Материалы оптических волокон из кварцевого стекла

Определение физико-химических свойств материалов для изготовления ступенчатых волноводов методами плавления стекла, его парофазного (внешнего, осевого) и плазменного осаждения. Изучение строения оптоволоконного кабеля и его защиты от внешних факторов.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 27.11.2009
Размер файла 2,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Любая кабельная конструкция должна обеспечивать волокнам защиту от всевозможных внешних факторов -- например, сопротивление раздавливанию, растягиванию, трению, коррозии и старению -- без снижения пропускной способности волокон.

Волокно -- чувствительный материал к растяжению и сгибанию. Основной целью при разработке кабеля является создание защиты для волокон, действующей в процессе производства, монтажа и эксплуатации кабеля. Если волокно подвергается сильным внешним воздействиям, могут пострадать критические параметры волокна, такие как эксплуатационный срок службы и параметры затухания. С данной проблемой можно справиться двумя способами. Во-первых, при сборке кабеля все волокна должны соответствовать нужному качеству -- в производстве это обеспечивается системой гарантии качества, применяемой на заводе. Во-вторых, технология и проектирование кабеля должны проводиться экономичным образом для удовлетворения требований, предъявляемых с учетом методов проведения монтажа и назначения продукции.

При выборе конструкции кабеля для определенного назначения следует учесть ряд аспектов, к которым следует отнести:

* соответствие кабеля ГОСТ, ТУ, которые разрабатываются в соответствии с требованиями ITU-Т (Международный союз электросвязи -- сектор стандартизации телекоммуникаций), IEC (Международная электротехническая комиссия), и СЕСС (Комитет по электронным компонентам в составе CENELEC);

* соответствие ОК необходимым эксплуатационным характеристикам. При определении пропускной способности волокна следует учитывать потери волокна и требования по их изменению. Эти характеристики должны удовлетворять самым жестким условиям, которые наблюдаются при эксплуатации;

* кабель должен быть удобным в работе и при монтаже. Он должен иметь гибкость, цветовое кодирование, малый вес, сопротивление изгибам, раздавливанию и растяжению, создавать условия для быстрого монтажа и надежной эксплуатации;

* кабель должен быть удобным в сварке и заделке в концевые устройства. Удобная идентификация кабеля и волокна облегчает сварку и делает ее более точной. Внешние защитные оболочки и покрытия должны легко сниматься. Важным моментом является скол волокон и подгонка волокна и кабеля, а, также предохранение места сварки;

* кабель должен иметь удобную маркировку, которая способствует быстрому ремонту и сокращает время простоя кабельных магистралей;

* кабель должен соответствовать предъявляемым требованиям с учетом специфических климатических условий на месте эксплуатации. При выборе нужной конструкции кабеля для заданного назначения следует учитывать условия окружающей среды, в которой кабель будет эксплуатироваться.

Кабели, прокладываемые в канализации, и кабели для прямой прокладки в грунт следует покрывать броней для их защиты от абразивного износа в каменистом грунте и от повреждений, наносимых грызунами. Для таких кабелей рекомендуется применять гофрированную стальную бронеленту.

Для подводных кабелей, кабелей для прямой прокладки в сложном по категории грунте и для прокладки, где предъявляются жесткие требования относительно механической прочности, следует предпочесть стальную бронепроволоку.

Для воздушных кабелей следует учитывать расстояние между опорами при выборе силового элемента. Иногда большую выгоду приносит выбор более прочного силового элемента и увеличение расстояния между опорами. Важным фактором является устойчивость кабеля к вибрациям, вызываемым ветром, и также способность кабеля выдерживать скопления льда в холодных климатических условиях.

Влияние оптического кабеля на экологию незначительно. Для его уменьшения заводы изготовители не должны применять материалы, наносящие вред окружающей среде.

Основные элементы волоконно-оптического кабеля

Рис. Конструкция волоконно-оптического кабеля

Для любого кабеля важными характеристиками являются предел его прочности на разрыв, устойчивость к сжимающим и изгибающим усилиям, гибкость, защищенность от внешних воздействий, диапазон рабочих температур, срок службы и т.д. Величина этих характеристик зависит от конкретного применения кабеля. Так, ОК для наружного применения находится в экстремальных условиях. Он противостоит изменяющимся температурным условиям, налипанию льда, сильному ветру и грызунам, повреждающим его при подземной прокладке. Очевидно, что он должен быть прочнее кабеля, соединяющего оборудование внутри здания и работающего в контролируемых условиях. Кабель, прокладываемый под ковром в офисе, по которому ходят люди, двигают кресла, должен выдерживать дополнительную нагрузку по сравнению с кабелем внутри стен того же офиса.

Остановимся на основных элементах волоконно-оптического кабеля. На рис. предоставлены основные компоненты простого оптического кабеля с одним волокном. Конструкция кабеля может быть достаточно разнообразной, но общими являются следующие компоненты:

* оптическое волокно;

* буферная оболочка (ПЗО);

* силовой элемент;

* внешняя оболочка.

Конструкция сердечника оптического кабеля. Как правило, сердечник оптического кабеля образуется из одного или нескольких элементов, в состав которых входят оптические волокна. Чтобы определить конструкцию сердечника кабеля или выбрать конструкцию элемента с оптическими волокнами, необходимо учитывать требования прокладки кабеля и монтажа волокон. Требуемое количество волокон в рассматриваемом кабеле и его применение определяют выбор типа конструкции элемента с оптическими волокнами.

Конструкция волоконно-оптических кабелей подразделяется на:

* кабели с одним элементом, в состав которых входит только один элемент с оптическими волокнами;

* кабели с несколькими элементами, в состав которых входит несколько элементов с оптическими волокнами.

Конструкция сердечника в кабелях с одним элементом соответствует элементам из оптических волокон, рассматриваемых на рис.

Кабели с несколькими элементами конструируются посредством наматывания на центральный силовой элемент (СЭ) нескольких элементов с оптическими волокнами или свободного размещения нескольких объединенных элементов с оптическими волокнами в одной трубке, которая имеет оболочку с силовыми элементами. Если центральный силовой элемент в ОК не обеспечивает достаточной прочности конструкции, то поверх сердечника кабеля могут быть наложены дополнительные силовые элементы. При наличии в ОК двух слоев наружного СЭ, каждый из них накладывается в своем направлении, что препятствует возникновению крутящего момента при прокладке кабеля.

Примеры конструкций кабеля с несколькими элементами с оптическими волокнами представлены на рис.

