Блок управления электромеханическим замком на электронных карточках, позволяющий контролировать доступ в помещение

Разработка электромеханического замка: блок управления доступом в помещение, релейные замки с курковым механизмом взвода ригеля, пусковые токи модели. Модули световой и звуковой индикации, процессорный и базовый модули: надежность компоновки элементов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 30.06.2012
Размер файла 163,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Децентрализованная компоновочная схема обеспечивает относительно большую легкость размещения элементов изделия на объекте, не требуется тщательная экранировка отдельных блоков, при соответствующих схемных решениях может быть более надежной, сохраняя частичную работоспособность при выходе из строя отдельных элементов изделия. Недостатком является значительная длина межблочных соединений, затруднен полный демонтаж системы, для каждого отдельного блока необходимо предусматривать автономные системы охлаждения, виброзащиты [1].

Наиболее распространен способ централизованной компоновки, при котором все элементы сложной РЭС, кроме входных и управляющих устройств, распологают в одном участке или отсеке блока. Однако внутри этого отсека компоновка выполняется в виде совокупности отдельных блоков и приборов [1]

4.2 Выбор и обоснование метода и принципа конструирования

На основе проведенного разбиения электрической схемы и анализа существующих конструкций выбирается метод конструирования устройства в целом и его частей. Существующие методы конструирования РЭС подразделяются на три взаимосвязанные группы [2]:

· по видам связей между элементами;

· по способу выявления и организации структуры связей между элементами;

· по степени автоматизации конструирования РЭС - зависит от назначения аппаратуры и ее функций, преобладающего вида связей, уровня унификации, автоматизации и т.д.

Рассмотрим кратко сложившиеся методы конструирования РЭС.

Геометрический метод. В основу метода положена структура геометрических и кинематических связей между деталями, представляющая собой систему опорных точек, число и размещение которых зависит от заданных степеней свободы и геометрических свойств твердого тела [2].

Машиностроительный метод. В основу этого метода конструирования положена структура механических связей между элементами, представляющая собой систему опорных поверхностей. Машиностроительный метод используется для конструирования устройств и элементов РЭА, которые несут большие механические нагрузки и в которых неизбежны вследствие этого большие деформации [2].

Топологический метод. В основу метода положена структура физических связей между ЭРЭ. Топологический метод, в принципе, может применяться для выявления структуры любых связей, однако конкретное его содержание проявляется там, где связности элементов может быть сопоставлен граф [2].

Метод проектирования моноконструкций. Основан на минимизации числа связей в конструкции, он применяется для создания функциональных узлов, блоков, РЭА на основе оригинальной несущей конструкции в виде моноузла (моноблока) с оригинальными элементами [2].

Базовый (модульный) метод конструирования. В основу метода положен модульный принцип проектирования. Деление базового метода на разновидности связано с ограничениями, схемной конструкторской унификацией структурных уровней (модулей функциональных узлов, блоков). Базовый метод является основным при проектировании современной РЭА, он имеет много преимуществ по сравнению с методом моноконструкций [2]:

на этапе разработки позволяет одновременно вести работу над многими узлами и блоками, что сокращает сроки проведения разработок; упрощает отладку и сопряжение узлов в лаборатории, так как работа любого функционального узла определяется работой известных модулей, резко упрощается конструирование и макетирование; сокращает объем оригинальной конструкторской документации, дает возможность непрерывно совершенствовать аппаратуру без коренных изменений конструкции; упрощает и ускоряет внесение изменений в схему, конструкцию и конструкторскую документацию;

на этапе производства сокращает сроки освоения серийного производства аппаратуры; упрощает сборку, монтаж, снижает требования к квалификации сборщиков и монтажников; снижает стоимость аппаратуры благодаря широкой механизации и автоматизации производства; повышает степень специализации производства;

при эксплуатации повышает эксплуатационную надежность РЭА, облегчает обслуживание, улучшает ремонтопригодность аппаратуры.

При компоновке должны быть учтены требования оптимальных функциональных связей между модулями, их устойчивость, стабильность, требования прочности и жесткости, помехозащищенности и нормального теплового режима, требования технологичности, эргономики, удобства эксплуатации и ремонта. Размещение комплектующих элементов в модулях всех уровней должно обеспечивать равномерное и максимальное заполнение конструктивного объема с удобным доступом для осмотра, ремонта и замены. Замена детали или сборочной единицы не должна приводить к разборке всей конструкции или ее составных частей. Для устойчивого положения изделия в процессе эксплуатации центр тяжести должен находиться, возможно, ближе к опорной поверхности. При компоновке модулей всех уровней необходимо выделить достаточно пространства для межсоединений.

При проектировании необходимо придерживаться следующих рекомендаций [2]:

минимальный внутренний радиус изгиба проводника должен быть не менее диаметра провода с изоляцией;

провода питания переменного тока следует свивать для уменьшения возможности наводок;

провода, подводящие к сменным элементам должны иметь некоторый запас по длине, допускающий повторную заделку провода;

провода не должны касаться острых металлических кромок;

монтажные провода целесообразно связать в жгут, при этом обеспечивается возможность расчленения монтажных операций на более простые.

Для разъемного варианта конструкции большое распространение получило использование объединительной печатной платы, что позволяет существенно уменьшить габаритные размеры изделия, упростить сборку.

При компоновке РЭС необходимо решать вопросы электромагнитной совместимости элементов, в частности, защиты от электромагнитных, электрических и магнитных помех.

При защите РЭС от воздействий помех, определяют максимальное значение сигналов помехи на выходах схем, усложняют схему введением фильтров на линиях входа-выхода, устраняют помехи по линиям электропитания с помощью радиочастотных фильтров, экранируют входные цепи чувствительных схем, для элементов РЭС разрабатывают кожухи-экраны.

В качестве метода конструирования выбираем базовый (модульный) метод конструирования.

Исходя из сказанного проведем деление схемы электрической принципиальной на функционально законченные узлы. Схему прибора целесообразно разделить на 3 узла:

базовый модуль;

микропроцессорный модуль;

модуль звуковой и световой индикации.

Радиоэлементы каждого функционального узла предлагается разместить на отдельных печатных платах. Силовой трансформатор необходимо закрепить непосредственно на плате базового модуля. Связь между базовым и микропроцессорным модулем обеспечивается с помощью штырькового разъема, а между базовым модулем и модулем звуковой и световой индикации посредством гибких монтажных проводов.

При данном разбиении схемы электрической принципиальной обеспечивается минимальное количество соединительных проводников, т.е. минимум электрических связей между узлами, высокая ремонтопригодность.

5. Выбор способов и средств теплозащиты, виброзащиты и экранирования.

