Проектирование печатной платы программатора микросхем ПЗУ

Назначение и принцип действия печатной платы программатора микросхем ПЗУ. Расчет геометрических параметров, освещенности помещения, источника питания и потребляемой мощности. Технология нанесения сухого пленочного фоторезиста. Работа с прибором.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид дипломная работа
Язык русский
Дата добавления 13.05.2010
Размер файла 7,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Основным показателем, используемым для оценки технологичности конструкции, является комплексный показатель для технологичности конструкции изделия

К=(К11+ К22…+ Кnn)/(1+2+…n);

Коэффициент зависит от порядкового номера основных показателей технологичности, ранжированная последовательность которых устанавливается экспертным путем.

Уровень технологичности конструкции изделия при известном нормативном показателе оценивается отношением полученного комплексного показателя к нормативному, которое должно удовлетворять условию

Нормативное значение показателя технологичности конструкции блоков электронной техники для условий опытного производства составляет 0,4…0,7, следовательно:

К/Кн=0,7/0,41,75;

Так как 1,75>1, то уровень технологичности конструкции данного изделия соответствует всем требованиям.

Вывод: На основании качественной и количественной оценок можно сделать вывод, что устройство является технологичным по своей конструкции, то есть обеспечивает минимальные затраты при заданных показателях качества производства.

4.2 Обоснование выбора метода изготовления печатной платы

В настоящее время насчитывают до двухсот методов, способов и вариантов изготовления печатных плат. Однако большинство из них устарело. В современном промышленном производстве печатных плат широко применяют химический, комбинированный и электрохимический методы получения печатных проводников.

Печатную плату программатора можно изготовить как электрохимическим, так и комбинированным методом.

Электрохимический метод применяют для изготовления двухсторонних печатных плат с высокой плотностью проводящего рисунка. При травлении меди с поверхности платы эффект бокового подтравливания почти отсутствует, что позволяет получить очень узкие проводники шириной до 0,15 мм и с таким же зазором между проводниками.

Таким образом, технологический процесс изготовления печатных плат электрохимическим методом освобождает от необходимости применять фольгированные медью диэлектрики и обеспечивает повышенную плотность монтажа на платах, что обусловливает возможность в ряде случаев заменить сложные в производстве многослойные печатные платы на двухсторонние.

Комбинированный метод применяют для изготовления ДПП и ГПП (гибких печатных плат) с металлизированными отверстиями на двустороннем фольгированном диэлектрике. Проводящий рисунок получают субтрактивным методов, а металлизацию отверстий осуществляют электрохимическим методом.

Для изготовления печатной платы программатора выбран электрохимический (полуаддитивный) метод, так как он обладает рядом достоинств, в некоторых случаях и над другими методами изготовления печатных плат.

Основное отличие от комбинированного позитивного метода заключается в использовании нефольгированного диэлектрика СТЭФ.1-2ЛК ТУ АУЭО 037.000 с обязательной активацией его поверхности.

Разрешающая способность этого метода выше, чем у комбинированного позитивного. Это объясняется малым боковым подтравливанием, которое равно толщине стравливаемого слоя и при полуаддитивном методе составляет всего 5 мкм, а при комбинированном больше 50 мкм. Метод обеспечивает высокую точность рисунка, хорошее сцепление проводников с основанием и устраняет неоправданный расход меди, который доходит до 80% при использовании фольгированных диэлектриков.

Рисунок 1 - Схема получения печатных проводников электрохимическим методом: а - заготовка платы из нефольгированного диэлектрика с технологическими отверстиями; б - негативный рисунок схемы проводников; в -- плата с печатными проводниками; 1 -- основание платы; 2 -- резист; 3 -- печатные проводники платы.

Электрохимический метод заключается в нанесении на плату фоторезиста и получение негативного рисунка схемы. Незащищенные участки платы, соответствующие будущим токоведущим проводникам, металлизируются химическим, а затем электрохимическим способами в соответствии с рисунком 1.

При этом металлизируются все монтажные отверстия, предназначенные для установки навесных элементов и электрической связи проводников при их двустороннем расположении.

Этот метод осуществляется посредством следующих операций:

1 Входной контроль листа диэлектрика;

2 Резка заготовок;

3 Сверление базовых технологических отверстий;

4 Сверление монтажных отверстий на станке с ЧПУ;

5 Подготовка поверхности;

6 Химическое меднение;

7 Усиление меди гальваническим меднением;

8 Получение защитного рисунка на пробельных местах;

9 Гальваническое меднение;

10 Гальваническое покрытие сплавом олово-свинец;

11 Удаление защитного рельефа;

12 Травление меди с пробельных мест;

13 Обработка по контуру;

14 Контроль по ТУ.

4.3 Установка нанесения сухого пленочного фоторезиста

В настоящее время разработаны новые способы и устройства нанесения сухого пленочного фоторезиста, обеспечивающие высокую точность нанесения и исключающие потерю фоторезиста.

Возрастающие требования к точности и качеству схем, необходимость автоматизации процессов и рост объемов выпуска плат привели к замене жидких фоторезистов сухим пленочным фоторезистом (СПФ). В настоящее время как у нас в стране, так и за рубежом разработаны и внедрены сухие пленочные фоторезисты.

Рисунок 2 - Принцип работы установки для двустороннего нанесения пленочного фоторезиста: 1 - стол; 2 - заготовка платы с нанесенным фоторезистом; 3 - металлизированная заготовка платы; 4 - прижимные протягивающие валки; 5 - нагревательные плиты; 6 - барабан с фоторезистам; 7 - барабан с защитной пленкой.

На рисунке 2 показан принцип работы установки, предназначенной для двустороннего нанесения пленочного фоторезиста в условиях серийного изготовления плат. Адгезия СПФ к металлической' поверхности заготовок плат обеспечивается разогревом пленки фоторезиста на плите до размягчения с последующим прижатием при протягивании заготовки между валками. Установка снабжена термопарой и прибором контроля температуры нагрева пленки фоторезиста. На установке можно наносить СПФ на заготовки шириной до 600 мм со скоростью их прохождения между валками 1,0-3,0 м/мин. Фоторезист нагревается до температуры 110-120 С.

4.4 Анализ дефектов фотопечати

Таблица 3.

