курсовая работа Алгоритм решения СЛАУ прямым методом Гаусса
Изучение последовательного алгоритма Гаусса решения систем линейных уравнений. Программная реализация последовательного алгоритма Гаусса. Зависимость времени реализации алгоритма от размера матрицы. Вычисление эффективности параллельного алгоритма.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
| Рубрика | Программирование, компьютеры и кибернетика |
| Вид | курсовая работа |
| Язык | русский |
| Дата добавления | 27.12.2019 |
| Размер файла | 243,8 K |
Подобные документы
Сущность и особенности языка программирования Си. Основные этапы алгоритма решения системы линейных алгебраических уравнений методом Гаусса, реализация программы для их расчета. Инструкции пользователя и программиста. Тестирование функции решения.
курсовая работа [153,9 K], добавлен 18.02.2013Применение численного метода решения систем линейных алгебраических уравнений, используемых в прикладных задачах. Составление на базе метода матрицы Гаусса вычислительной схемы алгоритма и разработка интерфейса программы на алгоритмическом языке.
курсовая работа [823,9 K], добавлен 19.06.2023Преобразование матрицы системы линейных алгебраических уравнений (СЛАУ) с помощью алгоритма Гаусса. Решение задачи методом простой итерации. Создание блок-схемы и текста программы для решения СЛАУ, реализованной на языке программирования Turbo Pascal.
курсовая работа [1,2 M], добавлен 15.06.2013Системы линейных алгебраических уравнений. Код программы для решения систем линейных алгебраических уравнений. Математические и алгоритмические основы решения задачи методом Гаусса. Программная реализация решения. Алгоритмы запоминания коэффициентов.
лабораторная работа [23,5 K], добавлен 23.09.2014Разработка алгоритма составления системы уравнений при помощи законов Кирхгофа по определенной электрической схеме. Приложение для решения данной системы методом Гаусса с выбором ведущего элемента по строке. Описание программы, руководство пользователя.
курсовая работа [435,9 K], добавлен 02.07.2010Решение нелинейных краевых задач. Входные данные и содержание алгоритма Бройдена. Содержание алгоритма Бройдена. Метод исключения Гаусса для решения СЛАУ. Вывод формулы пересчета Бройдена. Разработка программы, исследование результата и примеры ее работы.
курсовая работа [912,3 K], добавлен 01.04.2010Решение системы линейных алгебраических уравнений методом Гаусса с выборкой ведущего элемента. Изучение особенности программной реализации алгоритма, составленной средствами разработки Microsoft Visual Studio. Проведение сложения и умножения двух матриц.
курсовая работа [702,6 K], добавлен 22.03.2015Основные методы решения систем линейных уравнений. Применение способа единственного деления. Способ Гаусса с выбором главного элемента по столбцу и по всей матрице. Сравнение итерационных и прямых методов. Программа решения СЛАУ по методу Гаусса.
курсовая работа [604,0 K], добавлен 28.05.2015Применение итерационных методов численного решения системы линейных алгебраических уравнений при вычислении на ЭВМ. Математические и алгоритмические основы решения задачи, метод Гаусса. Функциональные модели и блок-схемы, программная реализация решения.
курсовая работа [527,5 K], добавлен 25.01.2010Составление алгоритма и программного обеспечения для реализации конечноразностных интерполяционных формул Ньютона, Гаусса и Стирлинга. Описание метода полиномиальной интерполяции. Изучение метода оптимального исключения для решения линейных уравнений.
курсовая работа [19,8 K], добавлен 25.12.2013