5.1 Выбор способов охлаждения на ранней стадии проектирования

Для обеспечения нормального теплового режима необходимо выбрать такой способ охлаждения блока управления электромеханическим замком (далее "блока"), при котором количество тепла, рассеиваемого в окружающую среду, будет равным мощности теплоты выделения блока, при этом также необходимо учесть теплостойкость элементной базы.

Расчет температуры всех входящих в блок элементов представляет собой чрезвычайно трудоемкий процесс. В связи с этим встает вопрос: для каких элементов необходимо рассчитывать температуру, чтобы с заданной достоверностью можно было судить о соответствии теплового режима всего блока требованиям технического задания.

Методика определения числа элементов РЭС, подлежащих расчету теплового режима, состоит в следующем [3]:

1. Задаемся вероятностью правильного расчета р.

Если вероятность p > 0,8, то можно остановиться на выбранном способе охлаждения. При вероятностной оценке 0,8 > р > 0,3 можно применить выбранный способ охлаждения, однако при конструировании РЭС обеспечению нормального теплового режима следует уделить тем больше внимания, чем меньше вероятность. При вероятности 0,3 > р > 0,1 не рекомендуется использовать выбранный способ охлаждения.

Исходя из вышеизложенного, задаемся вероятностью правильного расчета р > 0,8.

2.Определяем средний перегрев нагретой зоны.

Исходными данными для проведения последующего расчета являются:

коэффициент заполнения по объему 0,6;

суммарная мощность, рассеиваемая в блоке, Вт 24;

давление окружающей среды, кПа 103;

давление внутри корпуса, кПа 103;

габаритные размеры корпуса, м 0,183x0,130x0,065;

Средний перегрев нагретой зоны герметичного корпуса блока с естественным воздушным охлаждением определяется по следующей методике:

Рассчитывается поверхность корпуса блока:

Sk = 2 [ L1 L2 + ( L1 + L2 ) L3 ] (5.1.1)

где L1, L2 - горизонтальные размеры корпуса, м;

L3 - вертикальный размер, м.

Для разрабатываемой конструкции блока L1 = 0,183м, L2 = 0,130м, L3 = 0,065м. Подставив данные в (5.1.1), получим:

Sk = 2·[0,183·0,130+(0,183+0,130)·0,065]=0,44 м2.

Определяется условная поверхность нагретой зоны:

Sз = 2 [ L1 L2 + ( L1 + L2 ) L3 Кз] (5.1.2)

где КЗ - коэффициент заполнения корпуса по объему. В нашем случае

КЗ = 0,6. Подставляя значение КЗ в (5.2.2), получим:

Sз = 2 · 0,183·0,130+0,183+0,130·0,065·0,6=0,036 м2.

Определяется удельная мощность корпуса блока:

Qk = P \ Sk (5.1.3)

где Р - мощность, рассеиваемая в блоке. Для разрабатываемого блока мощность, рассеиваемая в дежурном режиме Р =1,5 Вт.

Тогда:

Qk = 1.5 \ 0,44 = 3,41 Вт/м2.

Определяется удельная мощность нагретой зоны:

Qз = P \ Sз (5.1.4)

Qз = 1,5 \ 0,036 = 41,6 Вт/м2.

Находится коэффициент 1 в зависимости от удельной мощности корпуса блока формула (5.1.5):

1 = 0,1472 Qk - 0,2962 10 -3 Qk2 + 0,3127 10 -6 Qk3 (5.1.5)

1 = 0,1472 2,41 - 0,2962 10 -3 3,412 + 0,3127 10 -6 3,413 = 0,49

Находится коэффициент 2 в зависимости от удельной мощности нагретой зоны формула (5.1.6):

2 = 0,1390 Qз - 0,1223 10 -3 Qз2 + 0,0698 10 -6 Qз3 (5.1.6)

1 = 0,1390 41,6 - 0,1223 10 -3 41,62 + 0,0698 10 -6 41,63 = 5,56

Определяется коэффициент КН1 в зависимости от давления среды вне корпуса блока:

KH1 = 0,82 + 1 \ (0,925 + 4,6 10-5 H1) (5.1.7)

где Н1 - давление окружающей среды в Па. В нашем случае Н1=87кПа. Подставив значение Н1 в (5.1.7), получим:

KH1 = 0,82 + 1 \ (0,925 + 4,6 10-5 87 103) = 1,87

Определяется коэффициент КН2 в зависимости от давления среды внутри корпуса блока:

KH2 = 0,8 + 1 \ (1,25 + 3,8 10-5 H2) (5.1.8)

где Н2 - давление внутри корпуса в Па.

В нашем случае Н21=87кПа. Тогда:

KH2 = 0,8 + 1 \ (1,25 + 3,8 10-5 87 103) = 1,598

Рассчитывается перегрев корпуса блока:

k = 1 KH1 (5.1.9)

к = 0,49 · 1,87 = 0,9163

10. Рассчитывается перегрев нагретой зоны:

з = k +(2 - 1 ) KH2 (5.1.10)

з = 0,9163 + (5,56 - 0,49) · 1,598 = 9,01

11. Определяется средний перегрев воздуха в блоке:

в = (к - з ) 0,5 (5.1.11)

в = 0,5 · (0,9163 + 9,01) = 4,96

12. Определяется удельная мощность элемента:

Qэл = Pэл \ Sэл (5.1.12)

где Рэл мощность, рассеиваемая элементом (узлом), температуру которого требуется определить, Вт

Sэл площадь поверхности элемента, омываемая воздухом, см.кв

Наименее теплостойкий элемент базового модуля в дежурном режиме стабилизатор. Для него Рэл = 0,15 Вт, Sэл = 1,5 см.кв.

Qэл = 0,15 \ 1,5 = 0,1

13. Определяется перегрев поверхности элементов:

эл = з (0,75 + 0,25 Qэл \ Qз ) (5.1.13)

эл = 9,01 (0,75 + 0,25 0,1 \ 41,6 ) = 6,76

14. Определяется перегрев среды, окружающей элемент:

эс = в (0,75 + 0,25 Qэл \ Qз ) (5.1.14)

эл = 4,96 (0,75 + 0,25 0,1 \ 41,6 ) = 3,72

15. Определяется температура корпуса блока:

Тк = к + Тс (5.1.15)

где Тс температура среды, окружающей блок.