Вид дефекта

Причины дефекта

Способы устранения

Складки и вздутия в пленке

Плохая намотка рулона

Не отрегулировано натяжение в пленке

Ровно намотать рулон

Отрегулировать натяжение в пленке

Отслаивание пленки с заготовки

Плохая подготовка поверхности заготовок

Нарушение режимов нанесения

Улучшить качество подготовки поверхности

Нанести пленку в соответствии с технологией

Механические включения

Загрязненность фоторезиста или воздушной среды помещения

Очистить фоторезист и воздух помещения от примесей

Плохое отделение лавсановой пленки при проявлении

Повышенная температура или увеличенное время при экспонировании

Понизить температуру либо уменьшить время при экспонировании

Набухание, приподнятые края, разрушение защитного рисунка

Недостаточное экспонирование

Передержка при проявлении

Нарушение режимов нанесения

Продолжить процесс экспонирования

Контролировать время выдержки

Нанести пленку в соответствии с технологией

Прилипание фотошаблона к пленке при экспонировании

Завышена температура в зоне экспонирования

Несоответствие времени выдержки характеристикам ламп

Понизить температуру в зоне экспонирования

Выдержать время, соответствующее характеристикам данных ламп

Фоторезист не удаляется

Избыточная толщина металлического покрытия

Загрязненный раствор для удаления

Недостаточное давление, под которым подается раствор

Уменьшить толщину металлического покрытия

Очистить раствор от примесей

Увеличить давление

5. Исследовательская часть

5.1 Методика работы с прибором

Программатор подключается к компьютеру типа IBM PC через параллельный порт с помощью стандартного кабеля от принтера. Если на компьютере только один параллельный порт и к нему подключен принтер (это наиболее типичная ситуация), то для подключения программатора к компьютеру надо отсоединить кабель от принтера и подсоединить к программатору. При переключениях кабеля питание программатора и принтера обязательно должно быть выключено (компьютер можно не выключать) во избежание выхода из строя параллельного порта.

По умолчанию для программатора и для принтера задан порт LPT1. Если какое-либо из этих устройств подключено к другому порту (LPT2 или LPT3), то после запуска программы надо задавать этот порт (с помощью соответствующей команды из меню «Сервис»). Для принтера порт можно не задавать, если не предполагается печать дампа памяти.

В комплект программатора входят также 4 кроссовые платы с панельками, в которые устанавливаются программируемые микросхемы. К программатору подключается одна из кроссовых плат, в зависимости от типа микросхемой ПЗУ, с которой предстоит работать. Переключать кроссовые платы, а также вставлять микросхемы в панельки и вынимать их оттуда можно при включенном питании программатора, т.к. питание на панельки поступает только на время выполнения команды (чтение с ПЗУ, прожигание, сравнение с буфером и т.д.).

Программное обеспечение программатора состоит из следующих файлов:

turbo_pr.exe - запускаемый файл

turbo_pr.ovr - оверлейный (дополнительный) файл

turbo_pr.tit - файл, содержащий картинку с начальной заставкой

turbo_pr.hlp - файл помощи (помощь вызывается по нажатию клавиши F1)

turbo_pr.hd - файл для организации контекстной помощи

Все эти файлы должны находиться в одном каталоге, причем обязательными являются только первые два файла.

Рисунок 3 - Окно программы Turbo.

Питание программатора можно включать и выключать как до запуска программы «turbo_pr.exe», так и в процессе ее выполнения. Перед выполнением любой команды работы с ПЗУ (чтение, прожигание, проверка на чистоту и т.д.) программа всегда проверяет готовность программатора. Если программатор не включен или вообще не подключен к компьютеру, то выдается сообщение «Программатор не готов» и команда не выполняется.

Можно запустить программу в демонстрационном режиме, при котором готовность программатора не проверяется. Для этого надо набрать в командной строке «turbo_pr D» и нажать клавишу Enter.

Работа с программатором осуществляется с использованием системы меню и, как правило, не вызывает затруднений. В программе предусмотрена контекстная помощь (при нажатии клавиши F1 на экран выводится страница помощи, соответствующая выбранному пункту меню).

В процессе выполнения программы на экране постоянно отображается информация буфера, который представляет из себя ОЗУ объемом 64 Кбайт. Этот буфер используется как приемник информации при чтении с ПЗУ и как источник информации при программировании или проверке ПЗУ. Рабочая область буфера задается пользователем перед выполнением каждой команды, использующей буфер. При выборе соответствующего пункта меню (например, «Чтение с ПЗУ») на экране появляется диалоговое окно, в котором можно задать начальный и конечный адреса буфера, а также начальный адрес микросхемы ПЗУ. По умолчанию (если ничего не менять) задано нулевое значение для начального адреса буфера и начального адреса микросхемы, а для конечного адреса буфера задано максимальное значение адреса выбранной микросхемы.

Если требуется читать, программировать или проверять не всю микросхему, а только ее часть (а также в том случае, когда требуется использовать не начальную область буфера), надо изменить адреса, заданные по умолчанию. Пусть, например, требуется запрограммировать ячейки с адресами 50...7F информацией из буфера, начиная с адреса 250 (все адреса задаются в 16-ричном коде).

Тогда надо задать начальный адрес буфера равным 250, начальный адрес ПЗУ равным 50, а конечный адрес буфера 27F. Объем памяти микросхем 271000, 28F010, 28F020 и КМ1801РР1 превышает размер буфера. Такие микросхемы условно разбиты на несколько частей (по 64 Кбайт каждая). Каждая часть представлена в списке выбираемых микросхем как отдельная микросхема, к названию которой добавляется символ нижнего подчеркивания и порядковый номер (например, 271000_1, 271000_2). Команды чтения, прожигания и проверки для этих микросхем выполняются только для выбранной части микросхемы. Команда «Проверка на чистоту» выполняется для всей микросхемы, независимо от того, какая часть выбрана.

В меню «Сервис» есть пункт «Алгоритм программирования», с помощью которого для некоторых микросхем можно задавать альтернативные алгоритмы программирования. Ниже приводится краткая информация об алгоритмах, используемых в программаторе.

