Передача информации по волоконно-оптической линии связи

Основные сведения о волоконно-оптической линии связи; типовая схема системы; основные компоненты; преимущества и недостатки ВОЛС. Оптическое волокно (диэлектрические волноводы): типы, стандарты и области их применения. Распространение света по волокну.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 09.06.2012
Размер файла 8,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В одномодовом волокне в действительности может распространяться не одна мода, а две фундаментальные моды -- две перпендикулярные поляризации исходного сигнала. В идеальном волокне, в котором отсутствуют неоднородности по геометрии, две моды распространялись бы с одной и той же скоростью, рис. 2.11 а.

Избыточный уровень Т, проявляясь вместе с чирпированным модулированным сигналом от лазера, а также поляризационной зависимостью потерь, может приводить к временным колебаниям амплитуды аналогового видеосигнала. В результате ухудшается качество изображения, или появляются диагональные полосы на телевизионном экране. При передаче цифрового сигнала высокой полосы (>2,4 Гбит/с) из-за наличия т может возрастать битовая скорость появления ошибок.

Главной причиной возникновения поляризационной модовой дисперсии является нециркулярность (овальность) профиля сердцевины одномодового волокна, возникающая в процессе изготовления или эксплуатации волокна. При изготовлении волокна только строгий контроль позволяет достичь низких значений этого параметра.

Пример 2.6

Оценить расстояние Lp при котором хроматическая т, и поляризационная медовая дисперсии т, сравниваются по величине, если коэффициент хроматической дисперсии D = 2 пс/(нм км), коэффициент поляризационной модовой дисперсии Т = 0,5 пс/v/Kм, а ширина спектрального излучения ЛХ =0,05 нм. Приравнивая выражения т Ес-12 ли при Ь > Lp поляризационной модовой дисперсией можно пренебречь, то при Ь < Lp, наоборот, ее следует строго учитывать. Проблема поляризационной модовой дисперсии возникает при обсуждении проектов построения супермагистралей (>100 Гбит/с) городского масштаба.

Пример 2.7

Оценить максимальное допустимое расстояние оптического сегмента Lm~ на которое можно передать одноканальный сигнал с частотой W = 100 ГГц без ретрансляции, исходя из ограничений, вносимых поляризационной модовой дисперсией, если коэффициент поляризационной модовой дисперсии Т = 1,0 пс/,/км.

На основании соотношения (2-16) получаем:

Тр ~ = T~L L< 0,44/W. Отсюда

=10441WТ) = (0,44/(100.10.1.10-.~)) =19 км.

При Т=О, по 1км расстояние возрастает до 77 км.

Ведущие фирмы-производители волокна обеспечивают выходной параметр поляризационной модовой дисперсии не выше 0,5. Однако, следует учитывать, что после инсталляции кабельной системы значение этого параметра возрастает.

2.3 Характеристики поставляемых волокон

Среди множества мировых производителей оптического волокна выделяются три крупнейших: Corning Optical Fiber, Lucent Technologies и Alcoa Fujikura. Кроме того, существуют сотни менее крупных производителей волокна. Волокна проходят тестирование как на этапе производства, так и после изготовления. Основные индустриально принятые методы тестирования, использующиеся для определения характеристик производимых волокон, приведены в табл. 2.5.

Градиентное многомодовое волокно

Широко используются два стандарта многомодового градиентного волокна -- 62,5/125 и 50/125, отличающиеся профилем сердцевины, рис. 2.12 а. Соответствующие спектральные потери для типичных волокон показаны на рис. 2.12 б.

В табл. 2.6 приведены основные характеристики многомодовых градиентных волокон двух основных стандартов 50/125 и 62,51125.

Отметим, что полоса пропускания на длине волны 1300 нм превосходит соответствующее значение на длине волны 850 нм. Это объясняется следующим образом. Дисперсия, которая определяет полосу пропускания, состоит из межмодовой и хроматической составляющих.

Если межмодовая дисперсия слабо зависит от длины волны -- в соотношениях (2-14), (2-15) зависимостью показателя преломления от длины волны можно пренебречь, то хроматическая дисперсия пропорциональна ширине спектра излучения. Коэффициент пропорциональности Р(Х) при длинах волн в окрестности 1300 нм (Xp) близок к нулю, в то время как на длине волны 850 нм примерно равен 100 пс/(нм~ км). Специфика использования многомодового волокна такова, что обычно в качестве передатчиков используются светоизлучающие диоды, имеющие уширении спектральной линии излучения благодаря не когерентности источника примерно bХ -- 50 нм, в отличии от лазерных диодов с уширением ЛХ -- 2 нм и меньше. Это приводит к тому, что хроматическая дисперсия на длине волны 850 нм начинает играть существенную роль наряду с межмодовой дисперсией. Значительно уменьшить хроматическую дисперсию можно при использовании лазерных передатчиков, имеющих значительно меньшее спектральное уширении. Воспользоваться этим преимуществом лазерных передатчиков можно только при использовании одномодового волокна в окнах прозрачности 1310 нм и 1550 нм, когда полностью отсутствует межмодовая дисперсия и остается только хроматическая дисперсия.