Рис. Конструкции элементов сердечника:

а-с одной трубкой; б-многослойная; в-с использованием профилированного сердечника: 1-оптическое волокно; 2-гидрофобный заполнитель; 3-полимерная трубка; 4- оптическое волокно в плотном защитном покрытии; 5-лента с волокнами; 6-силовой элемент; 7-защитная оболочка; 8-профилированный сердечник

Силовые элементы волоконно-оптического кабеля. Для выбора силовых элементов, в первую очередь, следует определить необходимую нагрузку на растяжение, учитывая вес кабеля, его конструкцию, диапазон температур окружающей среды и условия прокладки кабеля (прокладывается ли кабель в кабельной канализации, непосредственно в грунте, подвергается ли он изгибаниям и т. п.). Силовые элементы должны обеспечивать достаточную прочность кабеля, чтобы деформация волокон не превышала допустимого предела с учетом динамической деформации, вносимой в процессе работы с кабелем. При максимальной нагрузке силовые элементы должны оставаться эластичными, позволяя при уменьшении растяжения кабеля сохранить длительную остаточную деформацию ниже допустимой [15].

Выбор силовых (армирующих) элементов и их расположение является важной проблемой, во многом определяющей надежность оптических кабелей.

В обычных кабелях медные проводники являются одновременно и силовыми элементами, способными сохранять работоспособность при относительном удлинении в продольном направлении до 10 %. В ОК эту функцию должен выполнять армирующий элемент или группа армирующих элементов. Как правило, относительное удлинение оптических волокон в ОК составляет около 0,5 %, поэтому они могут быть разрушены уже при незначительных удлинениях кабеля. Остаточное рабочее механическое напряжение в кабеле должно быть значительно ниже напряжений, вызывающих разрушение ОВ.В некоторых конструкциях роль армирующих элементов в кабеле играют гладкие или гофрированные традиционные оболочки из алюминия или стали.

В процессе конструирования ОК необходимо учитывать взаимное расположение упрочняющих элементов и ОВ. Существует два основных варианта такого взаимного расположения. В первом из них упрочняющий элемент располагают в центре ОК, а волокна -- концентрически относительно центрального элемента. Во втором ОВ располагают в центре, а вокруг них -- силовые элементы. При центральном расположении армирующих элементов гибкость кабеля в большей степени зависит от качества ОВ, его стойкости к изгибающим нагрузкам, однако конструкция эффективнее противостоит растягивающим нагрузкам. При концентрическом (внешнем) расположении армирующих элементов жесткость конструкции увеличивается, но возрастает стойкость кабеля к раздавливающим нагрузкам, обеспечивается лучшая защита от сил трения и срезающих сил (поперечный сдвиг).

Армирующие элементы могут влиять и на процесс изготовления кабеля. Стальные упрочняющие элементы эффективно предотвращают продольное сжатие волокна полимером при его охлаждении после нанесения оболочки методом экструзии. В то же время нить из графита или высокопрочной синтетической нити не способна предотвратить продольное сжатие волокна, поскольку сама изгибается под сжимающей нагрузкой, возникающей при охлаждении полимера. Это приводит к возникновению дополнительных потерь на микроизгибах в процессе изготовления ОК или во время эксплуатации при пониженных температурах. Изгиб упрочняющих элементов кабеля уменьшает его жесткость при растяжении.

Некоторые требования к прокладке ОК могут определять, где именно должны размещаться силовые элементы внутри кабеля, например: подготовка кабеля и сращивание волокон; сращивание оболочки; устройства для протяжки кабеля; геометрические размеры кабеля.

До тех пор, пока деформация волокна удерживается в допустимых пределах, можно применять силовые элементы любых типов. Поскольку жесткость сплошного провода пропорциональна величине его диаметра в четвертой степени, то при больших диаметрах необходимо использовать скрученные провода, или неметаллические силовые элементы.

Рис. Конструкции ОК с несколькими элементами с ОВ

Металлический силовой элемент может располагаться в центре сердечника или на периферии ОК. В качестве центрального силового элемента (ЦСЭ) может использоваться стальной провод или трос диаметром от 2 до 3,5 мм. На периферии кабеля металлический силовой элемент располагается в виде проволок, вмонтированных в оболочку. Металлический силовой элемент может располагаться и вне кабеля. Силовой элемент и кабель могут соединяться в процессе наложения оболочки и образовывать конструкцию в виде восьмерки.

В качестве ЦСЭ кабеля используется также стеклопластиковый прут. В будущем различные виды сложных материалов, например арамидные волокна, усиленные пластиком, будут вероятно шире использоваться, как альтернатива стальному проводу.

В кабелях, которые используются в условиях, требующих большую гибкость и прочность, обычно применяются арамидные нити в качестве силового элемента. Арамидные нити располагаются параллельно одному или нескольким волокнам в плотной укладке, образуя простой, но прочный силовой элемент. Арамидные нити имеют исключительно высокую прочность и гибкость и таким образом создают превосходную защиту против продольных силовых напряжений. Арамидные нити используются также как силовой элемент в воздушных кабелях и кабелях для прокладки в трубах. Нити накладываются слоем вокруг сердечника кабеля или между внутренней оболочкой и внешним защитным шлангом.

В последнее время в некоторых конструкциях ОК стал применяться концентрически пустой силовой элемент. Для воздушных кабелей, используемых при подвеске на больших пролетах между опорами, были разработаны специальные виды силовых элементов. В полой трубке из стеклопластика с номинальным диаметром 10 мм размещаются от 1 до 6 волокон. Эта конструкция позволяет подвешивать кабель при расстоянии между опорами до 800 м без учета потенциальной нагрузки из-за образования льда и ветра. Использование стеклопластикового силового элемента дает относительно легкий, полностью диэлектрический кабель, подвешиваемый на высоковольтных линиях передачи без каких-либо дополнительных мер защиты. Этот вид силового элемента обеспечивает эффективную радиальную защиту волокна.

Известны случаи использования для силовых элементов меди, армированной вольфрамом [13].

Оболочка, броня и защитный шланг оптического кабеля. Оболочка защищает сердечник кабеля от механических повреждений и повреждений, возникающих под воздействием окружающей среды. Поэтому при конструировании кабеля тип оболочки выбирается исходя из учета: образования водорода; климатических факторов; герметичности; влагостойкости; механической прочности (изгиб, кручение, радиальное усилие, растяжение, истирание и т.п.); химической устойчивости; диаметра; веса; пожароустойчивости; защиты от грызунов.

В конструкциях ОК, применяемых для внешней и внутренней прокладок, было использовано большое количество разных типов оболочки кабеля. Они подразделяются на оболочки: металлопластмассовые с металлическими лентами или металлическим слоем; пластмассе; пластмассовые с силовыми элементами; пластмассовые с впрессоваными силовыми элементами, комбинированные, со стальной гофрированной лентой; бронированные.

Типы оболочек, используемых в ОК для различных условий прокладки [15], представлены в табл.

