Устройства функциональной электроники

Анализ гомогенного и гетерогенного зарождения новой фазы. Химический рост эпитаксиальных пленок. Термодинамика и адсорбционные процессы на поверхности твердых тел. Процессы очистки, промывки и пропитки поверхности. Факторы, влияющие на адгезию.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид курсовая работа
Язык русский
Дата добавления 25.02.2012
Размер файла 7,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, основными параметрами, определяющими качественное протекание процессов пропитки и заливки, являются:

-- температура и давление процесса, степень чистоты и структура поверхности, обеспечивающие наилучшее взаимодействие поверхности с пропитывающим (заливочным) материалом;

-- температура, состав, вязкость, электрофизические и механические свойства пропитывающего (заливочного) материала;

-- скорость пропитки (заливки), т. е. скорость затвердевания (отверждения) пропитывающих составов и особенно деградация эксплуатационных характеристик этих материалов по границам раздела (взаимодействующим поверхностям) во времени.

Определение областей оптимальных значений этих параметров и эксплуатационных характеристик качества изделия является основной проблемой при физико-химических исследованиях и анализе ТП пропитки и заливки в производстве РЭА

5. Электрофизические характеристики соприкасающихся поверхностей и границ раздела слоев

Многолетний опыт производства РЭА на базе кремниевых ИМС показал, что для решения проблем стабильности качества изделий требуется изучение свойств поверхности используемых материалов, а также методов ее подготовки и защиты. Задача становится особенно актуальной в связи с тем, что наиболее перспективными типами РЭА признаны те, которые базируются на полевых приборах (МДП БИС и приборы с барьером Шоттки). Создание же качественных и стабильных приборов этого типа невозможно без знания, свойств поверхностей раздела слоев, образующих их структуры, и умения контролировать эти свойства.

За счет усовершенствования классических методов исследования поверхности (эллипсометрии, электронной микроскопии, оптоэлектронной микроскопии и др.) и использования их для контроля поверхностных свойств рабочих структур приборов и границ разделов слоев в последнее десятилетие получены новые данные о свойствах поверхностей и границ раздела. При этом влияние поверхностных свойств на параметры приборов для различных материалов различно.

По мере совершенствования конструкций ИМС создаются все более тонкие слои полупроводников, диэлектриков и металлов, что увеличивает влияние характеристик поверхности па свойства прибора; при субмикронных толщинах слоев это влияние становится доминирующим. Целью всякого ТП обработки поверхностей в таких важных элементах РЭА, как ИМС, является получение определенных (заданных) электрофизических свойств этих поверхностей с наименьшими затратами. К сожалению, взаимосвязь между электрофизическими параметрами состояния поверхности и технологическими факторами ее обработки ещё мало изучена. Рассмотрим те электрофизические характеристики поверхности и физико-химические факторы, которые влияют на параметры качества микроэлектронных устройств. Большинство рабочих характеристик таких устройств основано на свойствах соприкасающихся поверхностей и границ раздела слоев в системах металл -- полупроводник, полупроводник -- диэлектрик, металл -- диэлектрик -- полупроводник и т. п.

Для изучения влияния свойств поверхностей на электрические характеристики указанных систем исследовались различные сочетания материалов слоев и способов обработки поверхностей. Было показано, что характер обработки поверхностей влияет на процессы генерации и рекомбинации носителей заряда, что выражается в изменении вида вольт-амперных, вольт-фарадных и других характеристик структур ИМС.

Характер взаимосвязи физико-технологических факторов обработки поверхности, электрических свойств границ между слоями является сложным. В последние годы методы исследования поверхности были усовершенствованы, с их помощью можно обнаружить моноатомные пленки и отдельные атомы примесных элементов, т. е. идентифицировать как структуру, так и состав поверхности с очень большой точностью. Тем не менее проблема установления количественных связей между электрофизическими свойствами поверхности (границ раздела) и технологическими факторами ее обработки остается нерешенной. Во время обработки поверхности происходят сложные взаимодействия физического и химического характера на атомном уровне газообразных, жидких и твердых частиц, что изменяет концентрацию поверхностных состояний, определяющих электрические свойства поверхностей раздела между слоями в структурах твердотельных радиоэлектронных устройств (ИМС, ПАВ, ПЗС и др.).

