курсовая работа Вычисление определенного интеграла методом прямоугольников
Оценка абсолютной погрешности метода средних прямоугольников. Особенность применения данного способа при приближенном вычислении определенных интегралов. Подсчет абсолютной погрешности метода. Главный анализ проверки правильности работы программы.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 03.03.2019 |
Размер файла | 1,2 M |
Подобные документы
Разработка программы нахождения значения определенного интеграла с помощью метода трапеций. Оценка абсолютной погрешности метода. Использование среды программирования Visual Studio Community 2015 для написания программы. Работа с графическим интерфейсом.
курсовая работа [573,8 K], добавлен 17.03.2016MPI - библиотека передачи сообщений на языке программирования C/C++, ее переносимость, стандартизация, эффективная работа, функциональность. Форматы фактических вызовов MPI. Метод прямоугольников для приближенного вычисления определенного интеграла.
курсовая работа [286,0 K], добавлен 20.06.2012Разработка программы, выполняющей интегрирование методом входящих прямоугольников с кратностями и методом Симпсона. Расчет определённого интеграла приближенным и точным методами. Оценка погрешности при вычислении приблизительного значения интеграла.
контрольная работа [71,7 K], добавлен 13.02.2016Средства Delphi для разработки Windows приложений. Математическая формулировка задачи, описание программы вычисления определенного интеграла по формуле левых прямоугольников. Руководство пользователя, методика испытаний продукта. Листинг программы.
курсовая работа [178,1 K], добавлен 14.11.2010Рассмотрение методов прямоугольников и трапеций как способов вычисления определенных интегралов. Характеристика графика зависимости погрешности от числа разбиений N. Создание приложения по вычислению интеграла с помощью методов приближенного вычисления.
курсовая работа [1,6 M], добавлен 20.06.2012Построение графика функции. Поиск корней уравнения методом половинного деления. Определение минимума функции методом перебора и значения аргумента. Вычисление определенного интеграла на заданном отрезке с использованием метода правых прямоугольников.
контрольная работа [316,1 K], добавлен 13.11.2014Обзор элементов языка программирования Паскаль, решение задач путем использования численных методов на компьютере. Алгоритм нахождения интеграла функции с помощью метода прямоугольников. Комплекс технических средств, необходимых для решения задачи.
контрольная работа [36,6 K], добавлен 07.06.2010Разработка программы, которая по заданной самостоятельно функции будет выполнять интегрирование методом прямоугольников. Блок-схема алгоритма вычисления интеграла (функция rectangle_integrate). Экспериментальная проверка программы, ее текст на языке C.
курсовая работа [232,0 K], добавлен 27.05.2013Методы левых и правых прямоугольников численного интегрирования для вычисления интегралов. Геометрический смысл определённого интеграла. Программная реализация, блок-схемы алгоритмов. Результат работы тестовой программы. Решение задачи с помощью ЭВМ.
курсовая работа [180,4 K], добавлен 15.06.2013Аппроксимация линейной, степенной и квадратичной функции. Определение корней уравнения вида f(x)=0 методом половинного деления. Вычисление определенного интеграла методом прямоугольников, трапеций, парабол и Эйлера. Интерполяция формулой Лагранжа.
курсовая работа [1,3 M], добавлен 21.09.2011