Тк = 0,9163 + 45 = 45,916

16. Определяется температура нагретой зоны:

Тз = з + Тс (5.1.16)

Т з = 9,01 + 45 = 54,01

17. Определяется температура поверхности элемента:

Тэл = эл + Тс (5.1.17)

Тэл = 6,76 + 45 = 51,76

18. Определяется средняя температура воздуха в блоке:

Тв = в + Тс (5.1.18)

Тв = 4,96 + 45 = 49,96

19. Определяется температура среды, окружающей элемент:

Тэс = эс + Тс (5.1.19)

Тэс = 3,72 + 45 = 48,72

Для выбора способа охлаждения исходными данными являются следующие данные:

суммарная мощность Рр, рассеиваемая в блоке, Вт 1,5;

диапазон возможного изменения температуры окружаю-

щей среды:

микроклимат +20…+24C

и по ГОСТ 15150-69, +10…+45 C;

пределы изменения давления окружающей среды:

Рмах, кПа (мм рт. ст.) 106,7 (800);

Pmin, кПа (мм рт. ст.) 84,0 (630);

допустимая температура элементов

(по менее теплостойкому элементу), Тmax, C +75;

коэффициент заполнения по объему 0,6;

Выбор способа охлаждения часто имеет вероятностный характер, т.е. дает возможность оценить вероятность обеспечения заданного в техническом задании теплового режима РЭС при выбранном способе охлаждения, а также те усилия, которые необходимо затратить при разработке будущей конструкции РЭС с учетом обеспечения теплового режима.

Выбор способа охлаждения можно выполнить по методике [3]. Используя графики, характеризующие области целесообразного применения различных способов охлаждения и расчеты, приведенные ниже, проверим возможность обеспечения нормального теплового режима блока в герметичном корпусе с естественным воздушным охлаждением.

Условная величина поверхности теплообмена рассчитывается по (5.1.2).

Sп = 0,036м2.

Определив площадь нагретой зоны, определим удельную мощность нагретой зоны: плотность теплового потока, проходящего через поверхность теплообмена, рассчитывается по (5.1.4). qЗ = 41,6 Вт/м2.

Тогда: lg qЗ =lg 41,6 = 1,619.

Максимально допустимый перегрев элементов рассчитывается по (5.1.13)

, (5.1.13)

Тогда:

По графикам [рис.2.35, рис.2.38, 3] для значений qЗ = 41,6 Вт/м2 и определяем, что нормальный тепловой режим блока в герметичном корпусе с естественным воздушным охлаждением будет обеспечен с вероятностью p = 0,9. Так как полученное значение вероятности p > 0,8, то можно остановиться на выбранном способе охлаждения.

Более подробный расчет теплового режима проводится далее.

5.2 Выбор способов и методов герметизации

Герметизация - обеспечение практической непроницаемости корпуса РЭС для жидкостей и газов с целью защиты ее элементов от влаги, плесневых грибков, пыли, песка, грязи и механических повреждений. Она является наиболее радикальным способом защиты элементов РЭС.

Различают индивидуальную, общую, частичную и полную герметизацию.

Индивидуальная допускает замену компонентов РЭС при выходе из строя и ремонт изделия. При общей герметизации (она проще и дешевле индивидуальной) замена компонентов и ремонт возможны только при демонтаже корпуса, что может вызвать затруднение.

Для частичной герметизации применяют пропитку, обволакивание и заливку как компонентов, так и РЭС лаками, пластмассовыми или компаундами на органической основе. Они, как правило, не обеспечивают герметичность в течение длительного времени.

Практически полная защита РЭС от проникновения воды, водяных паров и газов достигается при использовании металлов, стекла и керамики с достаточной степенью непроницаемости. Наиболее распространенные способы такой герметизации - применение металлических корпусов с воздушным заполнением. Исходя из вышесказанного, применительно для блока управления электромеханическим замком, выбираем индивидуальную герметизацию.

Важным фактором повышения эффективности герметизации является лакокрасочные, гальванические и химические покрытия пропитывающих, обволакивающих и заливочных материалов, металлического и металло-полимерного гермокорпусов.

Разъемная герметизация применяется для защиты блоков РЭС, требующих замены компонентов при ремонте, регулировке и настройке.

Общие требования к покрытиям металлическим и неметаллическим неорганическим установлены ГОСТ 9.301-86 (СТ СЭВ 5293-85, СТ СЭВ 5294-85, СТ СЭВ 5295-85).

Требования к поверхности основного металла: под защитные покрытия RZ40, не грубее; под защитно-декоративные Ra2,5, не грубее; под твердые и электроизоляционные Ra1,25, не грубее.

Данные о покрытиях деталей и сборочных единиц разрабатываемой конструкции блока управления замком электромеханическим приведены в таблице 5.2.1

Таблица 5.2.1 - Данные о покрытиях деталей и сборочных единиц конструкции блока управления замком электромеханическим.

Детали, сборочные единицы

Материал детали, сборочной единицы

Покрытия

Металлическое

Химическое

Лакокрасочное

Плата печатная

СФ-2-35Г-1,5

Сплав "Розе"

-

-

Корпус

Ст08кп

-

-

ГФ_245-ПМ (светло-серая)

Крышка

Ст08кп

-

-

ГФ_245-ПМ (светло-серая)

Эмаль ГФ_245-ПМ, светло-серая, ГОСТ 18374-79 - покрытие эмалью ГФ_245-ПМ, цвет светло-серый, эксплуатируется в условиях умеренного климата.

Эмаль ГФ_245-ПМ предназначена для покрытия металлических поверхностей, работающих в условиях умеренного и холодного климата. Стойкость эмалей к статическому воздействию воды не менее 24 ч.

5.3 Выбор способов и методов экранирования

Экранирование локализация электромагнитной энергии в определенном пространстве, за счет ограничения распространения ее всеми возможными способами.

Из этого следует, что в понятие экрана входят как детали механической конструкции, так и электротехнические детали фильтрующих цепей и развязывающих ячеек, ибо только их совместное действие дает необходимый результат.

При прохождении мощных сигналов по цепям связи последние становятся источниками электромагнитных полей, которые, пересекая другие цепи связи, могут наводить в них дополнительные помехи. Источниками электромагнитных помех могут быть также мощные промышленные установки, транспортные коммуникации, двигатели и т.д. Для того, чтобы локализовать, где это возможно, действие источника или сам приемник помех, используют экраны. По принципу действия различают электростатическое, магнитостатическое и электромагнитное экранирование.

Электростатическое экранирование вид экранирования, заключающийся в шунтировании большей части (или всей) паразитной емкости емкостью корпуса.

Электромагнитное экранирование. Переменное высокочастотное электромагнитное поле при прохождении через металлический лист либо перпендикулярно, либо под некоторым углом к его плоскости, наводит в этом листе вихревые токи, поле которых ослабляет действие внешнего поля. Металлический лист в данном случае является электромагнитным экраном. Примером электромагнитного экрана служит корпус блока управления электромеханическим замком.