Алгоритм «Паспорт» обеспечивает программирование микросхемы ПЗУ в соответствии с временными диаграммами, приводимыми в литературе. Алгоритмы «Standard» и «Intelligent» применяются для микросхем с ультрафиолетовым стиранием. Алгоритм «Standard» реализует выдачу одного программирующего импульса длительностью 50 мсек. при программировании каждого байта. Алгоритм «Intelligent» обеспечивает более высокую скорость программирования, чем «Standard». При этом алгоритме вместо одного программирующего импульса выдается серия коротких импульсов (длительностью 1 мсек.) до тех пор, пока ячейка не запрограммируется (но не более 15 импульсов, если ячейка вообще не программируется), а затем подается еще один импульс длительностью, в 4 раза большей, чем суммарная длительность всех предшествовавших коротких импульсов.

Алгоритм «Адаптивный» (применяется для некоторых микроконтроллеров) похож на алгоритм «Intelligent». Тоже выдается серия программирующих импульсов (до 25) длительностью 25 мксек., пока ячейка не запрограммируется, а затем подаются еще 3 таких же импульса.

Кроме алгоритма программирования, с помощью меню «Сервис» можно изменить режим программирования. По умолчанию задан режим «Нормальный». В этом режиме программируются все ячейки из заданного диапазона адресов, кроме тех, для которых задано исходное значение (как для «чистой» микросхемы). В режиме «Быстрый» не программируются все ячейки, информация в которых совпадает с заданной. Этот режим позволяет быстро допрограммировать уже запрограммированную микросхему.

В режиме «Отладка» выполнение команды чтения с ПЗУ, а также команды программирования ПЗУ зацикливается, что позволяет использовать осциллограф для поиска неисправностей в программаторе.

5.2 Описание команд меню программы TURBO

5.2.1 Команда <Файл> главного меню

Данная команда позволяет из своего подчиненного меню загружать данные в буфер редактора ПЗУ, предварительно задав имя файла ввода или выбрав его из каталога. Причем можно загружать не весь файл, а только четные или только нечетные байты. Есть также возможность загружать данные из файла 16-ричного формата. Кроме того, команда позволяет из своего подчиненного меню записывать в заданный файл вывода информацию из буфера редактирования или из микросхемы ПЗУ. Можно также распечатать буфер редактора ПЗУ на принтере. По команде подчиненного меню <Конец работы> завершается работа с программатором с выходом в DOS.

5.2.2 Команда <Файл> главного меню для микросхем ПЛМ

Для микросхем ПЛМ эта команда позволяет из своего подчиненного меню загружать данные в буфер редактора ПЛМ из заданного файла ввода, а также сохранять информацию этого буфера в заданном файле вывода (имя файла может быть выбрано из каталога). По команде подчиненного меню <Конец работы> завершается работа с программатором с выходом в DOS. Остальные пункты подчиненного меню недоступны.

5.2.3 Редактирование имени файла

Допускается вводить полное имя в формате:

[<path>]<name><.ext>

В имени и в расширении можно использовать метасимволы <*>, <?> по правилам DOS. После ввода имени файла появляется либо каталог файлов, либо сообщение об ошибке. Ввод пустого имени предполагает вывод текущего каталога. Значение <C:>, например, выводит корневой каталог диска <C:> и т.д.

5.2.4 Выбор файла из каталога

Для выбора файла надо выделить его имя, используя клавиши-стрелки, и нажать <Enter>. Если <Enter> нажата на имени подчиненного каталога (<name\>) или родительского каталога (<..\>), то предъявляются для выбора файлы соответствующего каталога.

Для смены корневого каталога необходимо в окне для ввода имени файла ввести имя этого каталога, например, <a:>, а для вывода текущего каталога имя файла должно иметь пустое значение.

5.2.5 Адрес загрузки для файла ввода

Вводится начальный адрес буфера редактора ПЗУ для загрузки туда информации из бинарного файла ввода. Поскольку объем буфера не превышает 64 Кбайт, информация из конкретного файла, с учетом начального адреса загрузки, может быть введена частично. Адрес вводится в 16-ричном формате. Чтобы уточнить его значение, можно воспользоваться командой <Форматы чисел> меню <Сервис>.

5.2.6 Диапазон адресов для записи файла вывода

Используется для задания области данных в буфере редактора ПЗУ или в микросхеме ПЗУ для сохранения соответствующей информации в бинарном файле. При попытке задания диапазона адресов более 64 Кбайт возникает сообщение об ошибке.

Значения начального и конечного адресов диапазона задаются в 16-ричном формате. Для перевода их с десятичных эквивалентов можно воспользоваться командой <Форматы чисел> меню <Сервис>.

5.2.7 Команда <Файл загрузить>

Команда загружает из выбранного файла в буфер редактора ПЗУ, начиная с заданного адреса, все байты или столько байт, сколько войдет до конца буфера.

5.2.8 Команда <Файл загрузить> для микросхем ПЛМ

Для случая работы с микросхемой ПЛМ команда загружает информацию из выбранного файла в буфер редактора ПЛМ, причем загружаемый файл должен иметь специальный текстовый формат (файлы такого формата создаются командой <Буфер сохранить>, когда выбрана микросхема ПЛМ). При загрузке файл контролируется на допустимость информации.

5.2.9 Команда <Четные байты загрузить>

По этой команде из бинарного файла ввода считываются в буфер редактора ПЗУ только четные байты, начиная с заданного адреса буфера. Их количество не может превысить допустимую область загрузки.

5.2.10 Команда <Нечетные байты загрузить>

По этой команде из бинарного файла ввода считываются в буфер редактора ПЗУ только нечетные байты, начиная с заданного адреса буфера. Их количество не может превысить допустимую область загрузки.

5.2.11 Команда <Загрузить HEX-файл>

Данные из файла 16-ричного формата загружаются в буфер редактора ПЗУ автоматически по нужным адресам. Непосредственно перед такой загрузкой целесообразно по всем адресам буфера редактирования записать константу, соответствующую байту, считанному с "чистой" микросхемы ПЗУ требуемого типа, т.е. создать определенный фон. Обычно имена HEX-файлов имеют расширение <.hex>.

5.2.12 Команда <Файл сохранить>

Эта команда сохраняет в заданном бинарном файле вывода данные заданного диапазона адресов буфера редактора ПЗУ.

5.2.13 Команда <Файл сохранить> для микросхем ПЛМ

Для микросхем ПЛМ эта команда сохраняет в заданном файле вывода данные буфера редактора ПЛМ. Данные записываются в файл в специальном текстовом формате.

