Запись голоса через микрофон на компьютер
Основные параметры микрофонов, рекомендации для их применения. Особенности цифровой записи голоса посредством микрофона. Технология записи электрогитары, микширования и шумоподавления, специфика использования программных эффектов для обработки звука.
Рубрика | Коммуникации, связь, цифровые приборы и радиоэлектроника |
Вид | статья |
Язык | русский |
Дата добавления | 03.09.2010 |
Размер файла | 3,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Для разгрузки процессора работа АЦП/ЦАП звуковых карт организуется в режиме прямого доступа к памяти [Direct Memory Access -- DMA). Полный дуплекс [Full-Duplex) означает способность звуковой карты одновременно воспроизводить и записывать звук. Для этого требуется поддержка звуковой картой одновременно двух каналов DMA. Для звуковых карт семейства AWE возможна организация одного 16-разрядного и одного 8-разрядного каналов. По одному из них возможна запись, а по другому воспроизведение. Это ограничение затрудняет работу с программами многоканального монтажа и сведения, а также подготовку материала для записи CD на том же компьютере, на котором установлена звуковая карта.
1.2.2 Подключение микрофона к звуковой карте
Начнем с критики микрофона, который прилагается к современным моделям Sound Blaster. Микрофон так и называется: Creative Microphone. И хотя он имеет неплохие частотные характеристики -- диапазон частот от 100 до 16 000 Гц, при неравномерности частотной характеристики ±4дБ -- использовать его для записи музыки не следует. Он может служить средством общения при голосовой модемной связи или источником сигналов для подачи команд компьютеру, но для звукозаписи он имеет слишком много недостатков: легкая подставка без амортизаторов, жесткое крепление к ней микрофона, отсутствие на микрофоне ветрозащиты, короткий кабель. Поэтому приобретите микрофон посолиднее. Но при этом учтите ряд обстоятельств.
Имейте в виду, что микрофонный вход большинства звуковых карт (в частности, семейства Sound Blaster AWE) рассчитан на подключение конденсаторного электретного микрофона. Это означает, что, во-первых, входное сопротивление звуковой карты соответствует выходному сопротивлению электретного микрофона, во-вторых, чувствительность входного усилителя соответствует уровню напряжения на выходе электретного микрофона. Кроме того, в целях создания удобства пользования электретным микрофоном, требующим для своей работы внешнего питания, для подключения единственного монофонического микрофона используется трехконтактный разъем, который в стандартном варианте применения служит для подключения источника стереосигналов. В данном случае его контакты выполняют следующие функции: через концевой контакт к звуковой карте подключается сигнальный провод микрофонного кабеля, на средний контакт подается питающее микрофон напряжение +5 В, оставшийся третий контакт соединяет экран кабеля с общим проводом звуковой карты. Из сказанного следует, что при подключении «неродного» микрофона необходимо разобраться в схеме распайки проводников микрофонного кабеля на контактах его разъема.
Если вы имеете дело с электретным микрофоном, который не содержит внутреннего источника питания и требует подачи внешнего напряжения, то распайка разъема должно быть такой, как и для Creative Microphone.
Если электретный микрофон имеет внутренний источник питания (например, при эксплуатации МКЭ-2 необходимо поместить внутрь развинчивающегося корпуса элемент питания, заключенный в специальный футляр), то следует задействовать только земляной и сигнальный контакты разъема. По возможности избегайте замыкания концевого и среднего контактов. Вряд ли что-нибудь перегорит, но при этом микрофонный вход звуковой карты оказывается соединенным с источником питания + 5 В компьютера. А это может привести, во-первых, к проникновению в тракт усиления/преобразования лишних помех (не полностью отфильтрованных пульсации с частотой 50 Гц и с частотой преобразователя импульсного блока питания) и, во-вторых, к снижению чувствительности и изменению частотной характеристики микрофонного входа из-за его шунтирования внутренним сопротивлением источника питания. Итак, лучше всего разобраться с фактической распайкой разъема микрофона. В крайнем случае, сгодится рекомендация, высказанная по этому поводу на конференции FIDO: избежать замыкания можно, обернув средний контакт штекера микрофона узкой полоской тонкой липкой ленты.
Использовать микрофоны других типов со звуковыми картами, рассчитанными на электретные микрофоны, не рекомендуется, т. к. из-за несоответствия входного и выходного сопротивлений, чувствительности микрофонного входа карты и уровня выходного сигнала микрофона могут возникнуть значительные частотные и нелинейные искажения.
Некоторые звуковые карты имеют переключатели Dynamic/Condenser для выбора типа микрофона.
Перейдем к вопросу о количестве микрофонов, которые можно подключить к звуковой карте.
После внимательного изучения технической документации на звуковую карту вы можете разочароваться: на карте удалось найти только один разъем для подключения микрофона, да и тот, как только что мы выяснили, имеет лишь один сигнальный контакт. Значит, к звуковой карте можно подключить только один микрофон. Самое интересное, что подавляющее большинство звуковых карт других типов (за исключением нескольких самых дорогих, специально предназначенных для многоканальной записи) имеют по одному микрофонному входу. Выходит, что с мечтой о сте-реозаписи голоса певца или акустических музыкальных инструментов нужно расстаться? И да,и нет.
Да, действительно, если бы вы поставили перед собой цель, используя микрофонный вход звуковой карты, сохранить в стереофонической записи реальную акустическую обстановку концертного зала, то этого сделать бы не удалось. Для такой записи обязательно нужна стерео пара микрофонов. А еще, как сказано в работе [38], нужен ненаправленный микрофон для передачи общего акустического фона и микрофоны для индивидуальной записи отдельных инструментов или нескольких групп инструментов. Но многомикрофон-
Компьютерному музыканту о звуке__41
ная технология в наши дни применяется не так часто, как раньше: пожалуй, лишь при записи оркестров, театральных постановок, т. е. в тех случаях, когда необходимо обеспечить высокую верность воспроизведения имеющегося звукового материала с сохранением естественной акустики помещения.