Таблица 5. Типы оболочек ОК для различных условий прокладки

Тип оболочек ОК

Воздуш-ная подвеска

Прокладка в

грунте

канализации

туннеле

под водой

зданиях

Металлопластмассовая с металлическими лентами или с металлическим слоем

А

А

А

А

В

В

Пластмассовая

А

В

А

А

В

А

Пластмассовая с силовыми элементами

А

А

А

А

В

А

Пластмассовая с впрессоваными силовыми элементами

А

А

А

А

В

В

Бронированная

А

А

В

В

А

В

Примечание. А -- обычно применяемый тип, В -- редко применяемый тип

Металлопластмассовые оболочки. Рассмотрим несколько разновидностей металлопластмассовых оболочек для ОК.

Металлопластмассовая оболочка с металлическими лентами или с металлическим слоем содержит металлическую ленту, образующую влагонепроницаемый барьер. В некоторых конструкциях достигается полная водонепроницаемость. Металлическая лента может быть гофрированной для улучшения гибкости и сопротивления раздавливанию кабеля.

Металлопластмассовая сварная оболочка с алюминиевой ламинированой лентой включает алюминиевую ленту, которая, как правило, с одной стороны имеет ламинированное покрытие из тонкой полиолефиновой или сополимерной пленки. Алюминиевая лента с покрытием накладывается в продольном направлении поверх сердечника кабеля. Причем сторона, на которую нанесено покрытие, находится сверху, образуя, таким образом, трубку с нахлестом. Таким образом, полиолефиновый слой спрессовывается поверх ленты и сплавляется с опрессованным шлангом ОК, обеспечивая прочную связь между ней и алюминиевой лентой. Алюминиевая лента, имеющая покрытие с обеих сторон, может применяться в случае необходимости для заделки места прехлеста с целью улучшения влагонепроницаемого барьера или во избежание циркулирования токов в оболочке.

Металлопластмассовая оболочка со стальной лентой с ламинированным покрытием включает стальную ленту, которая с обеих сторон имеет покрытие из тонкой сополимерной пленки. Эта лента гофрируется и накладывается в продольном направлении поверх сердечника кабеля, образуя трубку с нахлестом, вдоль которой оплавляется сополимер, благодаря чему обеспечивается прочный сварной шов. В этом случае поверх ленты опрессовывается пластмассовый шланг, например, из полиэтилена.

Металлопластмассовая оболочка с алюминиевой лентой и лентой из луженой стали включает алюминиевую ленту, накладываемую в продольном направлении и образующую трубку, поверх которой надевается аналогичная и соприкасающаяся с ней трубка из луженой стали. Края ленты из луженой стали укладываются внахлест и пропаиваются. Для кабелей больших диаметров обе ленты гофрируются, что улучшает их гибкость. Поверх трубки из луженой стали наносится слой компаунда, а затем для защиты от коррозии она опрессовывается пластмассовой оболочкой. Такая оболочка представляет собой прекрасный влагонепроницаемый барьер.

Металлоппастмассовая оболочка со сваренной стальной лентой включает стальную ленту, накладываемую в продольном направлении и образующую трубку, края которой свариваются. Затем эта трубка гофрируется вокруг сердечника кабеля. Поверх стали наносится слой компаунда, а затем для защиты от коррозии она опрессовывается пластмассовой оболочкой. Такая оболочка является также прекрасным влагонепроницаемым барьером.

Метаплопластмассовая оболочка со свинцовой оболочкой, наносимой методом опрессовки включает водонепроницаемый слой в виде свинцовой оболочки, наносимой методом опрессовки. Для защиты сердечника кабеля от воздействия высокой температуры в процессе опрессовки свинцом необходимо использовать соответствующий теплоотводящий барьер между сердечником кабеля и его свинцовой оболочкой. В качестве этого барьера используются пластмассовые скрепляющие ленты сердечника ОК.

Пластмассовая оболочка. Оболочка этого типа наносится методом опрессовки пластмассовым материалом (полиэтилен или поливинилхлорид и т.п. ) и не является влагонепроницаемой.

Пластмассовая оболочка с силовыми элементами. Оболочка этого типа содержит силовые элементы, накладываемые в продольном или в поперечном направлении, которые могут быть металлическими и неметаллическими.

Пластмассовая оболочка с силовыми элементами, накладываемыми в поперечном направлении двумя слоями, имеет силовые элементы, намотанные по спирали двумя слоями, которые сбалансированы по крутящему моменту в противоположных направлениях. Поверх этих элементов наносится методом опрессовки пластмассовая оболочка. Рассматриваемые силовые элементы могут быть выполнены из стали или из пластмассы с упрочняющими стекловолокнами.

Пластмассовая оболочка с приваренными силовыми элементами имеет силовые элементы из арамидных нитей; помимо этого может включать стеклопластиковые силовые элементы, привариваемые к оболочке кабеля. При использовании в оболочке кабеля силовых элементов из арамидной нити можно применять центральный силовой элемент, препятствующий образованию петель. Рассматриваемая оболочка может содержать влагонепроницаемый барьер.

Пластмассовая оболочка, в которую впрессованы силовые элементы, комбинированная со стальной гофрированной лентой, включает два параллельных стальных силовых элемента, которые впрессованы в пластмассовую оболочку, наносимую поверх гофрированной стальной ленты с помощью опрессовки. Стальная лента размещается поверх сердечника кабеля и создает влагонепроницаемый барьер.

Бронированная оболочка кабеля. В качестве дополнительной защиты оптического кабеля, позволяющей удовлетворять конкретным условиям окружающей среды, используются несколько слоев брони, наносимых поверх оболочки кабеля. Дополнительная защита оболочки кабеля необходима при переходах через озера и реки, так как позволяет противостоять водному потоку и механическим повреждениям. Для бронирования оболочки может применяться спирально накладываемая одним или несколькими слоями стальная проволока с цинковым покрытием или проволока из нержавеющей стали, поверх которых накладываются защитные слои компаунда и пластмассовый шланг, наносимый методом опрессовки. При выборе проволоки для использования в качестве брони необходимо учитывать возможность образования водорода под воздействием коррозии. В качестве защиты от древоточцев может применяться медная лента.

Поверх пластмассовой оболочки можно накладывать свинцовую оболочку для кабеля, подвергающегося сильному воздействию нефтехимических веществ.

Для защиты от грызунов поверх оболочки кабеля может использоваться металлопластмассовая сварная оболочка с гофрированным покрытием из стальной ленты или из ленты из нержавеющей стали с покрытием с обеих сторон.

Внешний защитный шланг ОК, подобно изоляции провода, обеспечивает защиту кабеля от механического трения, масла, озона, кислот, щелочей, растворителей и т.д. Выбор защитного шланга ОК зависит от степени необходимой защиты и стоимости.

