дипломная работа  Метод переноса обучения через аугментации в задачах классификации текста

Существующие методы аугментации тренировочных данных в задаче классификации, их сравнительная характеристика и особенности применения. Порядок проведения экспериментов по аугментированию с помощью различных подходов. Их сравнение с методом EDA.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

#######    #   #######   ###   ####### 
#         ##   #        #   #  #       
#        # #   #       #     # #       
######     #   ######  #     # ######  
      #    #         # #     #       # 
#     #    #   #     #  #   #  #     # 
 #####   #####  #####    ###    #####  
                                       

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 20.08.2020
Размер файла 1,9 M

Подобные документы

  • Программное обеспечение для получения исходных данных для обучения нейронных сетей и классификации товаров с их помощью. Алгоритм метода обратного распространения ошибки. Методика классификации товаров: составление алгоритма, программная реализация.

    дипломная работа [2,2 M], добавлен 07.06.2012

  • Виды машинного обучения, его основные задачи и методы. Подходы к классификации: логистическая регрессия, наивный байесовский классификатор, стохастический градиентный спуск, K-ближайший сосед, дерево решений, случайный лес, метод опорных векторов.

    курсовая работа [436,9 K], добавлен 14.12.2022

  • Пример дерева решений. Анализ древовидной структуры данных. Предикторные (зависимые) переменные как признаки, описывающие свойства анализируемых объектов. Решение задач классификации и численного прогнозирования с помощью деревьев классификации.

    презентация [391,1 K], добавлен 09.10.2013

  • Изучение принципа работы интернет-аукциона (на примере сайта molotok.ru). Способ получения информации с веб-ресурсов. Разработка программного обеспечения с целью создания исходных данных для обучения нейронных сетей и классификации товаров с их помощью.

    дипломная работа [2,0 M], добавлен 29.06.2012

  • Роль классификации документов в решении задач информационного поиска. Методы автоматической классификации документов и этапы построения классифицирующей системы: индексация документа, построение классификаторов на базе обучающих данных, оценка их работы.

    курсовая работа [354,2 K], добавлен 13.01.2013

  • Характеристика системы управления базами данных. Принципы классификации СУБД. NoSQL как ряд подходов, проектов, направленных на реализацию моделей баз данных. Методологические обоснования подхода NoSQL. Описание некоторых СУБД из данного движения.

    реферат [18,1 K], добавлен 06.10.2011

  • Создание системы предобработки данных; разработка системы классификации на базе методов и алгоритмов машинного обучения, их реализация в программной системе. Предобработка информации, инструкция пользователя, система классификации, машинный эксперимент.

    дипломная работа [917,1 K], добавлен 31.01.2015

  • Интеллектуальный анализ данных как метод поддержки принятия решений, основанный на анализе зависимостей между данными, его роль, цели и условия применения. Сущность основных задач интеллектуального анализа: классификации, регрессии, прогнозирования.

    контрольная работа [25,8 K], добавлен 08.08.2013

  • Программная реализация метода оптимальной классификации одномерного упорядоченного множества на основе "склеивания с ближайшим". Проверка работоспособности программы на основе алгоритмов классификации, вычислительные эксперименты по оценке эффективности.

    курсовая работа [414,4 K], добавлен 24.05.2015

  • Понятие и критерии классификации баз данных. Характеристика совокупностей элементов данных: массив, дерево, запись. Компоненты любой модели данных. Способы размещения значений элементов в физической записи. Методы доступа к данным: дерево, хеширование.

    реферат [84,7 K], добавлен 22.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.