Функциональные свойства одномодовых волокон

С точки зрения дисперсии, существующие одноподовые волокна, которые широко используются в сетях сегодня, разбиваются на три основных типа: волокна с несмещенной дисперсией SF (стандартные волокна со ступенчатым профилем, рис. 2.13 а), волокна со смещенной дисперсией DSF (рис. 2.13 б) и волокна с ненулевой смещенной дисперсией NZDSF.

Все три типа волокон очень близки по затуханию в окнах одномодовой передачи 1310 и 1550 нм, но отличаются характеристиками хроматической дисперсии. Поскольку дисперсия влияет на максимальную допустимую длину без ретрансляционных участков, то на первый взгляд, естественно, возникает желание выбрать волокно с наименьшим возможным значением дисперсии применительно к конкретной задаче, к конкретной длине волны. Это справедливо для случая передачи одной длины волны -- одноканальной передачи. Многоканальное волновое мультиплексирование (WDM) в окне 1550 нм диктует иной рационализм. Исследования показывают, что, когда длина волны нулевой дисперсии попадает в зону мультиплексного сигнала, начинают проявляться нежелательные интерференционные эффекты, приводящие к более быстрой деградации сигнала. Поэтому поставщики средств связи должны отчетливо представлять себе преимущества и недостатки каждого волокна в аспекте эволюции традиционных сетей к полностью оптическим сетям [13].

Рис. 2.13 Профили показателей преломления наиболее распространенных одномодовых волокон: а) ступенчатое одномодовое волокно (стандартное волокно); б) одномодовое волокно со смещенной дисперсией (волокно со специальным профилем)

Волокно SF. В начале 80-х годов передатчики на длину волны 1550 нм имели очень высокую цену и низкую надежность и не могли конкурировать на рынке с передатчиками на длину волны 1300 нм. Поэтому стандартное ступенчатое волокно SF (рис. 2.13 а) стало первым коммерческим волокном и сейчас наиболее широко распространено в телекоммуникационных сетях. Оно оптимизировано по дисперсии для работы в окне 1310 нм, хотя и дает меньшее затухание в окне 1550 нм.

Волокно DSF. По мере совершенствования систем передачи на длине волны 1550 нм встает задача разработки волокна с длиной волны нулевой дисперсии, попадающей внутрь этого окна. В итоге в середине 80-х годов создается волокно со смещенной дисперсией DSF, полностью оптимизированное для работы в окне 1550 нм как по затуханию, так и по дисперсии. На протяжении многих лет волокно DSF считается самым перспективным волокном. С приходом более новых технологий передачи мультиплексного оптического сигнала большую роль начинают играть эрбиевые оптические усилители типа EFDA, способные усиливать многоканальный сигнал. К сожалению, более поздние исследования (в начале 90-х годов) показывают, что именно длина волны нулевой дисперсии (1550 нм), попадающая внутрь рабочего диапазона эрбиевого усилителя, является главным потенциальным источником нелинейных эффектов (прежде всего, четырех волнового смешивания), которые проявляются в резком возрастании шума при распространении многоканального сигнала.

Дальнейшие исследования подтверждают ограниченные возможности DSF при использовании в системах WDM. Чтобы избежать нелинейных эффектов при использовании DSF в WDM системах, следует вводить сигнал меньшей мощности в волокно, увеличивать расстояние между каналами и избегать передачи парных каналов (симметричных относительно Xp).

Четырех волновое смешивание -- это эффект, приводящий к рассеянию двух волн с образованием новых нежелательных длин волн. Новые волны могут приводить к деградации распространяемого оптического сигнала, интерферируя с ним, или перекачивать мощность из полезного волнового канала. Именно из-за эффекта четырех волнового смешивания стало ясно, что необходимо разработать новый тип волокна, в котором Х, располагалось бы вдали, то есть, по одну сторону (левее или правее) от всех возможных каналов.