5.2.14 Команда <ПЗУ сохранить>

Эта команда сохраняет в заданном бинарном файле вывода данные заданного диапазона адресов выбранной микросхемы ПЗУ.

5.2.15 Команда <Дамп буфера печатать>

Для заданного диапазона адресов дамп буфера редактора ПЗУ распечатывается на принтере, подключенном к одному из существующих в компьютере параллельных портов LPT1 ... LPT3 (выбирается командой <Порт для принтера> меню <Сервис>). Если задан один порт и для программатора, и для принтера, то в нужный момент необходимо при выключенных обоих устройствах (программаторе и принтере) отсоединить кабель связи с портом от программатора, подключить к принтеру и подать на него питание. Отключение кабеля от принтера и подключение его обратно к программатору также должно производиться при выключенных обоих устройствах (во избежание выхода из строя порта LPT).

5.2.16 Команда <Конец работы>

По этой команде завершается работа программы и происходит выход в DOS.

5.2.17 Команда <ПЗУ> главного меню

Команда <ПЗУ> имеет свое подчиненное меню с командами для работы с микросхемами ПЗУ или ПЛМ:

а) выбор типа микросхемы;

б) проверка микросхемы на чистоту стирания;

в) подсчет контрольной суммы микросхемы;

г) считывания данных из микросхемы в буфер;

д) подбор микросхемы для программирования;

е) программирование микросхемы;

ж) стирание микросхемы ПЗУ.

5.2.18 Команда <Выбор ПЗУ>

Выбор типа микросхемы ПЗУ или ПЛМ производится в 2 этапа. Сначала из предлагаемого списка выбирается семейство. Для этого клавишами-стрелками выделяется нужное наименование и нажимается <Enter>. Затем из предложенного списка типов микросхем этого семейства выбирается нужный тип. Если в текущем сеансе работы программатора выбор типа микросхемы производился впервые, то разблокируются и становятся доступными ряд команд подчиненных меню <Файл>, <ПЗУ> и <Cервис>. Информацию о выбранной микросхеме ПЗУ можно увидеть посредством команды <Информ> главного меню.

5.2.19 Команда <Проверка ПЗУ на чистоту>

По этой команде данные из микросхемы ПЗУ считываются, сравниваются с ее контрольным байтом, после чего-либо появляется сообщение о том, что ПЗУ "чистое", либо выводится список ошибок и сообщение с итоговыми результатами тестирования.

5.2.20 Команда <Проверка ПЗУ на чистоту> для микросхем ПЛМ

Если выбрана микросхема ПЛМ, то по этой команде информация из микросхемы ПЛМ считываются и сравнивается с ее контрольным байтом. Если ошибки нет, в нижней части таблицы появляется соответствующее сообщение, исчезающее при нажатии <Esc> или <Enter> (или через 2 сек. автоматически). При обнаружении ошибок выводится сообщение об их количестве. Кроме того, все ошибочные символы, считанные с микросхемы, отображаются в таблице красным цветом (справа от соответствующих символов буфера).

5.2.21 Команда <Контрольная сумма ПЗУ>

Контрольная сумма ПЗУ или ПЛМ подсчитывается для заданного диапазона адресов суммированием каждого очередного считанного байта из буфера редактора ПЗУ либо из микросхемы ПЗУ (или из микросхемы ПЛМ) с точностью до слова, до байта или до байта с переносом (способ подсчета выбирается командой <Тип контрольной суммы> из меню <Сервис>).

5.2.22 Команда <Чтение ПЗУ>

После ввода необходимого диапазона адресов для считывания данных из микросхемы ПЗУ, ввода начального адреса загрузки буфера редактора ПЗУ и подтверждения правильности ввода этих значений происходит загрузка буфера информацией из ПЗУ.

5.2.23 Команда <Чтение ПЗУ> для микросхем ПЛМ

Если выбрана микросхема ПЛМ, то по этой команде информация из микросхемы ПЛМ считывается в буфер редактора ПЛМ.

5.2.24 Команда <Подбор ПЗУ для записи>

Для данных по заданному диапазону адресов буфера редактора ПЗУ и области "нечистой" микросхемы ПЗУ производится анализ с последующим сообщением результатов проверки конкретной микросхемы на возможность ее допрограммирования.

5.2.25 Команда <Подбор ПЗУ для записи> для микросхем ПЛМ

Если выбрана микросхема ПЛМ, то по этой команде информация из микросхемы ПЛМ анализируется на возможность ее допрограммирования информацией из буфера ПЛМ (если микросхема не "чистая"). Если ошибок нет, в нижней части таблицы появляется соответствующее сообщение, исчезающее при нажатии <Esc> или <Enter> (или через 2 сек. автоматически). При обнаружении ошибок выводится сообщение об их количестве. Кроме того, все ошибочные символы, считанные с микросхемы, отображаются в таблице справа от соответствующих символов буфера. Ошибочный символ отображается зеленым цветом, если ошибка исправимая (перемычка целая, а должна быть прожжена), или красным цветом, если ошибка неисправима (перемычка, которая должна быть целой, уже прожжена).

5.2.26 Команда <Запись в ПЗУ>

Непосредственно процессу программирования ПЗУ должны предшествовать:

а) выбор нужного типа микросхемы ПЗУ;

б) подготовка данных в нужной области буфера редактирования;

в) установка микросхемы ПЗУ в программатор и его включение;

г) уточнение, при необходимости, через команды меню <Сервис> алгоритма, напряжения и режима программирования, порта подключения программатора;

д) после нажатия <Enter> - задание диапазона адресов в буфере редактора ПЗУ и начального адреса микросхемы.

Далее автоматически происходит контроль микросхемы ПЗУ на возможность записи в нее информации и предлагается выбрать вариант программирования: <Непрерывное> или <До первой ошибки>. Процесс программирования отражается с помощью прогресс - индикатора. По окончании программирования индицируется время, израсходованное для него, и запускается процесс тестирования запрограммированной микросхемы с возможными сообщениями об ошибках.

5.2.27 Команда <Запись в ПЗУ> для микросхем ПЛМ

Непосредственно процессу программирования ПЛМ должны предшествовать:

а) выбор микросхемы ПЛМ;

б) подготовка данных в буфере редактора ПЛМ;

в) установка микросхемы ПЛМ в программатор и его включение;

г) уточнение, при необходимости, через команды меню <Сервис> алгоритма, напряжения и режима программирования, порта подключения программатора.