Основу современной технологии записи голосов певцов и акустических музыкальных инструментов составляет монофоническая запись с последующим расщеплением моносигнала на два канала и применением различных эффектов: задержки сигнала, реверберации и т. д. -- в целях получения эффекта распределения источников звука по стереопанораме. Эти и им подобные операции выполняются с помощью специального дорогостоящего студийного оборудования, но их может проделать и компьютер, оснащенный звуковой картой и звуковым редактором. Если вы сомневаетесь в реальности получения стереозаписей такого рода с помощью единственного микрофона, обратите внимание на многочисленные музыкальные видеоклипы. Аппаратура студии звукозаписи имеет столь привлекательный вид, что приобрела не только техническую но и эстетическую ценность. Редкий певец или композитор откажет себе в удовольствии поместить в клип кадры, снятые непосредственно в студии. Вот и припомните, сколько микрофонов размещено, например, перед поющими в студии (разумеется, не одновременно) И. Аллегровой или А. Апиной? Большой, красивый, с защитой от любых вибраций, дорогой, но... один.
В наши дни несколько трансформировались художественные цели, которые ставят перед собой творцы музыкальных произведений, записанных и тиражированных на современных носителях. На второй план ушло стремление к точности передачи звуковой атмосферы зала и голоса певца. Появились технические возможности для того, чтобы получить из исходного аудиоматериала звук, обладающий почти любыми заранее заданными свойствами.
Таким образом, наличие только одного микрофонного входа у звуковой карты не препятствует дополнению композиций, исполненных MIDI-инструментами, стереофоническими записями вокала и акустических инструментов.
Правда, иногда для качественной записи требуется не менее двух монофонических микрофонов. Примерами тому могут служить запись певца, аккомпанирующего себе на гитаре, и запись партии акустической ударной установки. Положение не такое уж и безвыходное, как может показаться. У всех звуковых карт, кроме монофонического микрофонного входа, имеется стереофоническая пара линейных входов. В типовом варианте они служат для подачи на звуковую карту стереосигнала от таких внешних источников, как магнитофон или CD-плейер. Непосредственно подключить микрофоны к ним нельзя, так как чувствительность этих входов недостаточна для восприятия относительно слабых электрических сигналов с выхода микрофона. Но к каждому из этих входов может быть подключен или микрофонный усилитель, или внешний микшер, содержащий микрофонные усилители. В этом случае число микрофонов ограничено лишь числом каналов микшера, что позволит вам осуществить настоящую стереозапись с помощью пары микрофонов.
Работа звукооператора -- это настоящее творчество и даже искусство. Не все здесь можно объяснить с позиции физики. На результат влияют слишком уж много факторов, учесть которые очень трудно. Поэтому расценивайте материал, посвященный микрофонам, как средство предотвращения грубых ошибок, основу для размышлений и приобретения личного опыта.
1.2.3 Подключение электрогитары к звуковой карте
Мысль написать этот маленький параграф возникла у нас после общения с несколькими самодеятельными музыкантами, выступающими в составе рок-группы. Как оказалось, эти ребята хотели бы использовать в своем творчестве компьютер, но, непременно, сочетая MIDI-КОМПОЗИЦИИ с записью партий в исполнении электрогитар. Они задали нам довольно много вопросов, ответы на которые содержатся на страницах этой книги. А самый первый и самый несложный вопрос касался того, каким образом подключить электрогитару к звуковой карте.
Частично ответом на этот вопрос можно считать материал о подключении микрофона к звуковой карте. Выходное напряжение некоторых электрогитар сравнимо с выходным напряжением микрофона, поэтому они могут быть подключены у, микрофонному входу звуковой карты. Если при этом не слышны искажения, вызванные ограничением амплитуды из-за перегрузки микрофонного входа, то все в порядке. Если нелинейные искажения заметны, подключать такую гитару к микрофонному входу нельзя. Для гитар с большим уровнем сигнала на выходе (содержащих встроенные предварительные усилители), так же как и для гитар, к которым подключены педали, управляющие различными эффектами, существуют другие способы подключения к звуковой карте.
Мы уже говорили, что у рассматриваемых в качестве примера звуковых карт семейства AWE имеется линейный стереовход. Это еще одна возможность подключения одной гитары со стереофоническим выходом или двух монофонических гитар. Разъем линейного входа [Jack) размещен на задней планке звуковой карты. Для подключения электрогитары к линейному входу карты ее сигнальный шнур должен оканчиваться штекером, идентичным штекеру головных телефонов, подключаемых к обычному плейеру.
Существует дополнительная (правда, не очень удобная) возможность подключения еще двух электрогитар к звуковой карте. Речь идет об аудиовходах для подключения CD-ROM. Неудобство заключается в том, что этот разъем размещен на плате звуковой карты и находится внутри корпуса компьютера. Чувствительность этого входа того же порядка, что и чувствительность линейного. По каждому из перечисленных четырех входов в микшере звуковой карты имеется отдельная регулировка уровня входного сигнала.
Если гитара подключена к звуковой карте, нет особого смысла использовать различные приставки к гитаре (педали, гитарные процессоры), вносящие дополнительные помехи. Все эффекты, которые можно создать с помощью них, и еще огромное количество других можно получить, обрабатывая не искаженный ничем серебряный звон гитарных струн средствами звукового редактора.
В частности, рассматриваемый в гл. 2 музыкальный редактор Cool Edit, наряду с сотнями разновидностей других эффектов, реализует и чисто гитарный эффект Distortion. Гитаристы знают, что сущность этого эффекта заключается в ограничении амплитуды сигнала. Колебания принимают почти прямоугольную форму, звучание становится длительным, амплитуда практически не изменяется на всем протяжении единожды извлеченного звука. В приставках к гитарам при реализации этого эффекта идут на различные схемотехнические ухищрения, чтобы сгладить неустранимый недостаток -- сильные искажения, «скрежет» в последней фазе звучания струны, когда амплитуда сигнала становится сравнимой с шумами и фоном. Эффект Distortion, реализованный в звуковом редакторе, полностью свободен от этого недостатка.
1.2.4 Микшер звуковой карты
Возможно, до подключения внешнего микшера с целью увеличения числа сигнальных входов звуковой карты дело у вас дойдет не очень скоро. А вот микшером, встроенным в звуковую карту, придется пользоваться частенько. О нем сейчас и пойдет речь, но не сразу, а после того, как мы уясним, что в процессе работы с компьютерной музыкой приходится использовать микшеры двух разновидностей: виртуальные и аппаратные.
Виртуальные микшеры существуют в виде составных частей музыкальных редакторов. Суть работы этих микшеров сводится к преобразованию ваших манипуляций мышью в соответствующие MIDI-сообщения или команды, запускающие подпрограммы математической обработки записанных аудиоданных. Число каналов в таких микшерах практически не ограничено. Особенности работы с виртуальным микшером одного из музыкальных редакторов мы рассмотрим ниже.