Защита волоконно-оптического кабеля от влаги

Для защиты сердечника кабеля от проникновения воды служит оболочка. Кабель, прокладываемый непосредственно в грунте, в кабельной канализации или под водой, должен иметь специальную конструкцию, защищающую от проникновения воды или влаги в продольном направлении. При определении состава сердечника кабеля должен быть выбран один из следующих двух методов защиты:

* защита кабеля с помощью гидрофобных материалов;

* содержание кабеля под давлением.

Нередко в процессе эксплуатации кабель находится в прямом контакте с водой. Воздействие влаги отрицательно влияет на работоспособность кабелей, так как может привести к механическому разрушению основного функционального элемента -- оптического волокна, по которому электромагнитное поле распространяется в виде информационных сигналов в оптическом диапазоне волн. Кроме того, в случае нарушения целостности оболочки возможно распространение воды по существующим продольным каналам между элементами конструкции, что также представляет опасность для кабеля. Поэтому защита ОК от влаги является одной из наиболее важных задач для их разработчиков и производителей.

Чтобы ОК надежно работал в течение всего срока эксплуатации, необходимо определять время его эффективной влагозащиты. Существующие методики расчета эффективного времени влагозащиты для традиционных кабелей не могут быть применены из-за принципиальных различий между этими кабелями и кабелями оптическими.

В обычных (неаварийных) условиях вода проникает в кабель за счет диффузии влаги через оболочки. Вредное воздействие влаги проявляется только при контакте воды с волокном. Конструкция оптического кабеля многослойная. Оптическое волокно имеет защитные покрытия, расположено в модуле, заполненном гидрофобным составом, поверх модуля накладываются защитные оболочки. Пространства между элементами оптических кабелей современных конструкций, как правило, заполняются гидрофобными составами.

Важное значение с точки зрения влагонепроницаемости ОК имеют материалы оболочки защитного шланга.

Металлические оболочки практически влагонепроницаемы; их коэффициент влагопроницаемости крайне мал (?10-29). Поэтому до тех пор, пока единственным типом оболочки кабелей связи оставалась свинцовая, проблемы диффузии влаги внутрь кабеля не существовало.

Пластмассы обладают в миллиарды раз большей влагопроницаемостью. Значение коэффициента влагопроницаемости (P) для полиэтилена примерно 10-16, для поливинилхлоридного пластиката -- 10-14 -- 10-15 в зависимости от структуры и технологического режима переработки. Количественное сопоставление диффузии через свинец и, например полиэтилен, показывает, что если при определенных условиях через полиэтиленовый образец 1 мг влаги проникает в течение 1 ч, то через аналогичный свинцовый образец то же количество влаги проникает за 10-9 ч, т. е. за 115000 лет.

Кроме проблемы поперечной герметизации ОК важной является и проблема продольной влагостойкости кабеля. Для предотвращения или замедления процесса распространения воды вдоль кабеля используют различные гидрофобные и гидрофильные материалы. Первые достаточно надежно выполняют водоблокирующую функцию только при условии тщательного заполнения всех промежутков между конструктивными элементами кабеля по его сечению, что не всегда технологически возможно.

Гидрофильные, или водопоглощающие материалы (ВМ) более технологичны [18]. Занимая первоначально незначительный объем, при взаимодействии с водой они набухают и заполняют полости в конструкции кабеля, препятствуя продольному распространению воды. Но внедрение ВМ в отечественное производство кабелей происходит очень медленно, так как отсутствие в литературе необходимой информации об опыте эксплуатации этих материалов в составе ОК вызывает недоверие у потребителей.

Водопоглощающий элемент изготавливается в виде лент, порошка и нитей. Основными характеристиками водопоглощающего порошка являются его водопоглощающая способность, скорость водопоглощения, стойкость к воздействию соленой воды и микроорганизмов. Водопоглощаемость порошка определяется числом ионизированных групп (обычно карбоксилов) и плотностью поперечных связей. Для повышения эффективности порошок делают из нескольких составляющих: термопластичного эластомера, обеспечивающего гидрофобность; водорастворимой смолы, используемой для улучшения коэффициента водопоглощения; водопоглощающей смолы; поверхностно-пропитывающего агента для снятия поверхностного натяжения [17].

Результаты технико-экономического анализа, проведенного для конструкций с гидрофобными заполнениями и с ВМ по нескольким параметрам: водоблокирующие свойства, совместимость с другими материалами конструкции, удобство эксплуатации, цена, масса, диапазон рабочих температур, технологичность -- показали, что конструкции с ВМ использовать более целесообразно, чем конструкции с гидрофобными заполнениями.

Пожаробезопасность волоконно-оптических кабелей

Создание пожаробсзопасных ОК представляет сегодня важнейшую научно-техническую проблему.

В отношении пожаробезопасности требования ко всем кабелям практически одинаковы и диктуются необходимостью решения следующих основных задач [18]:

* предотвращение распространения пламени от очага возгорания как в пределах аварийного помещения, так и в других помещениях (минимизация масштабов пожара), обеспечение условий пожаротушения и эвакуации людей (снижение выделения дыма и токсичных продуктов горения);

* функционирование систем безопасности в случае пожара (сохранение целостности ОВ в течение определенного времени при воздействии открытого пламени на ОК, т. е. огнестойкость кабелей);

* защита приборов и оборудования от повреждения газообразными продуктами горения (отсутствие выделения коррозионно-активных продуктов).

Требования по показателям пожаробезопасности приведены в табл.6

Таблица 6. Требования по показателям пожарной безопасности

Показатель

Значение

Стандарт

Нераспространение горения

Категория "А" (н=7 л/м3, ф=40 мин, L?2,5 м)

МЭК 332-3

Огнестойкость

90, 120 и 180 мин

МЭК331

Коррозионная активность продуктов дымогазовыделения

РН>4,3 р ? 100 S/см

МЭК 754-1

МЭК 754-2

Оптическая плотность дыма

По нормам МЭК 1034-2

МЭК 1034-1

Электрические и оптические кабели на основе современных полимерных композиций по степени жесткости требований к показателям пожарной безопасности могут быть разделены на шесть групп. Три группы (1 -- 3) кабели на основе галогеносодержащих композиций (пластмасс и резин) и следующие три группы (4 -- 6) -- кабели на основе не содержащих галогены композиций полимеров и сополимеров. Кабели шестой группы должны удовлетворять полному комплексу требований по показателям пожарной безопасности, включая сохранение работоспособности при пожаре в течение нормированного времени [18].

Хотя подготовка промышленного выпуска кабелей в настоящее время ведется по всем шести классификационным группам, следует обратить внимание потребителей, что многие вопросы, связанные с практическим применением кабелей 4 -- 6 групп на электростанциях, промышленных предприятиях, транспорте и в жилищно-коммунальном хозяйстве, не решены.

До настоящего времени в действующих СНиП использование безгалогенных или огнестойких кабелей на объектах метрополитенов, жилищно-коммунального комплекса, тепловых электростанций, в цепях пожарной сигнализации, не предусмотрено, хотя в мировой практике применение таких кабелей нормировано более чем на 15 лет.