После нажатия <Enter> сначала микросхема проверяется на возможность программирования, после чего выводится сообщение о результате проверки. Если есть ошибки, то они отображаются в таблице (так же, как при выполнении команды <Подбор ПЗУ>). Кроме того, в нижней части таблицы появляется меню, с помощью которого можно выбрать режим программирования до первой ошибки или до конца. Если выбрать первый режим, то после прожигания каждой перемычки производится проверка ее состояния. Если перемычка не прожглась, то выводится соответствующее сообщение и появляется меню, с помощью которого можно либо повторить, либо продолжить дальше, либо прекратить программирование микросхемы. Если обнаружена прожженная перемычка, которая должна быть целой, то выводится сообщение о невозможности программирования и появляется то же меню для продолжения или прекращения программирования. Обнаруженная ошибка отображается в таблице зеленым или красным цветом (как при выполнении команды <Подбор ПЗУ>). После окончания программирования микросхемы производится ее контроль путем сравнения информации микросхемы с буфером ПЛМ и отображение всех найденных ошибок. Для возврата в меню надо нажать <Esc> или <Enter>. Если ошибок нет, то возврат в меню осуществляется автоматически через 2 сек.

5.2.28 Команда <Стирание ПЗУ>

Эта команда предназначена для стирания электрически стираемых микросхем ПЗУ. Она разблокируется только при выборе микросхемы семейства FLASH или КМ1801РР1.

5.2.29 Команда <Редактор> главного меню

Редактор ПЗУ предназначен для подготовки данных для микросхем ПЗУ. Буфер этого редактора отображается на экране после загрузки программы, а в дальнейшем - при выборе любой микросхемы ПЗУ (при выборе микросхемы ПЛМ отображается буфер редактора ПЛМ).

Данные для программирования микросхемы ПЗУ готовятся в буфере редактирования в определенной области. Они могут загружаться туда из файла бинарного или 16-ричного формата либо вводиться вручную.

5.2.30 Команды навигации редактора ПЗУ:

Left/Right/Up/Dn ............. влево/вправо/вверх/вниз;

^Left/^Right .......... к предыдущему/следующему байту;

Home/End ..... на первый/последний байт текущей строки;

^Home/^End.. на первый/последний байт текущей страницы;

PgUp/PgDn ........... на предыдущую/следующую страницу;

^PgUp/^PgDn ............. на первую/последнюю страницу;

Enter .......... ввести адрес буфера для вывода данных.

5.2.31 Команды форматов отображения/редактирования данных:

Таблица 4.

Tab

Shift+Tab

F2

Ctrl+F2

16-ричный/бинарный;

16-ричный/ASC-II;

8-ричный для текущего байта;

десятичный для текущего байта.

Другие

команды редактора ПЗУ:

F1

F3

F4

F5

F6

F7

F8

F10

вызвать справку;

сохранить данные области буфера или ПЗУ в файле;

задать и ввести в облать буфера константу;

инвертировать данные в области буфера;

копировать данные из одной области буфера в другую

или из области ПЗУ в буфер;

сравнить данные из двух областей буфера или ПЗУ и

буфера;

подсчитать контрольную сумму данных из области ПЗУ

или буфера;

выйти из редактора ПЗУ в главное меню.

Примечание. При использовании команд F2..F9 для ввода значений адреса используется 16-ричный формат. Если в связи с этим возникают проблемы, следует обратиться к команде <Форматы чисел> меню <Сервис>.

5.2.32 Команда <Редактор> главного меню для микросхем ПЛМ

Редактор ПЛМ предназначен для подготовки данных для микросхем ПЛМ. Буфер этого редактора отображается на экране после выбора микросхемы ПЛМ.

Буфер редактора ПЛМ представляет из себя ОЗУ, в которое можно считать информацию (с микросхемы ПЛМ или из текстового файла специального формата) или ввести ее вручную. Информация, содержащаяся в буфере ПЛМ, отображается на экране в виде стандартной таблицы истинности ПЛМ. Эта таблица содержит 3 области для отображения разных слоев логических функций: слоя И, слоя ИЛИ и слоя НЕ.

На микросхеме ПЛМ типа К556РТ1 или К556РТ2 (выходы с открытым коллектором или с тремя состояниями соответственно) можно реализовать до 8 логических функций F0...F7 от 16 входных переменных A0...A15. Каждая из функций F0...F7 представляет собой дизъюнкцию (прямую или инверсную) нескольких конъюнкций входных переменных. Слой И микросхемы содержит 48 конъюнкторов, каждый из которых имеет по 32 входа (по 2 входа для каждой входной переменной: прямой вход и инверсный вход). На каждом входе имеется плавкая перемычка, которую можно прожечь при программировании микросхемы. Слой ИЛИ содержит 8 дизъюнкторов, каждый из которых имеет 48 входов, соединенных с выходами конъюнкторов. На каждом входе также имеется плавкая перемычка. Слой НЕ содержит 8 двухвходовых элементов "Исключающее ИЛИ". Один из входов подключен к выходу дизъюнктора, а второй заземлен (через перемычку). Каждый из этих элементов может быть либо инвертором (если перемычку на его входе прожечь) или повторителем (если перемычка целая).

Левая часть таблицы отражает состояние перемычек слоя И микросхемы ПЛМ. Каждый из 48 конъюнкторов представлен в таблице одной строкой. Состояние каждой пары перемычек отображается одним символом:

"-" - обе перемычки целые

"x" - обе перемычки прожжены

"H" - целая только перемычка прямого входа

"L" - целая только перемычка инверсного входа

Если у какого-либо конъюнктора не прожжена хотя бы одна пара перемычек (символ "-" в таблице), то на выходе этого конъюнктора всегда будет 0, т.е. этот конъюнктор не будет влиять ни на одну из выходных логических функций. Если у конъюнктора прожжены обе перемычки для какой-либо входной переменной (символ "x" в таблице), то эта переменная не будет влиять на выходное значение этого конъюнктора, т.е. не будет входить в его логическую функцию. Если прожжена только одна перемычка из пары, то соответствующая входная переменная будет входить в логическую функцию этого конъюнктора в прямом или инверсном виде (соответственно символ "H" или "L" в таблице).