Сейчас же речь пойдет о микшере, реализованном аппаратным путем. Подобные узлы, незначительно отличающиеся друг от друга, имеются в каждой звуковой карте. Как мы и предупреждали, в качестве основы для анализа взята звуковая карта семейства Sound Blaster AWE. Возможности аппаратного микшера звуковой карты следующие:
ѕ раздельная регулировка уровней сигналов, поступающих на монофонический микрофонный и стереофонический линейный входы, а также вход для подключения CD-плейера;
ѕ раздельная регулировка уровней стереосигналов с выходов устройств проигрывания MIDI- и WAVE-файлов, а также с программно реализованного в SB AWE64 дополнительного WT-синтезатора;
ѕ раздельная регулировка тембра по низким и высоким частотам (многие считают наличие этих регулировок недостатком SB AWE, так как велика вероятность того, что вы можете забыть вернуть регуляторы тембра в нейтральное положение, и запись будет выполнена с частотными искажениями);
ѕ общая регулировка уровня суммарного звукового сигнала, поступающего на линейный выход звуковой карты (Master);
ѕ общая регулировка уровня звукового сигнала, поступающего к динамику PC (весьма бесполезная возможность, которая годится лишь для управления громкостью звука метронома музыкального редактора, если вы направили его в динамик PC);
ѕ раздельные регулировки стереобаланса для всех звуковых источников и выходов за исключением микрофона и спикера.
Следует сразу же оговориться, что использовать аппаратный микшер можно только для предварительной установки тех или иных параметров. Его применению в процессе собственно записи препятствует недостаточное количество уровней квантования регулируемых с его помощью величин. Поэтому регулировка громкости в процессе воспроизведения, например, компакт-диска будет осуществляться скачками. Заметим, что ничего подобного при работе с виртуальными микшерами звуковых редакторов (на той же самой звуковой карте) не происходит. Однако без аппаратного микшера все равно не обойтись.
Для управления микшером служат специальные программы. Они могут немного отличаться друг от друга по внешнему виду панели управления, но суть у всех одна и та же. Поэтому рассмотрим одну из наиболее популярных подобных программ -- Creative Mixer. Программа поставляется вместе со звуковыми картами фирмы Creative Labs. Запустив программу, вы увидите изображение панели микшера, показанное на рис. 1.13.
Слева направо расположены: кнопки управления режимом отображения элементов микшера; регулятор уровня суммарного сигнала на выходе звуковой карты; регулятор тембра высоких частот; регулятор тембра низких частот;
Рис. 1.13. Вид панели управления аппаратного микшера
ѕ регулятор уровня громкости сигнала с выхода ЦАП; регулятор уровня громкости сигнала с выхода синтезатора; регуляторы уровней громкости и реверберации при генерации звука программно реализованным синтезатором, имеющимся только в SB AWE64 и SB AWE64 Gold (дополнительные 32 голоса);
ѕ регулятор уровня воспроизведения сигнала с CD-плейера; регулятор уровня сигнала, поступающего с линейного стереовхода; регулятор уровня сигнала, поступающего с микрофонного входа; регулятор громкости громкоговорителя PC. Под всеми регуляторами уровней (кроме трех) находятся горизонтально перемещающиеся движки регуляторов стереобаланса. Над каждым из регуляторов уровня расположены кнопки, с помощью которых можно подключить или отключить соответствующий сигнал (довольно часто случайное нажатие этих кнопок служит основанием для паники и подозрений на неработоспособность звуковой карты). Правую часть микшера занимает окно, имитирующее многофункциональный жидкокристаллический индикатор. Для того чтобы он «ожил», следует нажать на расположенную под ним правую кнопку.
Рис. 1.14. Отображение уровней сигналов
При этом возможны три основных режима отображения информации: отображение уровней суммарных сигналов в правом и левом каналах (рис. 1.14); отображение осциллограммы суммарного сигнала (рис. 1.15); отображение спектра мощности (рис. 1.16).
Рис. 7.75. Отображение осциллограммы сигнала
Режимы переключаются щелчком левой кнопкой мыши по полю индикатора. В последнем режиме существует три варианта отображения информации:
ѕ распределение по частотам мгновенных, пиковых и комбинации мгновенных и пиковых значений мощности. Переключение производится щелчком мыши по кнопкам с цифрами 1, 2, 3.
Рис. 1.16. Отображение спектра мощности
Заметим, что использовать индикаторную панель в процессе записи в звуковых редакторах не следует.
С помощью кнопок, находящихся в левой части панели, можно оптимизировать площадь, занимаемую микшером на экране.
Верхняя кнопка сворачивает панель. Следующая за ней -- минимизирует, превращая его в иконку.
Третья кнопка оставляет на экране только регуляторы, необходимые при записи (рис. 1.17).
Рис. 1.17. Микшер с регуляторами уровней записываемых сигналов
При нажатии кнопки, помеченной символом «волна», можно убрать окно индикатора. На рис. 1.18 показан вид микшера без индикатора.
Рис. 1.18. Микшер без окна индикатора
Третья снизу кнопка позволяет оставить изображение только одного регулятора, как это показано на рис. 1.19.
Рис. 1.19. Микшер с единственным регулятором
Щелчком по правой верхней кнопке панели управления микшера, изображенной на рис. 1.19, можно вызвать дополнительную панель (рис. 1.20), с помощью которой выбрать отображаемый регулятор.
Рис. 1.20 Панель выбора отображаемого регулятора
При нажатии нижней кнопки микшера (рис. 1.13) в панели будет отображаться максимальное число элементов.
Вторая снизу кнопка позволяет отображать только те элементы микшера, которые определены пользователем. Для выбора пользовательского варианта отображения служит всплывающее меню (рис. 1.21), вызываемое правой кнопкой мыши.
Рис. 1.21 Всплывающее меню установок пользователя
В подменю View (рис. 1.22) можно выбрать один из вариантов отображения панели управления микшера.
Рис. 1.22. Подменю View
При выборе команды Preferences (предустановки) в меню на рис. 1.21 открывается одноименное окно диалога (рис. 1.23), в котором можно определить набор отображаемых элементов микшера.
Рис. 1.23. Окно диалога Preferences для выбора отображаемых элементов микшера
Если в меню (см. рис. 1.21), выбрать команду Input/Output Settings, откроется окно диалога (рис. 1,24), с помощью которого можно изменить уровень максимального усиления по входу и выходу для левого и правого каналов. Делается это путем выбора коэффициентов умножения в пределах от 1 до 4. Для сбалансированных по уровню громкости источников звуковых сигналов коэффициенты для левого и правого каналов должны быть одинаковыми. Различными их можно сделать только в том случае, когда уровень сигнала в одном из каналов оказывается значительно меньше, чем в другом. Эта ситуация может встретиться, например, при реставрации записи, выполненной на магнитофоне, в котором лента неравномерно прилегала к магнитной головке.