Рис. Группы кабелей по пожарной безопасности

Согласно [19] ОАО ВНИИКП совместно с рядом организаций и предприятий разработали ПВХ пластикаты с пониженной горючестью типа НГП марок: НГП 40-32 и НГП 30-32 -- для защитных шлангов кабельных изделий; а также ПВХ пластикаты с пониженной пожароопасностью типа НП марок: ОНП -- для защитных шлангов, ИНП -- для изоляции и ОНП-В -- оболочек кабельных изделий.

Наряду с указанными направлениями работ проводятся исследования по созданию пожаробезопасных кабелей с использованием безгалогенных композиций на основе полиолефинов. У этих композиций относительно низкое выделение дыма, они не выделяют коррозионно-активные летучие продукты в условиях горения. У изготовителей и потребителей стран СНГ сегодня есть три основных способа повышения пожаробезопасности кабельных изделий и объектов, где они применяются:

* замена серийных ПВХ пластикатов на ПВХ пластикаты с пониженной горючестью и пожароопасностью;

* замена серийных композиций на основе полиэтилена на безгалогенные композиции на основе полиолефинов;

* замена ПВХ пластикатов на безгалогенные композиции на основе полиолефинов.

Материалы для конструктивных элементов волоконно-оптических кабелей

Общие положения. Остановимся на материалах основных элементов ОК. Профилированный сердечник ОК изготавливают из поливинилхлорида, полиэтилена, полиуретана или полипропилена. Кордель (заполнитель) может выполняться из полиэтилена, поливинилхлорида, полиуретана, резины и содержать хлопчатобумажную нить различной расцветки, упрочняющие элементы или токопроводящие жилы [13]. Скрепляющие элементы изготавливают из нитей (хлопчатобумажных, полимерных, стеклонитей), лент (полиамидных, полиэтилентерефтапатных, фторопластовых, бумажных), полимерных металлизированных пленок. Армирующие элементы для ОК отличаются высокой прочностью на разрыв (2000 -- 3000 МПа), высокой гибкостью, имеют большой модуль Юнга (60000 -- 100000 МПа) и малую массу.

Во многих случаях одним из основных требований к ОК является отсутствие металлических элементов в его конструкции. В этом случае армирующие элементы выполняют из неорганических или полимерных материалов. Это позволяет к тому же существенно уменьшить массу кабеля, увеличить его стойкость к многократным деформациям изгиба, кручения, перемотке и увеличить срок службы.

Синтетические высокомодульные материалы. Синтетические волокна обладают высокой механической прочностью, нагревостойкостью и малой усадкой [20]. Некоторые характеристики представлены в табл.9.

Лучшее волокно СВМ имеет разрывную прочность, превосходящую прочность всех природных, искусственных и синтетических волокон (2000 -- 2500 МПа). Но волокно СВМ очень жесткое -- его прочность в узле составляет 20 -- 40% от исходной. Оксалон имеет меньшую прочность (600 -- 800 МПа) и меньшую жесткость. Процент сохранения прочности в узле у него в 1,5 -- 3 раза больше, чем у СВМ, и составляет 60%.

Наиболее стойкими к химическим реагентам оказались волокна СВМ, оксалон и фенилон. Остальные волокна стойки либо к кислотам, либо к щелочам.

По стойкости к воздействию микроорганизмов лучшими являются СВМ, высокомодульный винол, лавсан и фенилон.

СВМ, оксалон, сульфон, аримид при температурах от 150 до 300оС имеют усадку не более 1 -- 2%. Нитрон Т и высокомодульный винол при 150оС имеют незначительную усадку, при повышении температуры до 200 -- 300оС усадка нитрона Т достигает 10 -- 16%.

В процессе изготовления упрочняющих сердечников и жгутов, а затем и кабелей нити подвергаются воздействию ряда факторов: изгибам и истиранию при тростке и скрутке, натяжению до 10,0 -- 15,0 Н, нагреву до 170 -- 200оС при ошланговании полиэтиленом и поливинилхлоридным пластикатом. При наложении оболочки из резины и вулканизации изделия температурный интервал изменяется от 100 до 213оС, и возможно воздействие пара.

Влияние технологических факторов в процессе изготовления кабелей оценивалось по изменению прочности нитей.

Технологические факторы не влияют на прочность нитей СВМ линейной плотности 58,9 и 29,4 текс. Прочность нити СВМ толщиной 100 текс сначала снижалась после операции тростки, а после скрутки кабеля и наложения оболочки возрастала почти до исходных значений.

Технологические операции влияют также на прочностные свойства высокомодульных поливинилспиртовых волокон. Так, после скрутки сердечника и жгутов прочность нитей уменьшается, а после наложения поливинилхлоридной оболочки на кабель увеличивается до исходных значений. Изменение прочности высокомодульных поливинилспиртовых волокон свидетельствует о том, что эти волокна, обладающие большой удельной объемной энергией межмолекулярного взаимодействия (4,33 -- 4,75 кДж/моль), очевидно, еще способны к дальнейшей релаксации.

Волокно фенилон также исследовалось в одном из типов кабелей. Такие операции, как скрутка, оплетка, несколько уменьшили прочность волокна. При наложении оболочки, как и в случае применения винола, прочность увеличилась.

Увеличение прочности всех исследованных волокон при наложении шланга обусловлено ориентацией и стабилизацией структуры волокна при натяжении и тепловом воздействии, нарушенных при скрутке и оплетке.

Изменение прочности полиэфирных нитей обусловлено изменением их структуры. Так, например, при натяжении и тепловом воздействии происходит ориентация макромолекул, что связано с рекристаллизацией волокна при повышенных температурах (100 -- 200 С). Снижение прочности нитей при этом может быть обусловлено уменьшением числа связей в аморфных областях и, кроме того, усилением процесса дезориентации макромолекул. Относительное удлинение и тепловая усадка исследованных волокон не изменяются при изготовлении кабелей. Таким образом, влияние технологических факторов на свойства синтетических волокон при изготовлении кабеля незначительно.

Таблица 7. Основные характеристики синтетических волокон

Параметр

Значение для

СВМ

оксалона

терлона

нитрона

сульфона

фенилона

аримида

высокомодульного винола

лавсана

термофиксированного

Разрывная прочность, МПа

2230

637

482

320

343

562

580

764

876

Относительное удлинение, %

4,6

2,3

7,6

11,7

12,8

20,8

8,5

4,7

9,8

Толщина, текс

100

22,7

31,2

16,6

14,2

50

14,2

93,4

345

Прочность в узле, %,

от исходной прочности

23

64,7

61

76

76

71

69

48

55

Грибостойкость после воздействия микроорганизмов в течение 30 суток, балл

1

3

3

3

--

1

3

0

--

Сохранение прочности, %, при воздействии:

температуры, оС

200- 1ч

250 -- 1ч

300- 1ч

80 -- 3 мес.