Волокно NZDSF создается в начале 90-х годов с целью преодолеть недостатки волокна 0SF, проявляющиеся при работе с мультиплексным оптическим сигналом. Известное также как Х-смещенное волокно, оно имеет особенность в том, что длина волны нулевой дисперсии вынесена за пределы полосы пропускания эрбия. Это уменьшает нелинейные эффекты и увеличивает характеристики волокна при передаче DWDM сигнала.

Две марки Х-смещенного волокна, появившиеся несколько лет назад, широко используются сегодня: волокно TrueWave фирмы Lucent Technologies [14] и волокно SMF-LS фирмы Corning [15, 16]. Оба имеют ненулевую дисперсию во всем диапазоне полосы пропускания эрбия. Волокно TrueWave обеспечивает положительную дисперсию при точке нулевой дисперсии в районе 1523 нм, в то время как SMF-LS обеспечивает отрицательную дисперсию с точкой нулевой дисперсией чуть выше 1560 нм, рис. 2.14. В начале 1998 года фирма Corning выпустила еще одну марку Х-смещенного волокна -- LEAF™ [15]. Сравнительный анализ основных характеристик волокон TrueWave, SMF-LS и LEAF приведен в таблице 2.7.

По дисперсионным характеристикам волокно LEAF близко к волокну TrueWave. Главной отличительной чертой этого волокна по сравнению с двумя предыдущими является большая эффективная площадь для светового потока -- диаметр модового пятна возрос на 1 мкм.

Величина этого параметра становится весьма важной для оптимизации систем диапазона 1550 нм. Больший диаметр модового пятна позволяет увеличить уровень мощности излучения вводимого волокна на 2 дБ, сохраняя при этом влияние ряда нелинейных эффектов, в особенности четырех волнового смешивания, на прежнем уровне.

Современные тенденции развития средств телекоммуникационной связи свидетельствуют о перспективности ости систем передачи по волокну, в которых совмещаются временное

2,4 Гбит с и STM-64 на 10 мультиплексирование -- TDM мультиплексирование (STM-16 на 2,4 Гбит/с и - на Гбит/с) в пределах одной длины волны и волновое мультиплексирование WDM.

Хотя и последователи технологии волнового мультиплексирования (Lucent, MIT, Fujitsu и др.) уже широко тестируют в рамках испытательных сетей мультиплексирование 32 и более каналов в расчете на одно волокно, добившись уже скорости передачи 40 Гбит/с на расстояния в несколько сотен км, в ближайшей перспективе видится меньшее количество мультиплексных каналов (до 16 при скорости передачи до 2,4 и 10 Гбит/с) в крупномасштабном индустриальном применении в телекоммуникационных сетях.

Инсталляция новых кабельных сегментов, или наращивание существующих с учетом перехода на скорости передачи 2,4 и 10 Гбит/с может осуществляться с использованием трех перечисленных видов волокон. При выборе волокна следует учитывать такие факторы, как общая стоимость проекта, требуемые емкости каналов, надежность, сложность системы и др.

В контексте эволюции ВОЛС ключевыми параметрами становятся методики, используемые для коррекции дисперсии в волоконно-оптических системах. Коррекция дисперсии позволяет увеличивать длину волоконно-оптических TDM систем, ранее ограниченных из-за большой дисперсии, и одновременно избежать влияния такого эффекта, как четырех волновое смешивание. Три методики коррекции дисперсии следующие [17]:

* Использование волокон с компенсирующей дисперсией DCF (dispersion-compensating fi- bers). Положительная дисперсия, накопленная на одном участке с использованием стандартного волокна SF, может компенсироваться последующим примыкающим сегментом на основе волокна DCF с заранее подобранным значением отрицательной дисперсии, в результате чего итоговая хроматическая дисперсия может быть приближена к нулю. Компенсация хроматической дисперсии допустима в силу систематического характера накопления дисперсии с ростом длины;

* Использование оптических лазерных передатчиков с очень узкой спектральной шириной (0,1 нм и менее), способных модулировать излучение на частотах в несколько ГГц;

* Использование волокон типа NZDSF, в которых "сдвигается" длина волны нулевой дисперсии за пределы окна 1550 нм, в результате чего дисперсия становится достаточно большой, чтобы подавить эффект четырех волнового смешивания, в то же время достаточно малой, чтобы поддерживать распространение сигнала высокой емкости (высокой частоты модуляции) на большие расстояния.

Сегменты на основе волокна SF без использования коррекции дисперсии допускают протяженность до 90 км (при скорости передачи 2,4 Гбит/с). Первые две методики коррекции дисперсии, применяясь отдельно друг от друга или в комбинации, позволяют увеличить протяженность сегментов до 140 км при сохранении прежней скорости передачи, табл. 2.8 а.