Рис. 1.24. Окно диалога для выбора коэффициентов усиления
Включение опции Microphone Gain Control приводит к увеличению коэффициента усиления по микрофонному входу.
Мы рассмотрели практически все возможности по трансформации отображения элементов микшера. Осталось лишь сказать, что при включении опции Always on Top меню на рис. 1.21 панель Creative Mixer всегда будет расположена поверх окон других приложений. Последние две команды этого меню позволяют вызвать интерактивную подсказку Help и получить сведения о версии программы.
Детальное знакомство с микшером звуковой карты позволяет сделать вывод о том, что его использование возможно только на первом этапе записи для ориентировочной установки уровней сигналов. Для тонкой регулировки громкости и панорамы следует использовать возможности ЦАП, АЦП и синтезаторов звуковой карты, воздействуя на эти устройства средствами, имеющимися в составе музыкальных и звуковых редакторов.
1.2.5 Сэмплирование
Детальному анализу способов сэмплирования посвящена гл. 3. Сейчас же наша задача состоит лишь в том, чтобы уяснить смысл этого слова.
Сэмплирование -- это запись образцов звучания (сэмплов) того или иного реального музыкального инструмента. Сэмплирование является основой волнового синтеза (WT-синтеза) музыкальных звуков. Если при частотном синтезе (FM-синтезе) новые звучания получают за счет разнообразной обработки простейших стандартных колебаний, то основой WT-синтеза являются заранее записанные звуки традиционных музыкальных инструментов или звуки, сопровождающие различные процессы в природе и технике. С сэмплами можно делать все, что угодно. Можно оставить их такими, как есть, и WT-синтезатор будет звучать голосами, почти неотличимыми от голосов инструментов-первоисточников. Можно подвергнуть сэмплы модуляции, фильтрации, воздействию эффектов и получить самые фантастические, неземные звуки.
В принципе, сэмпл -- это ни что иное, как сохраненная в памяти синтезатора последовательность цифровых отсчетов, получившихся в результате аналого-цифрового преобразования звука музыкального инструмента. Если бы не существовала проблема экономии памяти, то звучание каждой ноты можно было бы записать в исполнении каждого музыкального инструмента. А игра на таком синтезаторе представляла бы собой воспроизведение этих записей в необходимые моменты времени. Но если идти по такому пути, то пришлось бы хранить в памяти множество вариантов звучания каждой ноты, причем все они должны отличаться протяженностью звучания, динамикой звукоизвлечения и т. д. На это не хватит никакого объема памяти. Поэтому сэмплы хранятся в памяти не в том виде, в каком они получаются сразу же после прохождения АЦП. Запись подвергается хирургическому воздействию, делится на характерные части [фазы): начало, протяженный участок, завершение звука. В зависимости от применяемой фирменной технологии эти части могут делиться на еще более мелкие фрагменты. В памяти хранится не вся запись, а лишь минимально необходимая для ее восстановления информация о каждом из фрагментов. Изменение протяженности звучания производится за счет управления числом повторений отдельных фрагментов.
В целях еще большей экономии памяти был разработан способ синтеза, позволяющий хранить сэмплы не для каждой ноты, а лишь для некоторых. В этом случае изменения высоты звучания достигается путем изменения скорости воспроизведения сэмпла.
Для создания и воспроизведения сэмплов служит синтезатор. В наши дни синтезатор конструктивно реализован в одном-двух корпусах микросхем, которые представляет собой специализированный процессор для осуществления всех необходимых преобразовании. Из закодированных и сжатых с помощью специальных алгоритмов фрагментов он собирает сэмпл, задает высоту его звучания, изменяет в соответствии с замыслом музыканта форму огибающей колебания, имитируя либо почти неощутимое касание, либо удар по клавише или струне. Кроме того, процессор добавляет различные эффекты, изменяет тембр с помощью фильтров и модуляторов.
В звуковых картах находят применение несколько синтезаторов различных фирм. В гл. 3 мы подробно рассмотрим наиболее распространенный в наши дни синтезатор EMU8000. Популярность этого устройства не случайна. Достаточно высокое качество работы сочетается в нем с относительно небольшой ценой. О перспективности EMU8000 свидетельствует тот факт, что для него разработано программное обеспечение, позволяющее не только эксплуатировать готовые сэмплы, но и создавать свои собственные.
Отметим, что наряду с сэмплами, записанными в ПЗУ звуковой карты, в настоящее время стали доступными наборы сэмплов (банки), созданные как в лабораториях фирм, специализирующихся на синтезаторах, так и любителями компьютерной музыки. Эти банки можно найти на многочисленных лазерных дисках и в Internet.
1.2.6 Компрессия и шумоподавление
Рассматривая требования к АЦП и ЦАП звуковой карты, мы уже коснулись двух проблем: борьбы с искажениями и борьбы с шумами. Эти проблемы тесно связаны друг с другом.
Конечно, природа искажений многообразна. В тракте запись-передача-воспроизведение звук подвергается амплитудным, частотным, фазовым и нелинейным искажениям. Сейчас речь пойдет о компрессии динамического диапазона сигнала, как о способе борьбы с нелинейными искажениями, вызванными ограничением амплитуды звуковых колебаний из-за перегрузки элементов звукового тракта. Причина возникновения таких искажений заключается в несоответствии динамических диапазонов звукового сигнала и аппаратуры, по которой этот сигнал проходит. Если бы звуковой сигнал можно было заранее проанализировать, выявить те фрагменты, где он достигает максимумов, то, в принципе, перегрузку тракта можно было бы исключить. Для этого достаточно было бы так отрегулировать уровень сигнала, поступающего, например, от микрофона, чтобы даже пиковые его уровни находились в пределах динамического диапазона. Правда, здесь имеется сразу два «но».
Во-первых, нужно заранее знать закон изменения уровня громкости сигнала, что возможно только после предварительной его записи. Но записанный сигнал уже будет с одержать искажения, вызванные той самой перегрузкой, с которой мы хотим бороться... Хорошо, тогда можно уменьшить уровень записи так, чтобы даже при самых сильных «всплесках» громкости не происходило бы перегрузки. Вот здесь-то и появляется второе «но». Но тогда большая часть записи будет слишком тихой, настолько тихой, что самые слабые звуки просто не будут слышны, они сольются с шумами электронных приборов и носителя записи сигнала. Именно здесь и пересекаются проблемы борьбы с шумами и перегрузками.