Правая часть таблицы отражает состояние перемычек слоя ИЛИ микросхемы ПЛМ. Каждый из 8 дизъюнкторов представлен в таблице одним столбцом из 48 символов. Состояние каждой перемычки отображается одним символом:

"A" - перемычка целая

"-" - перемычка прожжена

Наличие какой-либо перемычки у дизъюнктора означает, что к этому входу подключен соответствующий конъюнктор, т.е. логическая функция этого конъюнктора входит в состав выходной логической функции. Любой из 48 конъюнкторов может быть подключен не к одному, а к нескольким дизъюнкторам (при этом соответствующие выходные функции будут содержать одинаковые конъюнкции).

Слой НЕ микросхемы представлен одной строкой символов в правой половине верхней части таблицы. Состояние каждой перемычки отображается одним символом:

"L" - перемычка целая

"H" - перемычка прожжена (при этом соответствующая

выходная функция инвертируется)

При выборе микросхемы К556РТ1/2 (командой <Выбор ПЗУ> из меню <ПЗУ>) на экране появляется таблица, отображающая исходное состояние буфера редактора ПЛМ, соответствующее "чистой" микросхеме, у которой все перемычки целые.

Чтение информации в буфер редактора ПЛМ и запись из этого буфера в файл осуществляется так же, как и для микросхем ПЗУ: чтение в буфер редактора ПЛМ из микросхемы - командой <Считывание ПЗУ> меню <ПЗУ>, чтение из файла и запись в файл - командами <Файл загрузить> и <Буфер сохранить> меню <Файл>.

После выбора пункта меню <Редактор> информацию буфера редактора ПЛМ можно редактировать с помощью клавиатуры. На экране помещается только 12 строк таблицы (всего их 48). Для отображения последующих или предыдущих строк надо перемещать курсор вниз с последней строки или вверх с первой строки. Для быстрой смены видимой части таблицы можно использовать клавиши PgDn и PgUp.

Проверка микросхемы ПЛМ на чистоту или на возможность программирования (подбор ПЗУ) осуществляется из меню <ПЗУ>, а сравнение информации микросхемы с буфером редактора ПЛМ - из меню редактора (клавишей F7). Если ошибок нет, в нижней части таблицы появляется соответствующее сообщение, исчезающее при нажатии <Esc> или <Enter> (или через 2 сек. автоматически). При обнаружении ошибок выводится сообщение об их количестве. Кроме того, все ошибочные символы, считанные с микросхемы, отображаются в таблице справа от соответствующих символов буфера. Ошибочный символ отображается зеленым цветом, если ошибка исправимая (перемычка целая, а должна быть прожжена), или красным цветом, если ошибка неисправима (перемычка, которая должна быть целой, уже прожжена). Для просмотра всех ошибок (всех 48 строк таблицы) используются те же клавиши управления курсором, что и при редактировании буфера. Для возврата в меню (или в режим редактирования) надо нажать <Esc> или <Enter>.

5.2.33 Команда <Информ> главного меню

Данная команда выводит окно с информацией о выбранной микросхеме ПЗУ или ПЛМ. Ниже показан пример такого окна:

Семейство ПЗУ 27xx/К573РФ

Тип ПЗУ 2716

Количество слов 2048

Бит в слове 8

Контрольный байт (hex) FF

Начальный адрес (hex) 0000

Конечный адрес (hex) 07FF

Напряжение прогр. [в] 25.0

Алгоритм программиров. Стандартный

Режим программирования Ускоренный

Время программирования 1 мин 50 сек

Тип контрольной суммы Слово

Порт для программатора LPT1

Порт для принтера LPT1

Файл ввода PROBA.DAT

Адреса загрузки (hex) 0000-37FF

Рисунок 4 - Окно команды <Информ>.

Напряжение, алгоритм и режим программирования для выбранной микросхемы могут быть скорректированы соответствующими командами меню <Сервис>. Время программирования приводится ориентировочное. Там же в меню <Сервис> соответствующими командами можно переназначить способ расчета контрольной суммы, привязку параллельных портов для подключения программатора и принтера. Строка "Файл ввода ..." индицируется только после загрузки файла в буфер редактора. Строка "Адреса зарузки ..." индицируется только в случае, если загружен бинарный файл ввода.

5.2.34 Команда <Сервис> главного меню

Команда имеет подчиненное меню, с помощью которого можно:

а) ввести одно или два числа в одном из четырех форматов (десятичном, 16-тичном, 8-ричном или двоичном) и получить их сумму и разность (в этих же форматах);

б) сделать в нужном порядке перестановку бит в байтах необходимой области буфера редактора ПЗУ;

в) для выбранной микросхемы модифифицировать:

1) алгоритм программирования

2) режим программирования

3) напряжение программирования

4) выбрать способ расчета контрольной суммы

5) назначить программатору конкретный параллельный порт

6) назначить принтеру конкретный параллельный порт

5.2.35 Команда <Форматы чисел>

Данная команда выводит простой калькулятор для суммирования и вычитания двух чисел. Причем все числовые значения одновременно отображаются во всех четырех форматах: десятичном, 16-ричном, 8-ричном и двоичном. Для ввода числового значения необходимо клавишами-стрелками выбрать требуемый формат, нажать <Пробел>, ввести искомое значение и завершить ввод нажатием <Enter>.

5.2.36 Команда <Перестановка бит в байте>

Эта команда предназначена для перестановки бит в каждом байте заданной области буфера редактора ПЗУ.

Первоначально появляется диалоговое окно со стандартной оцифровкой бит в байте - от 0 до 7. С помощью клавиш-стрелок можно подогнать курсор к нужной позиции и изменить номер байта на требуемый, например, 0 - на 7. После проведения всех корректировок и нажатия <Enter> следует ввести нужный диапазон адресов области буфера редактирования для модификации данных и подтвердить свой выбор.

5.2.37 Команда <Алгоритм программирования ПЗУ>

Данная команда выводит окно с текущим алгоритмом программирования, который выводится также о окне <Информ>. Если существует возможность корректировки, то на нижней части окна присутствуют один или два указателя <Вниз>, <Вверх>. Тогда соответствующими клавишами-стрелками можно выбрать альтернативный вариант, а затем нажатием <Enter> зафиксировать свой выбор.

