действия. Анализ вариантов реализации устройства. Разработка алгоритма функционирования, структурной и электрической принципиальной схемы электронного замка. Блок-схема алгоритма работы программы.

    курсовая работа [363,3 K], добавлен 10.05.2015

  • История разработки и использования интегральных микросхем. Выбор элементной базы устройства. Синтез электрической принципиальной схемы: расчет усилительных каскадов на транзисторах, параметры сумматора, инвертора, усилителя, дифференциатора и интегратора.

    курсовая работа [1,9 M], добавлен 25.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.