диссертация  Модифицированные методы и алгоритмы распознавание образов при решении проблем "Data mining"

Анализ методов и моделей интеллектуального анализа данных. Модификация методов и алгоритмов распознавания текста и лица. Значение программного обеспечения для решения задачи распознавания текстов и лиц. Режим работы программного обеспечение "DPro".

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

                                                                    
        ,d8    888888888888  8888888888    ad888888b,    ad8888ba,  
      ,d888            ,8P'  88           d8"     "88   8P'    "Y8  
    ,d8" 88           d8"    88  ____             a8P  d8           
  ,d8"   88         ,8P'     88a8PPPP8b,       aad8"   88,dd888bb,  
,d8"     88        d8"       PP"     `8b       ""Y8,   88P'    `8b  
8888888888888    ,8P'                 d8          "8b  88       d8  
         88     d8"          Y8a     a8P  Y8,     a88  88a     a8P  
         88    8P'            "Y88888P"    "Y888888P'   "Y88888P"   
                                                                    
                                                                    

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид диссертация
Язык русский
Дата добавления 24.05.2018
Размер файла 4,3 M

Подобные документы

  • Теоретические основы распознавания образов. Функциональная схема системы распознавания. Применение байесовских методов при решении задачи распознавания образов. Байесовская сегментация изображений. Модель TAN при решении задачи классификации образов.

    дипломная работа [1019,9 K], добавлен 13.10.2017

  • Понятие и особенности построения алгоритмов распознавания образов. Различные подходы к типологии методов распознавания. Изучение основных способов представления знаний. Характеристика интенсиональных и экстенсиональных методов, оценка их качества.

    презентация [31,6 K], добавлен 06.01.2014

  • Методы распознавания образов (классификаторы): байесовский, линейный, метод потенциальных функций. Разработка программы распознавания человека по его фотографиям. Примеры работы классификаторов, экспериментальные результаты о точности работы методов.

    курсовая работа [2,7 M], добавлен 15.08.2011

  • Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.

    курсовая работа [3,9 M], добавлен 22.10.2012

  • Создание программного средства, осуществляющего распознавание зрительных образов на базе искусственных нейронных сетей. Методы, использующиеся для распознавания образов. Пандемониум Селфриджа. Персептрон Розенблатта. Правило формирования цепного кода.

    дипломная работа [554,8 K], добавлен 06.04.2014

  • Необходимость в системах распознавания символов. Виды сканеров и их характеристики. Оптимальное разрешение при сканировании. Программы распознавания текста. Получение электронного документа. FineReader - система оптического распознавания текстов.

    презентация [469,2 K], добавлен 15.03.2015

  • Основные понятия теории распознавания образов и ее значение. Сущность математической теории распознавания образов. Основные задачи, возникающие при разработке систем распознавания образов. Классификация систем распознавания образов реального времени.

    курсовая работа [462,2 K], добавлен 15.01.2014

  • Оптико-электронная система идентификации объектов подвижного состава железнодорожного транспорта. Автоматический комплекс распознавания автомобильных номеров. Принципы и этапы работы систем оптического распознавания. Особенности реализации алгоритмов.

    дипломная работа [887,3 K], добавлен 26.11.2013

  • Проектирование приложения на языке С# в среде Microsoft Visual Studio 2008: составление алгоритмов сегментации текста документа и распознавания слова "Указ" в нем, создание архитектуры и интерфейса программного обеспечения, описание разработанных классов.

    курсовая работа [2,4 M], добавлен 05.01.2011

  • Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.

    контрольная работа [208,4 K], добавлен 14.06.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.