Внутриблочное экранирование и электромагнитная совместимость элементов и узлов сводятся к решению ряда конструктивных задач, основными из которых являются:

анализ и учет паразитных емкостных связей, между пленочными элементами и проводниками объединительного и выводного монтажа в ячейках блоков РЭС;

покаскадное экранирование и последовательное расположение каскадов в блоках приемно-усилительной аппаратуры;

экранирование ЭРЭ с сильными полями и критичных к внешним электромагнитным наводкам;

расчет на резонансные частоты корпусов блоков РЭС, реализующих схему СВЧ.

Экранированные провода, коаксиальные кабели и многожильные экранированные шланги с экранированными проводами внутри них следует применять в основном для соединения отдельных блоков и узлов друг с другом. Они позволяют защитить многоблочные устройства от наводок, поступающих извне, от взаимных наводок внутри устройства и защитить от наводок приборы, находящиеся в окружающем пространстве. Следует обратить особое внимание на качество присоединения оплеток к корпусам приборов.

В разрабатываемой конструкции блока управления электромеханическим замком нет источников электромагнитных помех.

5.4 Выбор способов и методов виброзащиты

Вибрации подвержены РЭС, установленные на автомобильном, железнодорожном транспорте, в производственных зданиях, на кораблях и самолетах.

Практический диапазон частот вибрации, действующей на РЭС, имеет широкий предел. Например, для наземной аппаратуры, переносимой или перевозимой на автомашинах, частота достигает 120 Гц при ускорении, действующем на приборы, до 6 g. Работающие в таких условиях РЭС должны обладать вибропрочностью и виброустойчивостью.

Вибропрочность - способность РЭС противостоять разрушающему действию вибрации в заданных диапазонах частот и при возникающих ускорениях в течение срока службы.

Виброустойчивость - способность выполнять все свои функции в условиях вибрации в заданных диапазонах частот и возникающих при этом ускорениях.

Известно, что в приборах, не защищенных от вибрации и ударов, узлы, чувствительные к динамическим перегрузкам, выходят из строя. Делать такие узлы настолько прочными, чтобы они выдерживали максимальные (действующие) динамические перегрузки, не целесообразно, так как увеличение прочности, в конечном счете, ведет к увеличению массы, а вследствие этого и к неизбежному возрастанию динамических перегрузок. Поэтому целесообразно использовать другие средства для снижения перегрузок .

Покрытие платы лаком не только обеспечивает защиту от вибрации, но и создает дополнительные точки крепления элементов к плате.

В разрабатываемой конструкции блока управления электромеханическим замком применено два вида соединений: разъемные и неразъемные. К первому виду относятся в основном резьбовые соединения, ко второму -- пайка, сварка, развальцовка.

Основным недостатком резьбовых соединений является самоотвинчивание при действии вибрации. Для устранения самоотвинчивания в разрабатываемой конструкции применяются контровочные шайбы.

Сварочные соединения должны быть точно рассчитаны, качество сварки должно контролироваться.

6. Расчет конструктивных параметров изделия

6.1 Компоновочный расчет блоков РЭС

Выбор компоновочных работ на ранних стадиях проектирования позволяет рационально и своевременно использовать или разрабатывать унифицированные и стандартизированные конструкции РЭС. В зависимости от характера изделия (деталь, прибор, система) будет выполняться компоновка различных ее элементов. Основная задача, которая решается при компоновке РЭС, - это выбор форм, основных геометрических размеров, ориентировочное определение веса и расположение в пространстве любых элементов или изделий РЭС. На практике задача компоновки РЭС чаще всего решается при использовании готовых элементов (деталей) с заданными формами, размером и весом, которые должны быть расположены в пространстве или на плоскости с учетом электрических, магнитных, механических, тепловых и др. видов связи.

Методы компоновки элементов РЭС можно разбить на две группы: аналитические и модельные. К первым относятся численные и номографические, основой которых является представление геометрических или обобщенных геометрических параметров и операций с ними в виде чисел. Ко вторым относятся аппликационные, модельные, графические и натурные методы, основой которых является та или иная физическая модель элемента, например в виде геометрически подобного тела или обобщенной геометрической модели.

Основой всех методов является рассмотрение общих аналитических зависимостей. При аналитической компоновке мы оперируем численными значениями различных компоновочных характеристик: геометрическими размерами элементов, их объемами, весом, энергопотреблением и т.п. зная соответствующие компоновочные характеристики элементов изделия и законы их суммирования, мы можем вычислить компоновочные характеристики всего изделия и его частей.

Для определения размеров печатных плат и габаритных размеров корпуса БУ произведем компоновочный расчет.

Рассчитаем установочные площади типоразмеров элементов, устанавливаемых на печатные платы. Установочные габариты элементов приведены в таблице 6.1.1.

Таблица 6.1.1 - установочные габариты элементов.

Тип

Количество, шт.

Площадь, мм

Объем, мм

1

2

3

4

Процессорная плата

Резисторы

С2-23-0,125

11

24

72

Конденсаторы

К50-35-100X16В

2

50

650

МО-21

5

48

384

Диоды

КД522А

6

22

66

Микросхемы

ЭКР1830ВЕ31

1

775

3875

D27C64

1

548

2957

DS1230

1

548

2957

ЭКР1568РР1

2

75

375

ЭКР1554ИР22

1

195

975

К561ТЛ1

1

150

750

Транзисторы

КТ3102

2

20

180

Прочие элементы

Резонатор кварцевый РК351

1

40

640

Итого в сумме

3182

175432

Базовая плата

Резисторы

С2-23-0,125

24

24

72

С2-23-0,5

1

56

392

С2-23-2

1

192

1728

Диоды

КД522А

8

22

66

КД243

9

42

210

КС147

1

22

66

Транзисторы

КТ3102

4

30

270

КТ3107

2

30

270

КТ973

3

24

312

Конденсаторы

К50-35-2200X25В

1

380

13305

К50-35-220X16В

1

80

1040

К50-35-100X16В

1

50

754

МО-21

8

48

384

Микросхемы

КР142ЕН5А

1

45

990

Прочие элементы

Трансформатор

1

4225

190125

Вставка плавкая ВП1-1

4

140

1120

Клемник 3-х контактный

3

135

1755

Клемник 2-х контактный

2

90

1170

Реле РЭС-49

1

55

1375

Итого в сумме

8036

231634

Окончание таблицы 6.1.1

1

2

3

4

Блок индикации

Светодиоды АЛ307

2

28

283

Головка динамическая

1

1964

23562

Итого в сумме

2020

24128

Площадь с учетом коэффициента заполнения:

S = S'/Кз (6.1.1)

где S' - суммарная установочная площадь элементов;

Кз - коэффициент заполнения (для стационарной наземной РЭА принимаем равным 0,4).