Чтобы удовлетворить рабочим требованиям при планировании сети, следует тщательно вырабатывать стратегию наращивания сети. Нужно оценивать соответствующие топологии сетей с учетом возможности их работы на скоростях 2,4 и 10 Гбит/с. Ближайшая цель -- построить протяженные участки (до 120-140 км) при передаче на скорости 2,4 Гбит/с с использованием любых из трех главных типов волокон -- должна рассматриваться совместно с планами более далекой перспективы -- инсталляция линий на скорость передачи 10 Гбит/с с использованием последовательно установленных линейных усилителей. Высокая скорость передачи в последнем случае может быть достигнута путем оптимизации длины сегментов между линейными усилителями (приблизительно 70 км).

Хотя волокна SF и DSF вполне приемлемы для осуществления наращивания сегментов сетей, волокно NZDSF более перспективно при использовании в новых инсталляциях. При сравнении волокон SF и DSF отметим, что SF лучше подходят для сетей, использующих волновое мультиплексирование. Недостаток SF -- большое значение дисперсии в окне 1550 нм - может компенсироваться либо дополнительным участком на основе волокна с компенсирующей дисперсией, либо путем уменьшения спектральной ширины излучаемого сигнала (например, используя передатчики на основе DFB лазеров).

Общие возможности по развертыванию кабельных систем на основе SF, DSF и NZDSF приведены в табл. 2.8 а, б.

Размещено на Allbest.ru


Подобные документы

  • Волоконно-оптические линии связи как понятие, их физические и технические особенности и недостатки. Оптическое волокно и его виды. Волоконно-оптический кабель. Электронные компоненты систем оптической связи. Лазерные и фотоприемные модули для ВОЛС.

    реферат [1,1 M], добавлен 19.03.2009

  • Схема строительства волоконно-оптической линии связи (ВОЛС) с использованием подвески оптического кабеля на осветительных опорах. Особенности организации по ВОЛС каналов коммерческой связи. Расчет длины регенерационных участков по трассе линии связи.

    курсовая работа [778,1 K], добавлен 29.12.2014

  • Структура оптического волокна. Виды оптоволоконных кабелей. Преимущества и недостатки волоконно-оптической линии связи. Области ее применения. Компоненты тракта передачи видеонаблюдения. Мультиплексирование видеосигналов. Инфраструктура кабельной сети.

    курсовая работа [1,2 M], добавлен 01.06.2014

  • Общая характеристика волоконно-оптической связи, ее свойства и области применения. Проектирование кабельной волоконно-оптической линии передач (ВОЛП) способом подвески на опорах высоковольтной линии передачи. Организация управления данной сетью связи.

    курсовая работа [3,8 M], добавлен 23.01.2011

  • Характеристика действующей волоконно-оптической линии связи в Павлодарской области, распложенной вдоль реки Иртыш. Анализ отрасли телекоммуникации в Республике Казахстан. Организация защищенного транспортного кольца волоконно-оптической линии связи.

    отчет по практике [25,7 K], добавлен 15.04.2015

  • Расчет параметров волоконно-оптической линии связи (ВОЛС). Основные дисперсные параметры. Эффективная апертура излучателя и приемника, их параметры. Полный коэффициент поглощения. Энергетический потенциал ВОЛС. Длина участков регенерации и их количество.

    контрольная работа [90,8 K], добавлен 20.09.2011

  • Обоснование необходимости строительства волоконно-оптической линии связи (ВОЛС). Расчет и распределение нагрузки между пунктами сети. Синхронизация цифровых систем связи. Система мониторинга целостности ВОЛС. Порядок строительства и эксплуатации ВОЛС.

    дипломная работа [4,2 M], добавлен 23.09.2011

  • Исследование бюджета мощности волоконно-оптической линии передачи, работающей по одномодовому ступенчатому оптическому волокну на одной оптической несущей, без чирпа, на регенерационном участке без линейных оптических усилителей и компенсаторов дисперсии.

    курсовая работа [654,7 K], добавлен 24.10.2012

  • Общая характеристика оптоволоконных систем связи. Измерение уровней оптической мощности и затухания. Системы автоматического мониторинга. Оборудование кабельного линейного тракта. Модернизация волоконно-оптической сети. Схема оборудования электросвязи.

    дипломная работа [3,8 M], добавлен 23.12.2011

  • Проектирование волоконно-оптической линии связи (ВОЛС) с обозначением оконечного и промежуточного оборудования ввода/вывода цифровых потоков между г. Елец и г. Липецк. Оценка пропускной способности ВОЛС, оценка ее надежности. Разработка структурной схемы.

    курсовая работа [3,5 M], добавлен 10.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.