статья  Кластеризация графов для обработки в GPU

Рассмотрение многоуровневой кластеризации графов, используемых для обработки данных в GPU. Влияние качества разбиения графа на разделы на общую производительность программного обеспечения. Описание областей применения, особенностей и типов кластеризации.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

                                                             
    88  888888888888   ad88888ba     ad8888ba,   ad888888b,  
  ,d88          ,8P'  d8"     "8b   8P'    "Y8  d8"     "88  
888888         d8"    Y8a     a8P  d8                   a8P  
    88       ,8P'      "Y8aaa8P"   88,dd888bb,       ,d8P"   
    88      d8"        ,d8"""8b,   88P'    `8b     a8P"      
    88    ,8P'        d8"     "8b  88       d8   a8P'        
    88   d8"          Y8a     a8P  88a     a8P  d8"          
    88  8P'            "Y88888P"    "Y88888P"   88888888888  
                                                             
                                                             

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 01.03.2025
Размер файла 98,1 K

Подобные документы

  • Особенности кластеризации социальных сетей, методы распознавания сообществ. Особенности локального прореживания графа. Разработка рекомендаций по выбору метода кластеризации для выделенных классов задач. Оптимизация процесса дальнейшей обработки данных.

    курсовая работа [1,8 M], добавлен 30.06.2017

  • Сущность и понятие кластеризации, ее цель, задачи, алгоритмы; использование искусственных нейронных сетей для кластеризации данных. Сеть Кохонена, самоорганизующиеся нейронные сети: структура, архитектура; моделирование кластеризации данных в MATLAB NNT.

    дипломная работа [3,1 M], добавлен 21.03.2011

  • Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.

    курсовая работа [3,9 M], добавлен 22.10.2012

  • Основные понятия и определения теории графов: теоремы и способы задания графа, сильная связность графов. Построение блок-схем алгоритма, тестирование разработанного программного обеспечения, подбор тестовых данных, анализ и исправление ошибок программы.

    курсовая работа [525,6 K], добавлен 14.07.2012

  • Основы для проведения кластеризации. Использование Data Mining как способа "обнаружения знаний в базах данных". Выбор алгоритмов кластеризации. Получение данных из хранилища базы данных дистанционного практикума. Кластеризация студентов и задач.

    курсовая работа [728,4 K], добавлен 10.07.2017

  • Этапы нахождения хроматического числа произвольного графа. Анализ примеров раскраски графа. Характеристика трудоемкости алгоритма раскраски вершин графа Мейниеля. Особенности графов, удовлетворяющих структуру графов Мейниеля, основные классы графов.

    курсовая работа [1,1 M], добавлен 26.06.2012

  • Ознакомление с элементами топологии базы геоданных. Исследование и характеристика особенностей кластерной обработки. Изучение алгоритмов, использующихся при проверке и кластеризации. Анализ процесса использования пространственных отношений объектов.

    презентация [749,3 K], добавлен 18.10.2017

  • Применение теории графов и алгоритмов на графах среди дисциплин и методов дискретной математики. Граф как совокупность двух множеств. Основные способы численного представления графа. Элементы и изоморфизмы графов. Требования к представлению графов в ЭВМ.

    курсовая работа [162,2 K], добавлен 04.02.2011

  • Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.

    контрольная работа [208,4 K], добавлен 14.06.2013

  • Определение архитектуры реляционных СУБД. Рассмотрение кластеризации как основного способа минимизации числа дисковых операций ввода-вывода данных. Применение индексов для повышения производительности SQL-запросов. Процесс кэширования в базах данных.

    курсовая работа [61,1 K], добавлен 15.07.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.