Подставив, получим:

для процессорного модуля S = 3176/0,4=7940 мм;

для базового модуля S = 7694/0,4=19235 мм;

для модуля индикации S = 2020/0,4=5050 мм.

Далее по таблице предпочтительных размеров, по ГОСТ10317-79 , получаем размеры печатных плат:

для процессорного модуля 120x57 мм;

для базового модуля 120x140 мм;

для модуля индикации 70x65 мм.

Ширина процессорного модуля одновременно является максимальной высотой элемента, так как впаивается в базовый блок. Его высота составляет 57 мм.

Далее, зная размеры печатных плат и максимальную высоту элемента и габариты аккумулятора, определяем габариты корпуса прибора, используя предпочтительные ряды чисел. Получим: длина - 183 мм, ширина - 130 мм, высота - 65 мм. Итого объем корпуса:

V = 18313065 = 1546350 мм.

Определяем коэффициент заполнения по объему по формуле (6.1.2):

, (6.1.2)

где - суммарный объем всех элементов:

, мм 6.1.3)

где - суммарный объем элементов базового блока;

- суммарный объем элементов процессорного блока;

- суммарный объем элементов блока индикации;

- объем аккумулятора (110х55х75 мм).

Подставив значения в формулы 5.3 и 5.2 получим:

= 265234+189112+33228+453750=941324 мм.

= 941324/1546350 = 0,6

Выбор печатного монтажа радиоэлементов в блоке обусловлен заданной программой выпуска изделия - 1000шт/год. Печатный монтаж в этом случае является наиболее экономически целесообразным.

При разработке печатных плат необходимо руководствоваться следующими документами:

ГОСТ23751_86;

ГОСТ10317_79;

ОСТ4ГО.010.009;

СТБ 1014-95;

и другие.

Исходными данными к разработке топологии печатной платы является:

схема электрическая принципиальная;

установочные размеры радиоэлементов узла;

рекомендации по разработке монтажа для выбранной серии микросхем.

Рекомендации по разработке печатных плат:

Разводка питающего напряжения узлов и блоков (шин «земля» и «питание») должна проводиться проводниками с возможно более низким сопротивлением.

Низкочастотные помехи, проникающие в систему по шинам питания, должны блокироваться с помощью конденсатора, включенного между выводами «питание» и «земля» непосредственно у начала проводника на печатной плате.

Информационные линии связи рекомендуется выполнять с помощью печатного монтажа.

Проводники, расположенные на различных сторонах платы, должны перекрещиваться под углом 900 или 450 и иметь минимальную длину.

Максимально допустимая длина печатных параллельных проводников, расположенных на одной стороне платы при ширине проводников от 0.5 до 5мм, не должна превышать 30см.

С целью уменьшения габаритных размеров разрабатываемой конструкции печатную плату указанного узла целесообразно выполнять двухсторонней. Класс точности печатной платы базового модуля выбираем третий.

Печатные платы первого и третьего классов точности наиболее просты в исполнении, надежны в эксплуатации, имеют минимальную стоимость. Для повышения надежности паяных соединений, отверстия в печатных платах необходимо выполнить металлизированными. Конфигурация печатных плат прямоугольная. Шаг координатной сетки выбран равным 1.25мм как наиболее предпочтительный. Установку радиоэлементов на плате необходимо производить в соответствии с ГОСТ 29137 - 91.

6.2 Расчет теплового режима блока управления электромеханического замка

Расчет теплового режима РЭА заключается в определении по исходным данным температуры нагретой зоны и температур поверхностей теплонагруженных радиоэлементов и сравнения полученных значений с допустимыми для каждого радиоэлемента в заданных условиях эксплуатации. Произведем расчет по следующей методике:

Рассчитывается поверхность корпуса блока:

SK=2[L1L2+(L1+L2)L3], (6.2.1)

где L1 и L2 - горизонтальные размеры корпуса, м;

L3 - вертикальный размер, м.

Определяется условная поверхность нагретой зоны:

=2[L1L2+(L1+L2)L3Kз], (6.2.2)

где Kз - коэффициент заполнения корпуса по объему.

Определяется удельная мощность корпуса блока:

qk= P / SK, (6.2.3)

где P=10Вт - мощность, рассеиваемая в блоке.

Определяется удельная мощность нагретой зоны:

qз= P / Sз, (6.2.4)

Находится коэффициент 1 в зависимости от удельной мощности корпуса блока:

1= 0.1472qk - 0.296210-3 qk2+0.312710-6 qk3, (6.2.5)

Находится коэффициент 2 в зависимости от удельной мощности нагретой зоны:

2= 0.1390qk - 0.122310-3 qk2+0.069810-6 qk3, (6.2.6)

Находится коэффициент KH1 в зависимости от давления среды вне корпуса блока H1:

KH1= 0.82+(1 / (0.925+4.610-5 H1)) (6.2.7)

Находится коэффициент KH2 в зависимости от давления среды внутри корпуса блока H2:

KH2= 0.8+(1 / (1.25+3.810-5H2)),(6.2.8)

где Н2 - давление внутри корпуса аппарата в Па.

Рассчитывается перегрев корпуса блока:

K = 1 KH1, (6.2.9)

Определяется перегрев нагретой зоны:

З = k + (2 - 1)KH2, (6.2.10)

Определяется средний перегрев воздуха в блоке:

в= 0.5·(k+З), (6.2.11)

Определяется температура корпуса блока:

Тк = кс, (6.2.12)

Определяется температура нагретой зоны:

Tз = зс, (6.2.13)

Находится средняя температура воздуха в блоке:

ТВ = вс, (6.2.14)

Расчет теплового режима по приведенной методике производим на ЭВМ при помощи специальной программы. Результаты расчета приведены в приложении 3.

Из анализа полученных результатов заключаем, что при заданных условиях эксплуатации разрабатываемого прибора обеспечивается нормальный тепловой режим применяемых в нем радиоэлементов в процессе эксплуатации, т.е. рабочие температуры не превышают предельно допустимых величин.

Таким образом, выбранная конструкция корпуса и естественного способа охлаждения путем конвекции воздуха не нуждается в изменении и применении в ней других способов охлаждения. Естественный способ охлаждения является наиболее легко реализуемые и требует минимальных затрат с экономической точки зрения по сравнению с другими способами охлаждения РЭА. Учитывая вышесказанное, окончательно выбираем герметичный корпус для разрабатываемого изделия.