5.2.38 Команда <Режим программирования ПЗУ>

По этой команде выводится окно с текущим режимом программирования, который выводится также в окне <Информ>. Если есть возможность корректировки, то на нижней части рамки окна присутствуют один или два указателя <Вниз>, <Вверх>. Тогда соответствующими клавишами-стрелками можно выбрать альтернативный вариант, а затем нажатием <Enter> зафиксировать свой выбор.

Кроме режимов программирования "Нормальный" и "Ускоренный", для тестирования программатора есть режим "Отладка", в котором процесс программирования или чтения микросхемы зацикливается (результат чтения в первом цикле отображается в буфере редактора) до нажатия <Esc>.

Для микросхем семейства MK51 еще предусмотрены режимы "Бит защиты 1", "Бит защиты 2" (для программирования битов защиты от чтения внутреннего ПЗУ) и "Шифр.таблица" (для программирования шифровальной таблицы).

5.2.39 Команда <Напряжение программирования ПЗУ>

Эта команда выводит окно с текущим значением напряжения программирования, которое, в случае его отличия от штатного значения, выводится в окно <Информ> и в окно с прогресс-индикатором процесса программирования (справа от штатного значения, например, 25 --> 24.5). Если есть возможность корректировки напряжения, то на нижней части рамки окна присутствуют один или два индикатора <Вниз>, <Вверх>. Тогда соответствующими клавишами-стрелками можно выбрать альтернативный вариант и зафиксировать свой выбор нажатием <Enter>.

5.2.40 Команда <Тип контрольной суммы>

Данная команда позволяет выбрать один из трех вариантов расчета контрольной суммы для назначаемой области буфера редактора ПЗУ или для выбранной микросхемы (ПЗУ или ПЛМ):

а) с точностью до слова

б) с точностью до байта

в) с точностью до байта с учетом переносов.

5.2.41 Команда <Порт для программатора>

Эта команда "привязывает" аппаратуру программатора к одному из существующих параллельных портов компьютера LPT1...LPT3. Если в компьютере поддерживается только один порт, например, LPT1, то он назначается и программатору и принтеру. В этом случае непосредственно перед использованием программатора, если он не подключен к соответствующему порту кабелем, необходимо выполнить такую связь (при переключении кабеля принтер и программатор надо обязательно выключать).

5.2.42 Команда <Порт для принтера>

Команда назначает принтеру один из доступных параллельных портов LPT1 ... LPT3 компьютера (для распечатки данных буфера редактора ПЗУ или редактора ПЛМ). Если в компьютере доступен только один порт, например, LPT1, то он может использоваться и программатором и принтером. Для этого непосредственно перед использованием конкретного устройства его необходимо с этим портом соединить кабелем (при переключении кабеля принтер и программатор надо обязательно выключать).

5.3 Анализ работы устройства

Формирователь сигналов IBM представляет собой шинный формирователь, который пропускает сигналы с шины данных IBM (выходные сигналы регистра данных последовательного порта) на внутреннюю шину программатора, когда сигнал MODE_OUT имеет нулевое значение. По положительному фронту сигнала MODE_OUT в регистре управляющих сигналов запоминаются управляющие сигналы, которые поступают по той же шине IBM. Четыре управляющих сигнала (READ, WRITE, MODE_OUT и OUT_HI) являются выходными сигналами регистра управления последовательного порта.

Информация для прожигания ячейки ПЗУ (адрес и данные), поступающая с шины данных IBM, запоминается в регистре адреса и регистре данных. Распределение информации по регистрам осуществляется путем программирования соответствующих управляющих сигналов.

Сигналы с выходов регистра адреса и регистра данных подаются непосредственно на микросхему ПЗУ. Кроме того, на нее поступают от одного до четырех сигналов с управляемых блоков питания. Напряжения на выходах этих блоков питания задаются информацией, записываемой в соответствующие регистры. Эта информация поступает с IBM точно так же, как данные для прожигания ячейки ПЗУ (через шинный формирователь IBM), а управляющие сигналы обеспечивают запись этой информации в соответствующие регистры.

Для чтения информации из ячейки ПЗУ сначала из IBM поступает адрес ячейки, который запоминается в регистре адреса, а затем управляющие сигналы открывают формирователь сигналов данных ПЗУ, пропуская информацию с шины данных ПЗУ на внутреннюю шину программатора. Сигнал MODE_OUT при открытом формирователе сигналов данных ПЗУ должен иметь единичное значение, отключающее формирователь сигналов IBM от внутренней шины программатора.

Чтение байта данных с внутренней шины программатора в IBM осуществляется через коммутатор в 2 этапа (по 4 бита), т.к. у последовательного порта IBM только 5 входных сигналов (входы регистра состояния). Подключение к выходу коммутатора старшего полубайта осуществляется при единичном значении сигнала OUT_HI, а при нулевом значении этого сигнала на выход коммутатора проходят сигналы младшего полубайта.

Формирователь сигналов адреса предназначен для считывания с ПЗУ младшего байта адреса. Это требуется для микросхем ПЗУ с общей 16-разрядной шиной для адреса и данных (например, КМ1801РР1). Шина адреса и данных этих микросхем является мультиплексированной (т.е. по ней сначала передается адрес, затем данные) и двунаправленной (при чтении из микросхемы данные передаются в обратную сторону). Для таких микросхем шина адреса/данных подключается к сигналам A0...A7, D0...D7 программатора, которые тоже являются двунаправленными.

Формирователь сигнала KROSS предназначен для идентификации кросс-платы. Сигнал KROSS, поступающий на формирователь с кросс-платы, скоммутирован на каждой кросс-плате с одним из разрядов адреса и поэтому повторяет значение этого разряда. Записывая в регистр адреса адрес с нулевым битом в определенном разряде, программа проверяет, соответствует ли подключенная кросс-плата микросхеме ПЗУ, выбранной пользователем.

6. Организационно-экономическая часть

6.1 Расчет себестоимости платы программатора

Основным исходным материалом для расчета себестоимости печатной платы для программатора микросхем ПЗУ служит основная производственная программа, табель трудоемкости изготовления узлов на плату программатора. В состав, которой входят трудоемкость на таких участках как химико-технологический участок (ХТУ), на котором осуществляется изготовление печатной платы; электромонтажный участок (ЭМУ), где производится монтаж электрорадиоэлементов; и, наконец, участок наладки теперь уже изготовленной платы, прошедшей весь технологический цикл изготовления и сборки печатной платы. Также для расчета необходимо знать затраты на сырье, материалы, покупные и комплектующие изделия, выпуск продукции. Основная производственная программа - это документ, в котором оговариваются все затраты на выпуск продукции.