60- 2ч

пара при давлении

0,4 Мпа -- 40 мин.

кислоты соляной

25% при 20'С-24ч

кислоты азотной

25% при 20'С - 24ч

щелочи 40% при

20'С -- 20 ч

бензина при

20'С -- 24 ч

трансформаторного масла при 120'С -- 24 ч

90

97

100

100

100

86,4

73

53

69

100

95

100

88,2

80,0

100

95

83,3

62

34

100

100

85

97,3

94

72,0

100

90

100

54

разрушение

100

100

100

85,4

56,2

31,7

90

100

разрушение

83

62

65

94

100

79,4

76,4

85,3

--

73,5

88,2

--

--

--

--

100

83,3

92,0

81,0

97

94,2

83,3

74

44

85

93

92

100

98

91,7

98

85,7

87,7

85

79

разрушение

100

100

52,5

разрушение

разрушение

100

100

разрушение

разрушение

разрушение

разрушение

100

100

100

Разруше-ние

Разруше-ние

--

100

98

99

100

разрушение

100

100

Усадка после

воздействия, %:

температуры, 'С

150- 1ч

250 -- 1ч

300- 1ч

пара при давлении

0,4 МПа -- 40 мин.

0

0

0

0,1

0

0,06

0,48

0,4

0

0

0

0,4

2

16

16,7

--

--

0,5

1,6

3,3

--

0,8

5,6

3,9

0,4

0,06

1,04

0,32

1,3

разрушение

разрушение

разрушение

1,5

--

--

10,0

С начала 90-х годов последнего тысячелетия были сняты ограничения КОКОМ, введенные по инициативе США, на передачу в бывшие социалистические страны так называемых высоких технологий и ряда продуктов на их основе. Это позволило в конструкциях ОК применять нити СВМ типа кевлар фирмы Dupont и нити типа тварон фирмы Akzo Nobel. Эти нити обладают хорошо сбалансированными физическими и химическими свойствами. Рассмотрим некоторые из основных свойств этих нитей.

1. Отличные свойства при растяжении:

* нити кевлар и тварон способны выдерживать большие линейные нагрузки при малом относительном удлинении, это позволяет им защищать оптические волокна от деформаций, которые могут ухудшить характеристики передачи сигнала в кабелях;

* эти нити идеально подходят для очень длинных ОК. Их очень большая разрывная длина под действием собственного веса позволяет создавать и использовать большие пролеты на воздушных линиях для подвесного кабеля, чем это было возможно раньше.

2. Превосходная стабильность размеров:

* волокно кевлар и тварон обладают высокой устойчивостью к ползучести и эффективно противостоят необратимым изменениям длины под нагрузкой в процессе эксплуатации;

* нити практически не подвержены воздействию предельных температур, возникающих при эксплуатации изделия на открытом воздухе, не теряют прочности при высокой температуре и не становятся хрупкими в условиях арктического климата;

* низкий (отрицательный) коэффициент теплового линейного расширения позволяет сократить до минимума обусловленные температурой (обратимые) изменения длины кабеля.

3. Отличные диэлектрические свойства:

* кевлар и тварон обладают отличными изоляционными свойствами, которые позволяют создавать кабельные конструкции, обеспечивающие электрическую безопасность, устойчивость к разряду молнии и неподверженность к помехам.

4. Прочность и устойчивость к внешним повреждениям:

* хорошая устойчивость к абразивному изнашиванию, отличные баллистические свойства и хорошие усталостные характеристики позволяют создавать долговечные кабели;

* кевлар и тварон не поддерживают горения и сгорают только, если их держать в огне. Они не способствуют распространению пламени и тепла.

5. Малый вес и объем. Гибкость:

* эти свойства облегчают использование кабеля, позволяя уменьшить поперечное сечение кабеля и обеспечивая создание легких и гибких конструкций.

6. Хорошая текстильная перерабатываемость, свобода при проектировании:

* нити кевлар и тварон можно использовать как для центрального силового элемента, так и для периферийного силового армирования. Выпускается широкая номенклатура толщины нитей, и их можно перерабатывать на имеющемся производственном оборудовании, не жертвуя при этом их эксплуатационными характеристиками;

* армирующие материалы полностью совместимы с другими конструкционными материалами для кабелей;

* гибкость и не вызывающая затруднений переработка обеспечивают снижение риска повреждения оптических волокон в процессе переработки.

7. Проверенная практикой надежность:

* многие годы практического применения волокон кевлар и тварон доказали их надежность и экономичность. Армирование составляет небольшую часть затрат в стоимости кабеля, но оно требует применения надежного материала с проверенными на практике характеристиками.

Некоторые характеристики армирующих материалов, используемых в кабельной промышленности, приведенны в табл.10. Нити тварон в настоящее время применяются для решения специальных проблем заказчика. Из них выпускают ленты для баллистической защиты самонесущих ОК, разрывные корды, для вскрытия оболочки кабелей. Армированные твароном стержни могут быть использованы в качестве центрального силового элемента в волоконно-оптических кабелях. Такой стержень является композитом из коллимированных арамидных нитей тварон и эпоксидной смолы. Армированные твароном стержни перед силовыми элементами из стандартного эпоксистекла Е (FRP) имеют следующие преимущества: более высокий модуль упругости при растяжении (+ 25%); отрицательный температурный коэффициент расширения (противодействует положительным температурным коэффициентам других присутствующих пластиков); меньшую плотность (-35%); большую гибкость (меньшая жесткость).

Таблица 8. Основные параметры арамидных нитей кевлар и тварон и других армирующих материалов

Материал

Плотность, г/см3

Сопротивление разрыву, МПа

Модуль уп-

ругости, ГПа

Относительное удлинение при разрыве, %

ТКЛР,

1/К

Кевлар 49

29

1,44

3070

2950

114

72

2,5

3,6

-2х 10-6

Тварон 2200

1055

1,45

2900

2900

115

125

2,7

2,5

-3х10-6

Стальная проволока

7,86

1960

200

2,0

6,6х10-6

Силикатное

стекловолокно

2,48

4580

86

5,4

3,1х10-6

Высокопрочное

полиэтиленовое

волокно

0,98

2650

95

3 .. 4

--

В табл.8 приведены для сравнения характеристики физических свойств армированных арамидом и стеклом стержней.