6.3 Расчет механической прочности и системы виброударной защиты

Все виды РЭС подвергаются воздействию внешних механических нагрузок, которые передаются к каждой детали, входящей в конструкцию. Механические воздействия имеют место в работающей РЭС, если она установлена на подвижном объекте, или только при транспортировке ее в нерабочем состоянии, как в случае стационарной и некоторых видов возимой РЭС. При разработке конструкции РЭС необходимо обеспечить требуемую жесткость и механическую прочность элементов.

Под прочностью конструкции понимают нагрузку, которую может выдержать конструкция без остаточной деформации или разрушения. Повышение прочности конструкции достигается усилием конструктивной основы: контроля болтовых соединений, повышение прочности узлов методами заливки и обволакивания. Во всех случаях нельзя допустить образование механической колебательной системы.

Так как создаваемый прибор относится к наземной РЭС, то при транспортировке, случайных падениях и т.п. он может подвергаться динамическим воздействиям. Изменения обобщенных параметров механических воздействий на наземную РЭА находятся в пределах:

Вибрации: (10...70)Гц, виброперегрузка n=(1...4)g;

Ударные сотрясения: ny=(10...15)g, длительность t=(5...10)мс;

Линейные перегрузки: nл=(2...4)g.

Несущие конструкции типа плат, панелей, шасси, каркасов, стоек и рам, работающие в условиях вибраций, должны удовлетворять требованию вибропрочности.

Расчет на вибропрочность несущих конструкций типа плат сводится к определению наибольших напряжений исходя из вида деформации, вызванной действием вибраций в определенном диапазоне частот, и сравнением полученных значений с допустимыми.

Этот расчет можно свести к нахождению собственной частоты колебаний , при которой плата с определенными размерами и механическими характеристиками имеет прогибы и напряжения в пределах допустимых значений. При этом частота колебаний платы не должна быть близка к ее резонансной частоте.

Для расчета частоты собственных колебаний платы с расположенными на ней ЭРЭ существенным является выбор характера ее закрепления по контуру.

Крепление пластин к опоре может быть жёстким или подвижным. Всякое закрепление (когда нет угловых и линейных перемещении) соответствует сварке, пайке, прижиму или закреплению винтами. Шарнирной опоре соответствует закрепление в направляющих и в некоторых случаях закрепление винтами или разъемом.

Используя эти данные, проведем проверочный расчет платы блока управления на виброустойчивость. Печатная плата должна обладать значительной усталостной долговечностью при воздействии вибрации.

Собственная частота колебаний монтажных плат с распределённой нагрузкой определяется по формуле:

, (6.3.1)

где - коэффициент, зависящий от способа закрепления, определяется по таблицам;

D - цилиндрическая жёсткость пластины (платы);

а - длина пластины (платы);

b - ширина пластины (платы);

М - масса пластины (плат с ЭРЭ).

Цилиндрическая жёсткость пластины (платы) определяется по формулам:

,(6.3.2)

где E - модуль упругости;

h - толщина пластины (плат);

- коэффициент Пуассона;

Для инженерных расчётов более удобно при закреплении пластин (плат) по углам в четырёх точках собственную частоту определять по формуле:

,(6.3.3)

При определении собственной частоты платы базового модуля блока управления в первую очередь определим цилиндрическую жёсткость платы по формуле (6.3.2), подставив следующие исходные данные: h = 1,5 · 10м; E= 3,02 · 10Па

D = 3,02 · 10· (1,5 · 10)/ 12 · (1 - 0,222) = 8,926 Па.

Теперь no формуле (6.3.3) определим собственную частоту, подставив следующие исходные данные: а = 0.14 м; b=0.12 м и М = 0.55 кг.

= 95,1 Гц

Судя по условиям эксплуатации и особенностям блока управления следует отметить, что в использовании демпферов и частотной отстройки, конструкция не нуждается.

Таким образом расчет показал, что плата базового модуля электромеханического замка будет обладать достаточной усталостной долговечностью при воздействии вибрации.

6.4 Полный расчет надежности

Исходными данными для расчета являются значения интенсивностей отказов всех радиоэлементов и элементов конструкций.

Расчет надежности устройства состоит из следующих этапов:

Определяется суммарное значение интенсивности отказов по формуле:

,час- (6.4.1)

где n - число наименований радиоэлементов и элементов конструкции устройства;

- величина интенсивности отказа i_го радиоэлемента, элемента конструкции с учетом заданных для него условий эксплуатации: коэффициента электрической нагрузки, температуры, влажности, технических нагрузок и т.п.;

Ni - количество радиоэлементов, элементов конструкции i_го наименования.

Определяется значение величины наработки на отказ T по формуле:

, (6.4.2)

Определяется значение вероятности безотказной работы P(t) по формуле:

(6.4.3)

где t - заданное время безотказной работы устройства в часах.

Полученные результаты сравниваются с заданными.

Таблица 6.4.1 - Справочные и расчетные данные об элементах конструкции.

Наименование, тип элемента

Kнi

Ni

1

2

3

4

5

6

7

Конденсаторы

К50_35

0,045

0,625

0,55

2,0

0,49

5

МO21

0,05

0,006

0,06

2,0

0,06

13

Микросхемы

ЭКР1830ВЕ31

D27C64

0,08

0,65

0,8

0,045

0,03

2

ЭКР1568РР1

ЭКР1554ИР22

К561ТЛ1

КР142ЕН5А

0,07

0,8

1,0

0,05

0,035

5

Резисторы С2_23

0,01

0,03

0,4

2,0

0,08

37

Предохранители ВП1

0,5

0,2

0,5

2,0

5,0

4

Трансфоматор

0,05

0,1

0,1

2,0

0,1

1

Реле РЭС-49

0,6

0,25

0,6

1,0

3,6

1

Транзисторы

КТ 3107

КТ 3102

0,12

0,04

0,2

2,0

0,48

8

КТ 973

0,015

0,04

0,2

2,0

0,06

3

Диоды КД243

0,015

0,512

1,0

2,0

0,3

9

Диоды КД522

0,013

0,5

1,0

2,0

0,26

14

Диоды КС147

0,09

0,5

1,0

2,0

1,8

1

Светодиоды АЛ307В

0,07

0,35

0,8

2,0

1,12

3

Аккумулятор

1,4

0,2

0,3

2,0

8,4

1

Головка динамическая

2

0,2

0,2

2,0

8

1

Провода соединительные

0,03

0,001

2

2,0

1,2

6

Плата печатная

0,02

0,2

3

Держатель предохранителя

0,02

0,001

0,2

8

Соединение пайкой

0,004

0,001

3,00

2,0

0,24

262

Примечания:

- априорная номинальная интенсивность отказов при температуре окружающей среды 200С и коэффициенте нагрузки KHi=1;

- коэффициент, зависящий от температуры и коэффициента нагрузки KHi;

- коэффициент, учитывающий климатические и механические нагрузки;

- расчетная величина интенсивности отказов по i_му радиоэлементу, элементу конструкции, час-1;

Ni - число элементов i_ой группы.

