Схемотехника аналоговых электронных устройств

Качественные показатели и характеристики аналоговых электронных устройств. Построение усилительного каскада на электронной лампе и полевых транзисторах. Обратная связь в аналоговых устройствах. Усилительные каскады с различными видами обратной связи.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курс лекций
Язык русский
Дата добавления 23.05.2013
Размер файла 4,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Пентоды характеризуются также шумовым сопротивлением

Rш= (23.15)

где S - крутизна, мА/В Iа, Iэ - анодный и экранный токи, мА. Шумовое сопротивление пентодов в среднем в 3-6 раз больше, чем у триодов.

23.5 Внутренние шумы полупроводниковых приборов

Большой интерес представляет изучение электрических флуктуации в полупроводниках и полупроводниковых приборах (ППП), поскольку их изучение создает основу для глубокого понимания свойств полупроводниковых материалов и приборов. Представления о природе этих флуктуации могут быть использованы в качестве средства изучения физики полупроводниковых приборов и материалов. В частности, они позволяют более четко обнаружить некоторые физические явления и точнее определить физические параметры материалов и приборов по сравнению с другими методами. В полупроводниковых приборах имеют место тепловой шум, дробовой шум и низкочастотный шум. Тепловой шум обусловлен хаотическим движением носителей заряда в объеме полупроводника и их взаимодействием с кристаллической решеткой. Напряжение шума определяется по формуле Найквиста.

шт 2=4kTRПш. (23.16)

В транзисторе распределенное сопротивление базы rб преобладает над распределенными сопротивлениями эмиттера и коллектора, поэтому при расчете уровня теплового шума учитывают только шумы базового сопротивления

штб 2=4KTrбПш. (23.17)

Дробовой шум в ППП обусловлен флуктуацией числа носителей тока, пересекающих область пространственного заряда p-n - перехода. Флуктуации носителей тока в полупроводниковых приборах вызваны хаотическим процессом генерации и рекомбинации. Интенсивность дробовых шумов по аналогии с ламповыми диодами определяется по формуле Шоттки:

Iдр 2=2qI0Пш. (23.18)

Дробовые шумы возникают как в эмиттерном, так и в коллекторном переходах транзистора и их среднеквадратичные напряжения вычисляются соответственно:

=2qrэ 2(Iэ+Iэ 0)Пш (23.19)

дрк 2=2qrк 2(h21б Iэ+Iк 0) Пш (23.20)

где rэ, rк - дифференциальные сопротивления эмиттерного и коллекторного p-n - переходов соответственно; h21Б - коэффициент передачи по току в схеме с общей базой; Iэ 0 - обратный ток эмиттерного p-n - перехода: Iэ - ток эмиттера.

Если теория тепловых и дробовых шумов достаточно полно разработана применительно к широкой классу ППП и получила хорошее экспериментальное подтверждение, то такого заключения еще невозможно сделать по низкочастотному шуму. На основе многочисленных данных экспериментального исследования внутренних шумов ППП в области низких частот можно отметить следующие свойства:

- слабая температурная зависимость;

- сильная зависимость уровня от состояния поверхности реального прибора;

- зависимость шума от механических деформаций, дозы радиации, плотности дислокации и дефектов структуры.

Спектральная плотность мощности шума в области низких частот имеет вид:

G(f) =AInf--f. (23.21)

где I - ток, протекающий через p-n переход;

А - коэффициент, учитывающий физические свойства прибора;

n - показатель токовой зависимости (n12);

=0,52 - коэффициент частотной зависимости, определяющий скорость спада спектральной плотности;

Наиболее вероятной причиной возникновения низкочастотного шума считается флуктуация плотности носителей заряда, вызывающая флуктуации проводимости. Последние, в свою очередь, могут быть вызваны следующими причинами: генерация-рекомбинация носителей; флуктуация высоты потенциального барьера; туннельное прохождение носителей через потенциальный барьер диффузии носителей. Указанные процессы могут протекать как в объеме, так и на поверхности полупроводникового прибора. Одними из основных источников низкочастотного шума в полупроводниковых приборах являются дефекты кристаллической решетки, рассмотренные выше. Эти дефекты создают дискретные энергетические уровни в запрещенной зоне, которые могут проявлять себя в качестве рекомбинационных центров. Причем время захвата этих центров может принимать значения до нескольких минут, тем самым существенное влияние оказывают на электрические свойства р-n перехода. Расчеты, проведенные для объемного центра, локализованного в обедненной области р-n перехода показывают, что случайные процессы эмиссии носителей заряда глубоких центров приводят к большой постоянной времени и появлению НЧ шумов. Уровень шума определяется концентрацией дефектных уровней. Среди различных моделей НЧ шума можно выделить модели, которые связывают происхождение шума со свойствами поверхности полупроводников. Эти модели основываются на случайном распределении поверхностного потенциала, образуемого статистическим распределением связанных зарядов, локализованных в оксидном слое. Полученные результаты находят достаточно точное экспериментальное подтверждение.

Одной из разновидностей НЧ шума является "взрывной шум". Этому вопросу в последнее время посвящено значительное число работ. Источник взрывного шума пока не вполне ясен, но считается, что он связан с наличием тонких, сильно легированных эмиттерных переходов. Появление и исчезновение импульсов связывается с одной ловушкой в области пространственного заряда. Наиболее правдоподобной теорией взрывного шума следует считать дислокационную теорию, находящуюся в хорошем согласии с экспериментом. Таким образом, в полупроводниковых приборах имеются следующие процессы обусловливающие НЧ шумы: а) флуктуация тока за счет захвата носителей объемными центрами, локализованными в однородных областях кристалла; б) флуктуация тока вследствие флуктуации высоты потенциального барьера р-n - перехода; в) флуктуации тока за счет захвата и эмиссии носителей заряда медленными поверхностными состояниями; г) флуктуации тока вследствие изменения потенциала в при поверхностной области p-n перехода.

Рекомендуемая литература

1. Павлов В.Н., Ногин В.Н. Схемотехника аналоговых электронных устройств: Учебник для вузов - 2-е изд., исправ. - М.: Горячая линия - Телком, 2001.

2. Пряников В.С. Схемотехника аналоговых электронных устройств: Учебное пособие. 2-е изд., доп. Чебоксары: Изд-во Чуваш. ун-та, 2001.

3. Цыкина А.В. Электронные усилители. М.: Радио и связь, 1982.

4. Головин О.В., Кубицкий А.А. Электронные усилители. М.: Радио и связь, 1983.

5. Войшвилло Г.В. Усилительные устройства. М.: Радио и связь, 1983.

6. Проектирование усилительных устройств: Учеб. пособие / Под ред. Н.В. Терпугова. М.: Высш. шк., 1982.

7. Проектирование транзисторных усилителей звуковых частот: Учеб. пособие / Под ред. Т.В. Безладного. М.: Радио и связь,1987.

8. Алексеев А.Г., Войшвилло Г.В. Усилительные устройства: Сб. задач и упражнений. М.: Радио и связь, 1986.

9. Кубицкий А.А. Задачи и упражнения по электронным усилителям. М.: Радио и связь, 1986.

10. Варшавер В.А. Расчет и проектирование импульсных усилителей. М.: Высш. шк., 1979.

11. Остапенко Г.С. Усилительные устройства. М.: Радио и связь, 1989.

12. Цыкина А.В. Проектирование транзисторных усилителей низкой частоты. М.: Связь, 1967.

13. Схемотехника аналоговых электронных устройств: Метод. указания к курсовому проекту / Сост. В.С. Пряников; Чуваш. ун-т. Чебоксары, 2001.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.