За много лет до того, как впервые прозвучало словосочетание «звуковая карта», аналогичные проблемы были вынуждены решать разработчики магнитофонов, аппаратуры озвучивания кинофильмов, а затем и вообще звукоусилительных устройств студий и концертных залов. В результате настойчивых изысканий было предложено несколько способов решения проблемы, которые отличаются деталями, но имеют общую сущность. Идея очень проста, и может быть выражена буквально одной фразой: для того чтобы не происходило ни перегрузки тракта сильными сигналами, ни маскирования слабых сигналов шумами, следует слабые сигналы усиливать, а сильные ослаблять, т. е. сужать динамический диапазон.
Сужение динамического диапазона перед записью сигнала обеспечивает прибор, называемый компандером. При воспроизведении записи для восстановления прежнего динамического диапазона используют прибор, носящий название экспандер.
В рамках общей идеи шумоподавления придумано много конкретных методов и устройств, отличающихся друг от друга деталями. Некоторые методы предполагают деление всего спектра сигнала на несколько диапазонов и раздельную регулировку уровня различных спектральных составляющих. Методы отличаются и алгоритмами вычисления пороговых уровней, после сравнения с которыми вырабатывается решение о том или ином преобразовании сигнала.
Так, например, наиболее распространенная система шумопонижения типа Dolby А позволяет существенно улучшить эффективность магнитных и оптических носителей аналоговых записей и систем связи, служащих для передачи звуковых программ [78]. Система Dolby А основана на принципе компандирования, но только для сигналов низкого уровня и раздельно в четырех частотных поддиапазонах. В каждом из поддиапазонов определяется общий уровень частотных составляющих сигнала. Если он оказывается ниже порогового значения, то в процессе записи сигнал усиливается, а при воспроизведении, наоборот, ослабляется.
Система Dolby А базируется на полученном экспериментально так называемом спектральном окне аналоговой ленты. Вид спектрального окна представлен на рис. 1.25.
По сути, на рисунке наглядно представлена область допустимых значений уровней спектральных составляющих звукового сигнала в зависимости от их частот. Закрашенная область в нижней части рисунка соответствует собственным шумам ленты. Закрашенная область в верхней части рисунка -- область значительных нелинейных искажений. При записи сигнала, используя систему шумоподавления, следует стремиться к тому, чтобы значения спектральных составляющих находились в незакрашенной области рисунка.
Рис. 1.25. Спектральное окно аналоговой магнитной ленты
Поскольку ныне применяются цифровые носители записи, практически свободные от того, что принято называть собственными шумами, изменяются и подходы к шумоподавлению. На первый план теперь выдвигаются ограничения, обусловленные не свойствами материала носителя записи, а особенностями слухового аппарата человека. Новая система шумопонижения Dolby SR, основанная на так называемом принципе наименьшего воздействия, учитывает не только спектральное окно носителя, но и окно слышимости человека, представленное на рис. 1.26.
Верхняя граница окна соответствует оглушительному звуку, соседствующему с болевым ощущением. Нижняя граница определяется порогом слышимости. Алгоритмы обработки звука строятся с таким расчетом, чтобы максимально ослабить те шумы, которые попадают в окно слышимости, и игнорировать шумы, которые не слышны человеку.
В условиях студийной звукозаписи непосредственно с микрофона сигнал попадает в устройства обработки, ограничивающие его динамический диапазон. Поэтому перегрузка элементов звукового тракта практически исключена.
Если микрофон подключен ко входу звуковой карты, то она оказывается совершенно незащищенной от опасности перегрузки. Делать нечего. Остается только воспитывать исполнителей, не устанавливать микрофон слишком близко к источнику звука и занижать уровень входного сигнала регулятором микшера.
Утешает только то, что звуковой редактор Cool Edit, который будет рассмотрен в гл. 2, в определенной степени позволит снизить зафиксированные в записи искажения. Дело в том, что в нем программно реализованы такие совершенные методы обработки сигнала (в частности сжатия динамического диапазона и шумоподавления), какими располагают далеко не все специализированные электронные устройства. Например, при наличии резких выбросов сигнала, вызванных импульсными помехами или случайными перегрузками микрофона, программа поможет вам заранее обнаружить эти аномалии и либо удалить их, либо плавно изменить уровень сигнала в районе выброса. Вы будете иметь возможность произвольно изменять мышью амплитудную характеристику компрессора динамического диапазона. Участки фонограммы, свободные от записи полезного сигнала, можно будет заменить «абсолютной тишиной». Кроме того, используя алгоритмы спектральных преобразований с целью снижения заметности шумов, вы сможете на практике использовать информацию о спектральных окнах, приведенных на рис. 1.25 и 1.26.
1.2.7 Фильтрация
Если в двух словах попытаться дать определение слову «фильтрация», то оно будет выглядеть примерно так: фильтрация -- это процесс обработки электрического звукового сигнала частотно-избирательными устройствами с целью изменения спектрального состава (тембра) сигнала. Задачами такой обработки могут быть:
> амплитудно-частотная коррекция сигнала (усиление или ослабление отдельных частотных составляющих);
^ полное подавление спектра сигнала или шумов в определенной полосе частот.
Например, если микрофон, акустическая система или еще какой-либо элемент звукового тракта имеют неравномерную амплитудно-частотную характеристику, то с помощью фильтров эти неравномерности могут быть сглажены. Если в результате анализа спектра выяснилось, что в некоторой области частот энергия помехи значительно превышает энергию сигнала, то посредством фильтрации все колебания в этом диапазоне частот можно подавить.
Для осуществления фильтрации созданы самые различные устройства: отдельные корректирующие и формантные фильтры, устройства для разделения звука на несколько, каналов по частотному признаку (кроссоверы), двухполосные и многополосные регуляторы тембра (эквалайзеры). При аппаратной реализации фильтров их создают либо на основе колебательных звеньев, состоящих из катушек индуктивности и конденсаторов, либо на основе их аналогов, так называемых гираторов, представляющих собой операционные усилители, охваченные особого типа обратными связями.