Расчетная величина интенсивности отказов I_го элемента, приведенная в таблице 6.4.1, определяется по формуле:

, час-1. (6.4.4)

Расчет выполняется для периода нормальной эксплуатации при следующих допущениях:

Отказ элементов случаен и независим;

Учитываются только внезапные отказы;

Имеет место экспоненциальный закон надежности устройства.

Расчет надежности проводим при помощи персонального компьютера.

Полученные значения приведены в приложении 4.

наработка на отказ Т=66881.6 час

вероятность безотказной работы P(t)= 0.998

Полученное значение времени наработки на отказ превышает заданное, равное 20000 часов более чем в 3 раза, что гарантирует надежную работу разрабатываемого прибора.

7. Обоснование выбора средств автоматизированного проектирования

7.1 Применение ЭВМ и САПР в дипломном проектировании.

САПР - наилучшая форма организации процесса проектирования‚ основными частями которой являются технические средства, общее и специальное программное и математическое обеспечения, информационное обеспечение - банк данных, справочные каталоги, значения параметров, сведения о типовых решениях. Проектирование РЭА и создание оптимального технического решения в сжатые сроки связано с большими трудностями. Один из путей преодоления этих трудностей без существенного увеличения численности работающих использование возможностей современных ЭВМ.

Под проектированием в широком смысле понимают использование имеющихся средств для достижения требуемой цели, координацию составных частей или отдельных действий для получения нужного результата. Процесс проектирования сложного РЭУ включает следующие основные этапы: эскизное проектирование, техническое проектирование, разработка КД на опытные образцы и их изготовление, испытания, освоение в производстве.

В связи с совершенствованием элементной базы РЭА, а также конструктивно-технологических характеристик проектируемых модулей всех типов, в несколько раз увеличивается трудоемкость составления технической документации. Все это приводит к необходимости совершенствования методов конструкторского проектирования РЭА, основой которых является автоматизация процесса конструирования.

Количественный и качественный выигрыш от применения ЭВМ состоит в следующем:

а) полностью или частично отпадает необходимость: в затратах на комплектующие изделия, материалы и конструктивные элементы, необходимые для изготовления макета; в измерительных приборах для определения характеристик конструкции; в оборудовании для испытаний конструкций.

б) значительно сокращается время определения характеристик, а следовательно, и доводки конструкции

в) появляется возможность: разрабатывать конструкции, содержащие элементы, характеристики которых известны, но самих элементов нет у разработчика; имитировать воздействия, воспроизведение которых при натурных испытаниях затруднено, требует сложного оборудования, сопряжено с опасностью для экспериментатора, а иногда и вообще невозможно; проводить анализ конструкции на разных частотах или в области высоких или низких температур, где применение измерительных приборов становится затруднительным.

7.2 Перечень и содержание конструкторских работ, выполненных с применением САПР

В данном дипломном проекте в прикладном пакете PCAD были выполнены чертежи схемы электрической принципиальной и печатной платы базового модуля. Чертежи схемы электрической принципиальной, структурной и сборочный чертеж базового модуля БУ были выполнены в прикладном пакете AutoCAD 2002 и частично в Компас-3D 5.11.

8. Анализ и учет требований эргономики и технической эстетики

Максимально допустимые размеры ЛП определяются исходя из горизонтального и вертикального угловых размеров зоны периферического зрения оператора и требуемого расстояния l до ЛП. Максимальная длина ЛП равна:

,(8.1)

где гор - горизонтальный угол обзора ЛП.

Максимальная высота

,(8.2)

где верт - вертикальный угол обзора ЛП.

Для зоны периферического зрения оператора принимают гор = 90, верт =75. Применительно к разрабатываемому устройству l = 0,8 м при общем числе элементов Nэл = 2. Тогда

м.

м.

Минимально допустимые размеры ЛП определяются из следующих соображений. В соответствии с эргономическими требованиями в поле зрения, ограниченном углом зрения 10, должно размещаться 4...8 элементов ЛП (для расчета принимаем 4 элемента). Тогда площадь зрения Sпз на ЛП, ограниченная указанным углом 10, может быть вычислена по формуле

. (8.3)

м2.

При числе элементов Nэл, размещаемых на ЛП, минимальная площадь ЛП, удовлетворяющая эргономическим требованиям, равна

. (8.4)

м2.

Фактическую площадь ЛП выбирают, как

9. Мероприятия по защите от коррозии, влаги, электрического удара, электромагнитных полей и механических нагрузок

Защита от коррозии

К мерам защиты от климатических воздействий относятся выбор соответствующих материалов и качество обработки поверхности изделия. 0сновного внимания при этом заслуживает опасность коррозии, под которой понимают распространяющееся от поверхности разрушение твердого тела под действием химических и электрохимических факторов. Защита от коррозии осуществляется путем образования естественных защитных слоев с помощью окраски, химической и электрохимической обработки поверхности и т.д. Защитный слой выбирается в соответствии с классом коррозионной нагрузки, запланированным сроком службы и положением детали в приборе или в пространстве.

Класс коррозионной нагрузки характеризует среднестатистическое состояние атмосферы в месте эксплуатации изделия, определяющее коррозионное воздействие атмосферы на него. Эти классы позволяют выбрать мероприятия, необходимые для защиты от коррозии.

Класс коррозионной нагрузки указывают комбинацией обозначений вида и степени нагрузки. Вид нагрузки определяет специфические загрязнения воздуха, вызывающие коррозию изделия, и обозначается буквой от А до D. Степень нагрузки зависит от климатической зоны, категории установки и содержания примесей и обозначается цифрой от 1 до 5

Выбор материала и защита поверхности
Выбор материала зависит от требований, связанных с выполнением функции прибора, и от коррозионных свойств. При этом необходимо принимать во внимание пару взаимодействующих материалов. Интенсивность коррозии зависит от разности потенциалов, возникающей в месте касания металлов.

При выборе материалов с учетом их электрохимических потенциалов необходимо руководствоваться следующим:

разность потенциалов двух металлов должна быть малой;

металлы следует покрывать защитными слоями, изолирующими их друг от друга;

площади касания различных металлов должны быть малыми, так как увеличение этих площадей приводит к удалению контактной коррозии.

Нанесение металлического покрытия.

Металл, имеющий более положительный потенциал по сравнению с контактирующим с ним металлом, необходимо покрыть защитным металлическим слоем в месте касания и вокруг него. Выбор металла для защитного слоя производится с учетом электрохимических потенциалов, технологии нанесения покрытия, условий коррозионного воздействия, а также класса коррозионной нагрузки; запланированного срока службы; материала и расположения детали; требуемого вида поверхности; способа получения защитного слоя.