Таблица 9. Основные параметры стержней, армированных арамидом и стеклом

Стержень

Модуль упругости при

растяжении, ГПа

Прочность при растяжении, МПа

Удельный вес,

г/см

ТКЛР, 1/К

Aralinе

68

1600

1,3

-2х10-6

Стекло-EP/UP

45..55

1200..1500

2,1..2,3

7х10-6

Армирующие материалы из стеклопластика и металла. Интересен еще один вид армирующих материалов, который чаще всего используются для усиления сердечника ОК--это стеклопластики. Прутки из этого материала выполняют из пучка стекловолокон, пропитанных полиэфирной смолой (Япония) [20]. Основные параметры стеклопластиковых прутков [21..24] приведены в табл.9. Прутки изготавливаются диаметром от 2,5 до 15 мм неограниченной длины. Для изготовления прутков стекловолокно с отдающих катушек пропускают через ванну с пропитывающим составом и печь предварительной просушки. Поверх заготовки накладывают еще один слой стекловолокна, затем заготовку сушат и полимеризируют. Всю технологическую операцию осуществляют за один проход.

Из металлических армирующих элементов, применяемых в ОК, следует упомянуть стальные проволоки с латунным покрытием или полимерной оболочкой, тросы, металлические стержни с цилиндрическими канавками. Возможно применение углеродного волокна. В некоторых конструкциях ОК используют оплетки из указанных материалов, упрочненные нитями полимеры. Оболочки могут выполняться из комбинации стеклянных или синтетических нитей, пропитанных эпоксидным компаундом, при этом не только повышается разрывная прочность и стойкость к кручению, но и увеличивается стойкость к продавливанию и герметичности. При радиальной толщине оболочки 0,25 мм и общем диаметре кабеля 1,53 мм относительное удлинение его при усилии растяжения 400 Н составляет 1%. Модуль упругости материала оболочки приблизительно равен 55 ГПа, плотность материала из стекловолокна, пропитанного эпоксидным компаундом, составляет 2,2 г/см3. Материал выдерживает 1000000 циклических перегибов при 20%-ной предельной нагрузке растяжения и сохраняет ОВ в целостности.

Таблица 10. Основные параметры стекпопластиковых стержней

Стержень

Удельная плот-

ность, г/cм3

Разрывная прочность, МПа

Прочность на

изгиб, МПа

Модуль упругости, ГПа

ТКЛР, 1/К

Neptco (США)

--

> 1500

48000

>52

5,9х10-6

Polystal (Германия)

2,1

> 1500

--

>50

6,6х10-6

Cousin (Франция)

--

> 1600

--

>50

6х10-6

Россия

1,85..2,15

900.. 1200

950..1250

50

--

Водоблокирующие материалы для волоконно-оптических кабелей. Все кабели бывают в такой ситуации, когда может быть повреждена оболочка. Кабели для наружной прокладки особенно подвержены воздействию воды и влаги, которая может проникнуть через небольшие дефекты оболочки или плохо выполненное соединение. В кабелях, которые постоянно подвержены сильному влиянию влаги, вода диффундирует через пластиковую оболочку, независимо от того, как хорошо изготовлена или наложена оболочка. Для предотвращения диффузии воды внутрь на кабель перед наложением оболочки (в некоторых конструкциях ОК) накладывается слой металлической (алюминиевой или свинцовой) фольги. Вода, проникающая в кабель со свободным пространством между волокнами или между трубками модулей, распространяется по сердечнику кабеля до тех пор, пока не достигнет наиболее низкой физической точки, где она будет собираться. Вода снижает срок службы кабеля, разрушая стекло. Возникает риск того, что в результате высокой концентрации водорода будет возрастать затухание в волокне.

Наилучшим способом предотвращения проникновения воды и влаги является заполнение свободного пространства между волокнами, трубками, лентами с волокнами и оболочкой водозащитным материалом, который предотвращает дальнейшее распространение воды в кабеле и таким образом ограничивает риск повреждения оболочки. В качестве водоблокирующих материалов могут использоваться гидрофобные компаунды, разбухающие порошки, ленты, нити или комбинации этих материалов. Компаунд, поглощающий гидроксильные группы, может быть использован в качестве заполнителя трубки ОМ или паза модуля профильной конструкции. Обычные компаунды используются для заполнения свободного пространства и между скрепляющими лентами сердечника кабеля, лентами брони кабеля. Разбухающая лента наносится, как правило, поверх элементов с ОВ или поверх сердечника кабеля.

Ключевыми параметрами для этих материалов являются: физические характеристики (блокирование распространения воды, вязкость, предел текучести, рабочая температура, технологическая стабильность, дренажные свойства и минимальное маслоотделение); химические характеристики (совместимость с акрилатными покрытиями волокна, совместимость с окрашивающими покрытиями волокна, совместимость с полимерными материалами, используемыми в конструкции кабеля); стоимость.

Рис. Реологические характеристики стандартных водоблокирующих компаундов фирмы Dussek Campbell

Рис. Зависимости, характеризующие технологическую стабильность одного из компаундов фирмы Dussek Campbell

Композиции компаундов выбирают таким образом, чтобы обеспечить приемлемые реологические характеристики, которые влияют на величину излишка волокна в трубках, стабильность технологического процесса введения компаунда в трубку, производительность процесca, дренажные свойства материала. Критическое значение предела текучести обусловливается усилием, необходимым для начала истечения желеобразного компаунда. Текучесть должна находиться в определенных пределах, чтобы не оказывать влияния на передающие характеристики оптического волокна. Высокое значение предела текучести (>70 Па) может способствовать возникновению напряжений, воздействующих на оптическое волокно. В то же время низкое значение предела текучести (< 25 Па) может повысить дренажные свойства компаунда, что ухудшает водоблокирующие характеристики материала.

Реологические характеристики стандартных компаундов фирмы Dussek Campbell [25] приведены на рис. Масла, содержащиеся в желеобразных компаундах, не должны вызывать набухания или повреждения акрилатного покрытия оптического волокна. Эта фирма провела испытания оптических волокон после ускоренного старения с целью определения критических напряжений, которые могут привести к образованию дефектов в покрытии оптического волокна. Соответствующие испытания были проведены также на окрашенных оптических волокнах, что позволило оценить стойкость кодирующей окраски к действию водоблокирующих компаундов.

Рис. реологические характеристики стандартных водоблокирующих компаундов фирмы Dussek Campbell

Водоблокирующие компаунды не должны негативно влиять на полимерные материалы, которые используются в конструкциях волоконно-оптических кабелей. Для оценки возможного влияния были проведены испытания на абсорбцию по методу Дамббела при температуре 70оС в течение 28 суток. Значения величины абсорбции составили для полибутилентерефталата -- 0 %, для полиэтилена высокой плотности -- 5 %, для полиэтилена средней плотности -- 6 %.

Основные водоблокирующие компаунды фирмы имеют следующие характеристики.

Оптифил-4900 совместим с полипропиленом. Рабочие температуры - от - 40оС до +85оС.

Оптифил-5264 совместим с полибутилентерефталатом. Рабочие температуры - от -60о'С до +80оС. Применяется в ленточных волоконно-оптических кабелях для заполнения трубок большого диаметра.