Основой фильтров, реализованных программным путем в составе звуковых редакторов, служит спектральный анализ. Как известно, любой реальный сигнал может быть представлен в виде набора коэффициентов разложения в ряд по гармоническим (синусоидальным и косинусоидальным) функциям. Фильтрация сводится к умножению спектральных коэффициентов на соответствующие значения передаточной функции фильтра. Если спектр представлен в комплексной форме, то сигнал описывается совокупностью амплитудного и фазового спектров (АС и ФС), а фильтры -- амплитудно-частотными и фазочастотными характеристиками (АЧХ и ФЧХ). АЧХ представляет собой зависимость коэффициента передачи фильтра от частоты. ФЧХ отражает сдвиг фазы выходного сигнала по отношению к входному в зависимости от частоты. В этом случае фильтрация эквивалентна умножению АС на АЧХ и алгебраическому сложению ФС с ФЧХ.
Классический спектральный анализ из-за наличия большого количества операций умножения требует огромных затрат процессорного времени и при значительном числе отсчетов сигнала неосуществим в реальном масштабе времени. Для сокращения времени спектрального анализа дискретных сигналов разработаны специальные алгоритмы, учитывающие наличие связей между различными отсчетами сигнала и устраняющие повторяющиеся операции. Одним из таких алгоритмов является быстрое преобразование Фурье (БПФ). С применением БПФ вы познакомитесь в гл. 2. Особенность этого алгоритма состоит в том, что он допускает не любое, а лишь строго определенное количество отсчетов сигнала.
Составной частью синтезатора звуковой карты является сигнал-процессор, который, в свою очередь, содержит цифровой фильтр. Работа этого фильтра основана на алгоритмах, подобных быстрому преобразованию Фурье. Однако за счет того, что часть операций в нем реализована аппаратным путем, фильтр может работать в реальном времени, успевая обрабатывать синтезируемый сигнал в темпе его генерации. Форма АЧХ фильтра изменяется программным путем, управление ею производится с помощью драйверов, поставляемых со звуковой картой, или средствами редактирования сэмплов. В следующих главах книги этот процесс будет подробно рассмотрен. Фильтры, о которых идет речь являются универсальными, способными изменять свои свойства таким образом, что могут быть эквивалентны любому из основных типов фильтров.
Рис. 1.27. АЧХ и ФЧХ фильтра нижних частот
В зависимости от расположения полосы пропускания на оси частот фильтры подразделяются на:
ѕ фильтры нижних частот (ФНЧ), типичные АЧХ и ФЧХ которых показаны на рис. 1.27;
ѕ фильтры верхних частот (ФВЧ), их АЧХ и ФЧХ показаны на рис. 1.28;
ѕ полоснопропускающие (полосовые) фильтры (рис. 1.29);
ѕ полосно-задерживающие (режекторные) фильтры (рис. 1.30).
Информация о характеристиках фильтров понадобится при прочтении гл. 3. На рис. 1.27--1.30 по горизонтали отложено значение частоты, а по вертикали -- значения передаточных функций K(f) или фазовых сдвигов (p(f) в зависимости от частоты.
Рис. 1.28. АЧХ и ФЧХ фильтра верхних частот
Рис. 1.29. АЧХ и ФЧХ полосового фильтра
Приведенные выше характеристики являются идеализированными; реальные фильтры, строго говоря, не позволяют обеспечить равенство передаточной функции нулю. Колебания в полосе подавления, пусть и значительно ослабленные, все равно проникают через фильтр.
Весьма распространенной ошибкой при использовании фильтров для обработки сигналов является пренебрежение учетом влияния на форму сигнала фазочастотной характеристики фильтра. Фаза важна потому, что сигнал, прошедший через фильтр без изменения амплитуды в полосе пропускания, может быть искажен по форме, если временное запаздывание при прохождении через фильтр не будет постоянным для разных частот. Одинаковое время задержки соответствует линейной зависимости фазы от частоты. Из рис. 1.27--1.30 видно, что для ФНЧ и ФВЧ зависимость фазы от частоты можно считать линейной лишь в окрестностях частот среза, а для полосового фильтра -- в окрестностях резонансной (центральной) частоты.
Рис. 1.30. АЧХ и ФЧХ режекторного фильтра
Таким образом, фильтрация широкополосных звуковых колебании сопровождается фазовыми искажениями, приводящими к изменению формы фильтруемого сигнала.
1.3 Звуковые эффекты
Использование звуковых карт, плат оцифровки звука и звуковых редакторов предоставляет компьютерному музыканту довольно широкие возможности по применению в музыкальных композициях различных звуковых эффектов и приемов обработки.
Звуковые эффекты могут быть реализованы аппаратным путем, и тогда их можно использовать в реальном времени, как, например, это сделано в высококачественных звуковых картах. Для этого в их состав включены цифровые сигнальные процессоры. Цифровой сигнальный процессор (Digital Signal Processor-- DSP) позволяет обрабатывать звуковые сигналы в реальном времени. В основе его принципа действия лежит аналого-цифровое преобразование сигнала с последующей обработкой, основанной на нескольких алгоритмах цифровой фильтрации и задержки [12, 13]. Правда, полноценный DSP чрезвычайно дорог, поэтому применяется только в специализированных устройствах профессионального назначения. Звуковые процессоры звуковых карт представляют собой значительно упрощенные аналоги полноценных DSP. Обычно они не позволяют использовать одновременно большое число эффектов. Кроме того, почти все эффекты реализуются, к сожалению, одновременно для всех каналов. Выбор эффектов и управление их параметрами производится по интерфейсу MIDI с помощью MIDI-манипуляторов. В составе большинства музыкальных редакторов имеется соответствующий интерфейс, позволяющий управлять манипуляторами эффектов различными способами. Чаще всего это делается путем построения графика изменения параметра эффекта. Манипулятор эффекта может быть также связан с одним из регуляторов виртуального микшера, входящего в состав музыкального редактора.
В компьютерных студиях звуковые эффекты часто создаются программным способом. Реализация эффектов и управление ими осуществляется с помощью звуковых редакторов. Обработке подвергается заранее записанный в цифровой форме звуковой сигнал. Недостатком программной реализации звуковых эффектов является невозможность их использования в реальном времени, в процессе записи. Достоинство заключается в том, что отказ от обработки в реальном времени позволяет применять самые сложные и требующие больших временных затрат алгоритмы, поэтому число различных звуковых эффектов и число вариаций каждого эффекта в этом случае значительно превышает то, что достижимо при аппаратной реализации. Кроме того, имеется возможность практически неограниченного вложения эффектов один в другой. Предел устанавливается не техническими (точнее, не математическими) возможностями, а здравым смыслом и эстетическими критериями. О том, как воспользоваться звуковыми эффектами, имеющимися в распоряжении одного из самых популярных звуковых редакторов, мы расскажем в гл. 2. Сначала нужно получить хотя бы начальные представления о сущности основных звуковых эффектов.