Поэтому вопросы получения в ТП заданного состояния поверхности чрезвычайно важны для всей технологии РЭА. В большинстве случаев в реальном производстве, основанном на использовании многократной обработки поверхности, непрерывно оценивают характер изменения поверхностных свойств изделий или полуфабрикатов в зависимости от изменений методов или режимов обработки. По электрофизическим критериям качества поверхности осуществляют поиск оптимальных способов и режимов обработки, оптимальных конструкций технологических установок. Особенно тщательно обрабатывают поверхности тех деталей, на которых будут формироваться рабочие структуры электронных устройств. Важное значение качество поверхности (ее электрофизические свойства) имеет в таких физико-химических технологических процессах как: осаждение диэлектрических и металлических слоев из паровой, газовой и жидких фаз, процессов окисления, эпитаксии, диффузии и др.

Размещено на Allbest.ru


Подобные документы

  • Физико-химические основы гомогенного и гетерогенного зарождения и роста новой фазы, химический рост эпитаксиальных пленок. Термодинамика поверхностных процессов. Электрофизические характеристики соприкасающихся поверхностей и границ раздела слоев.

    курсовая работа [13,0 M], добавлен 30.01.2011

  • Разработка и изготовление устройства магнетронного получения тонких пленок. Пробное нанесение металлических пленок на стеклянные подложки. Методы, применяемые при распылении и осаждении тонких пленок, а также эпитаксиальные методы получения пленок.

    курсовая работа [403,6 K], добавлен 18.07.2014

  • Сущность и классификация методов обработки поверхности. Методы сухой очистки. Процесс плазмохимического травления. Схема вакуумной камеры диодного типа для плазмохимического травления непосредственно в плазме. Очистка поверхности газовым травлением.

    реферат [536,7 K], добавлен 15.01.2009

  • Внешняя и внутренняя форма деталей радиоаппаратов и автоматических устройств. Общие сведения о поверхностях и их развертки. Сочетание гранных и кривых поверхностей. Линейчатые и нелинейчатые поверхности вращения. Поверхности с плоскостью параллелизма.

    реферат [299,4 K], добавлен 24.12.2010

  • Каталитические и некаталитические реакции, метод анодирования, метод электрохимического осаждения пленок для интегральной электроники. Сущность метода газофазного осаждения для получения покрытия из AlN. Физикохимия получения пленочных покрытий.

    курсовая работа [362,8 K], добавлен 29.04.2011

  • Стадии производства микросхем. Электрический ток в полупроводнике. Структура элемента микросхемы ЭВМ. Изготовление кремниевых пластин. Контроль загрязнений и дефектности подложек. Контроль поверхности и слоев. Процессы травления в газовой среде.

    презентация [1,2 M], добавлен 24.05.2014

  • Феноменологическая модель рассеяния электромагнитных волн протяженной поверхностью. Дискретное представление и динамическая импульсная характеристика отражения поверхности. Анализ простого импульсного и оптимально согласованного с поверхностью сигналов.

    курсовая работа [5,1 M], добавлен 16.08.2015

  • Строение твердых тел, их энергетические уровни. Оптические и электрические свойства полупроводников. Физические эффекты в твердых и газообразных диэлектриках, проводниках, магнитных и полупроводниковых материалах. Токи в электронно-дырочном переходе.

    курс лекций [1,7 M], добавлен 11.01.2013

  • Исследование зарождения и этапов развития твердотельной электроники. Научные открытия Майкла Фарадея, Фердинанда Брауна (создание беспроволочной телеграфии). Кристаллический детектор Пикарда - "кошачий ус". Разработка детектора-генератора О.В. Лосевым.

    реферат [177,5 K], добавлен 09.12.2010

  • Взаимодействие зондирующего излучения радиолокационных станций с морской поверхностью. Характеристики радиолокационных помех от взволнованной морской поверхности: состояние морской поверхности, скорость ветра, угол между главным лепестком диаграммы.

    реферат [391,5 K], добавлен 17.06.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.