Оптифил-5264С совместим с полибутилентерефталатом. Рабочие температуры - от - 60оС до +100оС. Применяется в ленточных волоконно-оптических кабелях для заполнения трубок большого диаметра.

Оптифил-5270 совместим с полибутилентерефталатом. Рабочие температуры - от -60оС до +100оС. Применяется при изготовлении волоконно-оптических кабелей на высокоскоростных экструзионных линиях.

Оптифил-5300 модификация оптифила-5270. Совместим с полибутилентерефталатом. Стоимость материала снижена за счет одновременного снижения температурных и реологических характеристик.

Основные параметры внутримодульных заполнителей ряда других фирм приведены в табл.13.

Остановимся на водоблокирующих лентах, например, фирмы Firet [26], которая выпускает неламинированные и ламинированные водоблокирующие ленты. Ленты: ЗС1144, ЗС1164, ЗС1174 -- обладают высокой прочностью; ЗС1252, ЗЕ5672 -- обладают высокой прочностью и полупроводимостью (используются также в качестве экрана); ЗЕ1154 -- обладают высокой прочностью на разрыв и растяжение при высокой температуре; ЗЕ1241, ЗЕ1252-обладают повышенным сопротивлением старению и температурным нагрузкам; ЗЕ1091, ЗЕ5401, ЗЕ5421 -- обладают малым весом для экономичного водоблокирования ОК; ЗС1450, ЗС1460-обладают способностью подклеивать экранную проволоку; ЗС1600 -- обладают металлопроводящими свойствами и используются в качестве подушки под гофрированную алюминиевую оболочку.

В табл. приведены основные характеристики водоблокирующих лент и нитей.

Материалы защитных покрытий. Оболочку ОК выполняют чаще всего из полиэтилена низкого, среднего и высокого давления, поливинилхлорида, полиуретана или фторопласта. Возможно выполнение оболочки из алюминия или стали.

Остановимся более подробно на характеристиках полиэтилена (ПЭ), как наиболее часто употребимого материала. Полиэтилен средней и высокой плотностей (более твердых видов) используется в ОК в связи с высокими показателями по прочности и сопротивлению деформации при высоких температурах. Самая высокая температура при постоянной эксплуатации не должна превышать 60 -- 70оС с допуском кратковременного нагревания до 90оС, при условии, что кабель не подвергается одновременно механическому стрессу. Точка плавления ПЭ -- приблизительно 110-130оС.

Таблица 12. Основные параметры внутримодульных гидрофобных заполнителей разных фирм

Параметр

SEPPIC

Н.В. Fuller

Dussek Campbell Limited

Бритиш

Петролеум Амоко

Henkel KGaA

Seppic GC

901

Seppic OF

300 SF

Lunectra

ОС 389

Lunectra OC

254 SI

Optifill 5255

Optifill 5261

Naptel Ор

308

Macroplast

CF 250

Macroplast

CF 300

Цвет

Прозрачно белый

Прозрачный

Оранжевый гель

Оранжевый гель

Белый

Бледно желтый

Белый

--

--

Плотность при 70оС г/смз

1,0

0,8

0,86

0,86

0,98

0,88

0,89-0,90

0,83

0,83

Температура вспышки, С

> 250

235

> 220

> 300

250

135

> 250

> 230

> 230

Содержание воды, ppm

< 300

< 300

< 100

< 100

--

--

--

< 100

< 100

Вязкость, cps

6500

3000

--

--

> 1000

> 1000

1500

4000

6500

Пенетрация, 1/мм

410±20

365

360

310

370

340

390-450

460

390

Отделение масла, %

< 0,6

< 1

0

< 0,5

0

0

< 8 за 24 ч

при 150оС


Подобные документы

  • Материалы для изготовления оптических деталей, их оптические характеристики. Обработка деталей оптических приборов. Нормируемые показатели качества оптического стекла. Пороки стекла. Цветное оптическое стекло, его типы. Кварцевое оптическое стекло.

    реферат [52,5 K], добавлен 22.11.2008

  • Разработка и изготовление волоконно-оптического кабеля, решение проблем электротехники, материаловедения и технологии. Теоретические основы функционирования, конструкция оптических волокон, материалы, характеристики и параметры, технология изготовления.

    реферат [13,1 K], добавлен 27.11.2009

  • Соединение оптических волокон - операция при монтаже кабеля, предопределяющей качество и дальность связи по волоконно-оптической линии. Внешние и внутренние потери при монтаже. Сварка, механические сростки и коннекторы как способы соединения волокон.

    контрольная работа [509,6 K], добавлен 20.02.2011

  • Свойства и характеристики оптических волокон, способы увеличения их пропускной способности. Применение компенсаторов дисперсии и мультиплексирования. Разработка учебно-методических материалов по пропускной способности современных оптических волокон.

    дипломная работа [1,7 M], добавлен 21.09.2012

  • Выбор трассы магистрали и эскиз поперечного сечения кабеля ОКЛБ-3ДА4. Расчет оптических параметров волокон и дисперсии сигнала в одномодовом волокне. Вычисление растягивающих усилий во время прокладки оптического кабеля в городскую телефонную канализацию.

    курсовая работа [3,3 M], добавлен 12.03.2013

  • Принцип эффекта Фарадея в работе волоконно-оптических датчиков тока. Разработка и исследование микроструктурных оптических волокон. Сравнение оптоволоконного датчика и трансформатора тока. Потенциальные сферы применения оптоволоконных датчиков тока.

    реферат [934,2 K], добавлен 12.11.2015

  • Измерения при технической эксплуатации волоконно-оптических линий передачи, их виды. Системы автоматического мониторинга волоконно-оптических кабелей. Этапы эффективной локализации места повреждения оптического кабеля. Диагностирование оптических волокон.

    контрольная работа [707,6 K], добавлен 12.08.2013

  • Параметры оптических волокон. Методы измерения затухания, длины волны, расстояний, энергетического потенциала, дисперсии и потерь в волоконно-оптических линиях связи. Разработка лабораторного стенда "Измерение параметров волоконно-оптического тракта".

    дипломная работа [5,4 M], добавлен 07.10.2013

  • Изучение дисперсии - рассеяния во времени спектральных или модовых составляющих оптического сигнала. Определение длины и типа основного и компенсирующего дисперсию кабеля или оптических волокон. Вычисление остаточной дисперсии после компенсации.

    курсовая работа [506,5 K], добавлен 03.06.2015

  • Расчёт необходимого числа каналов. Выбор системы передачи и определение требуемого числа оптических волокон в оптическом кабеле. Характеристики системы передачи. Параметры кабеля, передаточные характеристики. Расчёт длины регенерационного участка.

    курсовая работа [45,9 K], добавлен 15.11.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.