В зависимости от типа производства и этапа проектирования, производственная программа может быть точной, приведенной и условной.

Для средне- и мелкосерийного производства применяют проектирование по приведенной программе. С этой целью все сборочные единицы разбивают на группы по конструктивным и технологическим признакам. В каждой группе выбирали сборочную единицу - представитель, по которой далее ведут расчеты.

Производственная программа рассчитывается, исходя из следующих соображений:

Проектированный участок должен иметь достаточные размеры с учетом размещения необходимого оборудования.

Годовая программа должна быть такой, чтобы выполнялись установленные нормативы (например, сменный мастер должен иметь в своем подчинении не менее 20-25 рабочих, а старший не менее 2-х мастеров) и т.д.

Таблица 5 - Сырьё и материалы.

Наименование

Ед. изм.

Кол-во

Цена за ед., руб.

Затраты на изд., руб.

1

СТЭФ.1-2ЛК

кг

0,32

180

57,60

2

Вспомогательные материалы

-

-

-

20,15

ИТОГО

77,75

К затратам на сырье и материалы добавляются транспортно-заготовительные расходы, которые составляют 8%.

ТЗРс = 8%* сырьё = 0,08*77,75 =6,22 руб.

Таблица 6 - Расчет затрат на комплектующие изделия

Наименование комплектующих изделий

Кол.

Цена за ед. изд., руб.

Затраты на изд., руб.

1

2

3

4

5

1

Диоды

2

Д310

16

1,56

24,96

3

КД522

21

0,54

11,34

4

КС168

2

1,63

3,26

5

Конденсаторы

6

КМ-6

6

5,20

31,20

7

Микросхемы

8

К555АП5

1

6,50

6,50

9

К555АП6

1

7,20

7,20

10

К555ИР23

1

8,40

8,40

11

К555КП11

1

4,29

4,29

12

К555ЛА13

2

3,90

7,80

13

К555ЛН3

13

2,08

27,04

14

К572ПА1

4

78,00

312

15

К574УД2

2

57,60

115,2

16

КР580ВВ55А

4

24,00

96,00

17

Резисторы

18

С2-33А-0,125

76

0,48

36,48

19

С2-33-0,25

52

0,48

24,96

20

С2-33А-0,5

8

0,77

6,16

21

С2-33А-1

1

0,84

0,84

22

Разъмы

23

ОНП-КГ-56-40-В53

1

26,70

26,70

24

CENR-36F

1

68,20

68,20

25

Транзисторы

26

КТ315

1

0,54

0,54

27

КТ361Г

20

0,90

18,00

28

КТ805

4

4,80

19,2

29

КТ814

8

2,73

21,84

30

КТ972

4

4,20

16,8

31

КТ973

4

4,20

16,8

ИТОГО

951,44

Тех. потери составляют 6% от суммы затрат на комплектующие изделия и вычисляются следующим образом:


Подобные документы

  • Схема электрической структурной и электрической принципиальной. Разработка технологического процесса изготовления платы. Экономическая себестоимость платы программатора. Безопасность и экологичность внедрения разработки. Методика работы с прибором.

    дипломная работа [658,7 K], добавлен 26.01.2009

  • Компоновка узлов на печатной плате игровой приставки. Технологический процесс монтажа микросхем на печатной плате. Выбор рационального места расположения элементов устройства. Расчет теплоотвода конвекцией. Расчет надежности печатной платы приставки.

    курсовая работа [88,2 K], добавлен 11.03.2013

  • Технические характеристики, описание конструкции и принцип действия (по схеме электрической принципиальной). Выбор элементной базы. Расчёт печатной платы, обоснование ее компоновки и трассировки. Технология сборки и монтажа устройства. Расчет надежности.

    курсовая работа [56,7 K], добавлен 07.06.2010

  • Разработка печатной платы коммутатора нагрузки на оптоэлектронном реле. Выбор метода изготовления печатной платы. Расчет элементов проводящего рисунка печатной платы, температуры в центре нагретой зоны печатной платы и ее расчет на вибропрочность.

    курсовая работа [880,5 K], добавлен 31.05.2023

  • Изготовление печатной платы устройства. Припаивание микросхем и радиоэлементов к печатному монтажу. Поиск и устранение неисправностей в готовом устройстве. Микросхемы МДП транзисторной логики. Схема операционного усилителя. Расчет потребляемой мощности.

    дипломная работа [1,0 M], добавлен 11.01.2011

  • Конструкция и характеристика устройства изменения голоса. Расчет габаритов печатной платы, показателей надежности и качества, ударопрочности печатной платы электронного узла, потребляемой мощности устройства. Технико-экономическое обоснование проекта.

    дипломная работа [1,4 M], добавлен 12.10.2015

  • Разработка структурной и принципиальной схемы, проектирование изготовления печатной платы. Расчёт потребляемой мощности и температурного режима блока, проектирование его корпуса. Чертёж основания блока устройства и сборочный чертёж блока устройства.

    курсовая работа [1,6 M], добавлен 19.11.2012

  • Разработка конструкции и технического процесса изготовления печатной платы. Условия эксплуатации электронной аппаратуры. Выбор типа конструкции и определение габаритных размеров печатной платы. Расчет диаметра монтажных отверстий и контактных площадок.

    курсовая работа [953,4 K], добавлен 05.05.2012

  • Исследование материалов, используемых при изготовлении печатной платы. Выбор типа и класса точности печатной платы. Электрическая схема прерывателя для подключения обычного светодиода. Создание посадочного места резистора. Вывод на печать чертежей платы.

    курсовая работа [1,8 M], добавлен 21.02.2013

  • Принцип работы и описание цифрового измерителя емкости оксидных конденсаторов. Выбор типа электрорадиоэлементов (ЭРЭ). Выбор метода изготовления печатной платы. Расчет параметров электрических соединений. Расчет печатной платы на механические воздействия.

    курсовая работа [108,4 K], добавлен 10.06.2009

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.