Изоляция.

Электрический контакт между двумя касающимися металлами может быть предотвращен с помощью использования, например, металлических клеев вместо электрически проводящих соединений или - в случае механически малонагруженных соединений - с помощью окраски.

Защита от воздействия вспомогательных материалов

Вспомогательные материалы, используемые при изготовлении детали, могут оказывать агрессивное воздействие как на эту деталь, так и на другие детали. Особенно активны при этом формальдегид, кислоты, хлориды. Мерами защиты могут быть ограничение воздействия (например, многократная промывка печатных плат от травильного раствора или использование бескислотных флюсов), нанесение защитных покрытий (например, покрытие печатных плат лаком), выбор рациональной конструкции узла (например, отдельное расположение батарей).

Кадмирование и цинкование.

Из соображений экономичности для защитных покрытий наиболее часто используют цинк и кадмий. Коррозионная стойкость цинковых и кадмиевых покрытий может быть значительно повышена последующим пассивированием (хроматированием или фосфатированием). Контактным способом наносят серебро, никель, хром и олово, которые могут быть осаждены на основной металл из водных растворов. Вследствие ограничения запасов и постоянно повышающейся стоимости кадмия в электротехнике для покрытий наиболее часто используется цинк. Но полностью заменить кадмий цинком невозможно, так как последний очень чувствителен к коррозионным воздействиям, появляющимся внутри прибора при относительной влажности выше 75-80%. При использовании оцинкованных деталей необходимо, кроме того, предотвращать их длительный контакт с конденсатом при эксплуатации, транспортировке и хранении. В общем случае при выборе защитного покрытия следует учитывать коррозионные свойства отдельных слоев и агрессивных сред, которые могут появиться внутри прибора.

Окраска.

Обычно окраску осуществляют в два приема: вначале наносят грунтовый, а затем покровный слой. Грунт предназначен для пассивации защищаемой поверхности, а также для обеспечения надежной связи покровного слоя с основным материалом. Покровный слой состоит из слоев грунтовой краски и лака, причем грунтовая краска предназначена для надежного соединения грунта с покровным слоем, служащим для непосредственной защиты от воздействий окружающей среды, а также для подготовки к нанесению лакового слоя.

Как показывает практика, коррозия деталей из черных металлов, особенно мелких, начинается на кромках, так как слой краски на них недостаточен. Здесь появляется подоплечная коррозия, которая постепенно приводит к отслоению защитного покрытия. Подобный процесс развивается в заклепках, резьбовых и сварных швах. Для предотвращения таких явлений необходима дополнительная защита кромок.

Преждевременное старение и разрушение пластмассовых деталей может наблюдаться при поглощении ими влаги, под действием агрессивных сред и тепловых нагрузок (сопровождающихся размягчением и охрупчиванием материалов), бактерий, термитов, плесени и т.д. Поэтому необходимо изучение свойств этих деталей в экстремальных внешних условиях.

3ащита от воздействия влаги.

Приборы требуют защиты от влаги для предотвращения от корродирования, которое влечет за собой сокращение срока службы, уменьшение надежности, изменение электрических, и механических параметров, вплоть до отказа. Одним из средств защиты приборов и конструктивных элементов от влаги является герметизация, которая может быть осуществлена только при использовании металлов для герметичных корпусов и неорганических материалов в качестве герметиков. В последнее время по экономическим причинам все более широкое применение находят пластмассы. Однако пластмассы в большей или меньшей степени влагонепроницаемы, что требует их очень тщательного отбора в каждом конкретном случае использования.


Подобные документы

  • Технические параметры, характеристики, описание конструкции и состав нашлемной системы. Разработка конструкции бинокулярного нашлемного блока индикации. Принцип действия оптико-электронных нашлемных систем целеуказания. Юстировка оптической системы.

    дипломная работа [4,0 M], добавлен 24.11.2010

  • Электронный замок: общая характеристика и принцип действия. Анализ вариантов реализации устройства. Разработка алгоритма функционирования, структурной и электрической принципиальной схемы электронного замка. Блок-схема алгоритма работы программы.

    курсовая работа [363,3 K], добавлен 10.05.2015

  • Проектирование устройства индикации на микроконтроллере KP1816BE51. Выбор и обоснование аппаратной части устройства. Разработка обслуживающей программы на ассемблере. Время выполнения программы индикации. Максимальная оптимизация выполняемого кода.

    курсовая работа [21,6 K], добавлен 22.03.2011

  • Структура электропривода постоянного тока с микропроцессорным управлением. Процессорный и интерфейсный модули в составе микропроцессора. Отработка управляющих программ для реализации алгоритма управления. Особенности проектирования интерфейсного модуля.

    курсовая работа [446,8 K], добавлен 08.07.2014

  • GSM блок управления автоматикой ворот. Передатчик сигнала с пульта. Описание электрической принципиальной схемы блока управления шлагбаумом (БУШ). Работа БУШ в режиме редактирования массива телефонных номеров в памяти, при приеме входящего звонка.

    дипломная работа [3,0 M], добавлен 04.02.2016

  • Разработка блока управления, позволяющего включить блок питания Bertan 210-30 в систему управления установкой. Выбор микроконвертера AduC, интерфейса RS-232 и протокола Modbus. Программное обеспечение. Функции программы. Создание библиотеки Modbus slave.

    контрольная работа [443,3 K], добавлен 25.01.2013

  • Ориентировочный и уточненный расчеты надежности эксплуатации электрооборудования. Коэффициенты нагрузки электротехнических устройств. Расчет результирующей вероятности безотказной работы. Многоканальный блок управления и защиты электродвигателей.

    курсовая работа [1,8 M], добавлен 31.03.2009

  • Разработка функциональной схемы и основных функциональных узлов. Назначение входных сигналов. Устройство ввода значений и блока деления. Сигнал запрещенного деления. Блок интервалов времени. Антидребезговый модуль. Блок индикации. Преобразование кода.

    контрольная работа [404,0 K], добавлен 02.02.2016

  • Принцип работы кодового замка. Проектирование кодового замка с возможностью звуковой сигнализации при попытке подбора кода, на базе микроконтроллера с архитектурой MCS-51. Функциональная схема устройства, составление программы для микроконтроллера.

    курсовая работа [3,2 M], добавлен 14.11.2010

  • Разработка принципиальной электрической и структурной схемы, техпроцесса, технологической оснастки платы управления, использующейся в стойке блока контроля КБ-63. Назначение и принцип функционирования. Аттестация разработанного технологического процесса.

    курсовая работа [203,8 K], добавлен 08.04.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.