1.3.1 Вибрато
В самом общем смысле суть эффекта вибрато заключается в периодическом изменении одного из параметров звукового колебания: амплитуды, частоты или фазы. Изменение (колебание) параметра происходит с очень малой частотой -- единицы герц. Различают амплитудное, частотное и фазовое вибрато. В любом случае результатом является обогащение спектра исходного колебания. Читатели, знакомые с основами радиотехники, понимают, что, по сути дела, происходит модуляция звукового колебания низкочастотным сигналом. Законы физики неумолимы -- спектр сигнала при этом действительно расширяется.
Кроме того, имеется еще и тембровое вибрато, о котором мы поговорим чуть позже.
Как и многие другие электронные звуковые эффекты, вибрато имеет свои естественные прототипы, уходящие корнями в народную и классическую инструментальную и вокальную музыку.
Владение приемом вибрато отличает очень хорошего певца от просто хорошего. Скрипка в руках талантливого музыканта потому и звучит так божественно, что, совершая едва заметные перемещения прижимающими струны пальцами вдоль грифа, он осуществляет частотное вибрато. Частотное вибрато -- причина необычайно задушевного голоса балалайки при исполнении лирических мелодий. Тремоло (частный случай амплитудного вибрато) является основным приемом игры на мандолине, домре и балалайке.
Первоначально словом «вибрато» именовалась модуляция любого параметра звукового колебания. Но со временем некоторые из разновидностей этого эффекта получили свое название. Во многих публикациях по электронной музыке теперь под вибрато подразумевают только вибрато частотное. На наш взгляд это не совсем верно, следует различать амплитудное вибрато, частотное вибрато и тембровое вибрато. У фазового вибрато имеется специальное название -- фейзер (от англ. Phaser -- фазовариатор).
Амплитудное вибрато и тремоло
Амплитудное вибрато включает в себя собственно амплитудное вибрато и тремоло. Сущность амплитудного вибрато состоит в периодическом изменении амплитуды звукового сигнала. Частота, с которой это происходит, должна быть очень небольшой (от долей герц до 10--12 Гц). Если частота вибрато находится вне этих пределов, то необходимый эстетический эффект не достигается.
Тембр сигнала с амплитудным вибрато богаче по сравнению с тембром исходного сигнала. С таким спектром можно проделывать различные манипуляции, например, изменять уровни спектральных составляющих с помощью фильтров.
Степень проявления эффекта характеризуется глубиной вибрато: m = ДЗ/S, где Д5 -- максимальное изменение амплитуды сигнала с вибрато, S -- амплитуда исходного сигнала. Диапазон допустимых значений глубины вибрато составляет от 0 до 1, а оптимальная с точки зрения художественного результата частота амплитудного вибрато -- б--8 Гц.
Особой разновидностью амплитудного вибрато является тремоло. Отличительными признаками тремоло являются относительно высокая частота вибрации (10--12 Гц), максимальная глубина эффекта (m = 1) и импульсная форма результирующего сигнала.
В аналоговых устройствах амплитудное вибрато реализуется с помощью перемножителей сигналов. Существует множество различных принципиальных схем устройств вибрато [15, 16, 48, 100]. Основная проблема аналоговых устройств -- неполное подавление управляющего сигнала. При большой глубине вибрато это проявляется в виде ясно прослушивающегося стука с частотой модуляции.
Компьютерные музыканты встретятся с двумя вариантами реализации амплитудного вибрато: аппаратным и программным. Аппаратный способ предполагает наличие в структуре звуковой карты усилителей с управляемым коэффициентом усиления. Программный способ заключается в перемножении значений цифровых отсчетов звуковых колебаний со значениями отсчетов функции (обычно синусоидальной), описывающей управляющий сигнал.
При обработке вокальных партий амплитудным вибрато нужно пользоваться очень осторожно, глубина его не должна быть большой, а применение тремоло совсем недопустимо.
Частотное вибрато.
Суть частотного вибрато заключается в периодическом изменении частоты звукового колебания.
В электронной музыке частотное вибрато получило широкое распространение лишь после создания электронных музыкальных инструментов. Реализовать этот эффект на адаптеризированных акустических инструментах довольно сложно. Правда, в период расцвета вокально-инструментальных ансамблей (ВИА) появились соло-гитары, конструкции которых предоставили такую возможность. Натяжение всех струн можно одновременно изменять с помощью специального механизма -- подвижной подставки для крепления струн и рычага. Частотное вибрато здесь исполняется вручную.
Реализация частотного вибрато в электромузыкальных инструментах и синтезаторах проста и естественна. Работу всех узлов электронных музыкальных синтезаторов как аппаратных, так и реализованных программным путем, синхронизирует опорный генератор. Если изменять его частоту, то будут изменяться частоты и всех синтезируемых колебаний. В радиотехнике этот процесс называется частотной модуляцией. Если изменение частоты производится по периодическому закону, то в результате получается частотное вибрато. По существу, при частотном вибрато также расширяется спектр исходного сигнала, причем тембр периодически изменяется во времени.
Красивое звучание получается только в том случае, когда глубина частотного вибрато (относительное изменение частоты звука) невелика. Как известно, в соответствии с хроматической гаммой введена единица музыкальных интервалов, в 1200 раз меньшая, чем октава -- цент [II]. Интервал между соседними полутонами в темперированной гамме равен в точности 100 центам. Колебание высоты тона при частотном вибрато не должно превышать нескольких десятков центов. В противном случае, создается впечатление нарушения строя инструмента.
Частотное вибрато используется и само по себе, и входит в качестве составной части в более сложные звуковые эффекты.
С точки зрения технической реализации очень близким к частотному вибрато является эффект (точнее говоря, исполнительский прием) глиссандо. При игре, например, на фортепиано этот прием означает скольжение одного или нескольких пальцев по клавишам. В электронной музыке под глиссандо понимают перестройку высоты взятых нот. Диапазон перестройки может достигать интервала, превышающего октаву. Ручным регулятором изменяют или напряжение, или цифровой код, которые, в свою очередь, управляют частотой опорного генератора. В электронных музыкальных синтезаторах и MIDI-клавиатурах для исполнения глиссандо имеется специальный орган управления -- колесо или рукоятка, а стандартом MIDI предусмотрено специальное сообщение -- Pitch Bend Change, передаваемое при изменении состояния манипуляторов высоты тональной перестройки. Эти средства позволяют, в отличие от первых ЭМИ, выполнять не только глиссандо, но и ручное (иногда говорят -- пальцевое) частотное вибрато. Закон колебания высоты звука подчиняется воле исполнителя, и эффект перестает быть механическим и монотонным.
Раз уж мы затронули вопрос перестройки высоты тона, то уместно будет упомянуть, что музыкальные редакторы позволяют производить точное изменение строя синтезируемых инструментов и транспонирование на любой интервал как голосов инструментов, записанных на отдельных треках, так и всей музыкальной композиции. Звуковые редакторы способны проделывать аналогичные операции в отношении не только музь1кальных'инструментов, но и записанных голосов вокалистов.
Тембровое вибрато.
Эффект тембрового вибрато также предназначен для изменения спектра звуковых колебаний. Физическая сущность этого эффекта состоит в том, что исходное колебание с богатым тембром пропускается через полосовой частотный фильтр, у которого периодически изменяется либо частота настройки, либо полоса пропускания, либо по различным законам изменяются оба параметра. При этом фильтр выделяет из всего спектра исходного колебания те частотные составляющие, которые попадают в «мгновенную» полосу его пропускания. Так как полоса пропускания изменяется по ширине и перемещается по частоте, то тембр сигала периодически изменяется.
Кроме автоматического тембрового вибрато, используют еще и ручное (чаще даже «ножное» -- с управлением от педали). Такой вариант эффекта известен под названиями «Вау-вау» или «квакушка».
Необыкновенно красиво звучит электрогитара, сигнал которой пропущен через блок тембрового вибрато, если цикл перестройки фильтра синхронизирован с моментом возникновения колебания струны. Звук каждого очередного аккорда перетекает от одного края своей спектральной области до другого.
Тембровое вибрато имеется в арсенале средств звуковых редакторов.
Если звуковая карта содержит перестраиваемые резонансные фильтры или хотя бы фильтры нижних частот с перестраиваемой частотой среза, то этот эффект может быть реализован и аппаратным способом в реальном времени.
1.3.2 Эффекты, основанные на задержке сигналов Дилэй
Дилэй (Delay) в переводе означает «задержка». Необходимость в этом эффекте возникла с появлением стереофонии. Сама природа слухового аппарата человека предполагает в большинстве ситуаций поступление в мозг двух звуковых сигналов, отличающихся временем прихода. Если источник звука находится «перед глазами», на перпендикуляре, проведенном к линии, проходящей через уши, то прямой звук от источника достигает обоих ушей в одно и то же время. Во всех остальных случаях расстояния от источника до ушей различны, поэтому либо одно, либо другое ухо воспринимает звук первым.
Проведем несложные расчеты. Время задержки (разницы во времени приема сигналов ушами) будет максимальным в том случае, когда источник расположен напротив одного из ушей. Так как расстояние между ушами около 20 см, то максимальная задержка может составлять около 8 мс. Этим величинам соответствует волна звукового колебания с частотой около 1,1 кГц. Для более высокочастотных звуковых колебаний длина волны становится меньше, чем расстояние между ушами, и разница во времени приема сигналов ушами становится неощутимой. Предельная частота колебаний, задержка которых воспринимается человеком, зависит от направления на источник. Она растет по мере того, как источник смещается от точки, расположенной напротив одного из ушей, к точке, расположенной перед человеком.
Подобные документы
Обоснование технологического процесса записи звука на съемочной площадке с помощью цифрового HD-Recorder Edirol R-4 Pro. Сущность монтажно-тонировочного периода производства фильма. Разработка технологии записи чистового звука на съемочной площадке.
курсовая работа [695,9 K], добавлен 05.12.2011Звуковая зкспликация выбранных эпизодов. Структурная схема соединения оборудования на площадке с учётом видео, звукового сигнала и сигнала синхронизации для каждых сцен. Обоснование выбора микрофонов, их характеристики, назначение в выбранных эпизодах.
курсовая работа [1,4 M], добавлен 29.05.2014Микрофон как устройство обработки, усиления звуковых частот и передачи на расстояния звуковой информации. Устройство и электрические характеристики микрофонов в сочетании с звукоусилительной и записывающей аппаратурой. Функциональные виды микрофонов.
реферат [266,9 K], добавлен 05.09.2012Передача звуковой информации с помощью жесткого диска. Аппарат для записи шумов. Принципы проведения записи в павильоне, на открытом воздуха. Синхронизация звука и изображения. Чистовые мизансцены. Монтажно-тонировочный период для сборки материала.
курсовая работа [121,0 K], добавлен 30.09.2011Технология работа в условиях записи фильма в формате Dvcam и записи зистового звука на HD-рекордер. Составление звуковых экспликаций сцен и выбор технического решения. Схемы расположения оборудования на съемочной площадке и маршрутизация сигналов.
контрольная работа [1,0 M], добавлен 17.08.2013Особенности видеосигналов и трудности, возникающие при их записи. Траектория движения магнитной ленты в магнитофоне. Сущность наклонно-строчной записи. Структурная схема конструкции видеомагнитофона. Основные характеристики записи в формате VHS.
реферат [292,4 K], добавлен 14.11.2010Сущность и сферы использования микрофона. История изобретения и принцип работы конденсаторного, динамического, пьезоэлектрического, электретного микрофонов. Воздействие давления звуковых волн на мембрану, вследствие чего возникают электрические колебания.
презентация [8,3 M], добавлен 16.04.2012Лазерные проигрыватели и магнитофоны и особенности их регулироваочно-наладочных операций. Основные параметры магнитофонов. Особенности тракта записи и тракта воспроизведения их характеристика и описание. Системы шумоподавления. Регулировка магнитофона.
реферат [34,8 K], добавлен 13.01.2009Понятие звуковой экспликации. Особенности используемой технологии записи. Схемы расположения съемочного оборудования на съемочных площадках. Обоснование выбора оборудования. Структурная схема соединения оборудования с учетом выбранной синхронизации.
курсовая работа [419,0 K], добавлен 27.12.2011Функциональное и конструктивное построение цифровых диктофонов. Принцип работы диктофона при записи речи. Методы и технические средства выявления и подавления цифрового диктофона. Необходимость предотвращения скрытой записи речевой информации на диктофон.
курсовая работа [1,3 M], добавлен 23.04.2012