статья  Применение методов генетических алгоритмов для построения множества Парето в задачах многокритериальной оптимизации

Исследование методов, использующих оптимальность по Парето на основе генетических алгоритмов. Описание преимуществ метода SPEA (Strength Pareto Evolutionary Algorithm) и SPEA2 по отношению к другим наиболее часто применяемым методам VEGA, FFGA, NSGA.

Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.

Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"

                                                                 
 ad88888ba    ad88888ba    ad888888b,  8888888888   8888888888   
d8"     "8b  d8"     "8b  d8"     "88  88           88           
Y8a     a8P  Y8a     a8P          a8P  88  ____     88  ____     
 "Y8aaa8P"    "Y8aaa8P"        aad8"   88a8PPPP8b,  88a8PPPP8b,  
 ,d8"""8b,    ,d8"""8b,        ""Y8,   PP"     `8b  PP"     `8b  
d8"     "8b  d8"     "8b          "8b           d8           d8  
Y8a     a8P  Y8a     a8P  Y8,     a88  Y8a     a8P  Y8a     a8P  
 "Y88888P"    "Y88888P"    "Y888888P'   "Y88888P"    "Y88888P"   
                                                                 
                                                                 

Введите число, изображенное выше:

Рубрика Программирование, компьютеры и кибернетика
Вид статья
Язык русский
Дата добавления 27.07.2017
Размер файла 29,4 K

Подобные документы

  • Комплексное исследование истории развития, основных понятий, области применения и особенностей генетических алгоритмов. Анализ преимуществ генетических алгоритмов. Построение генетического алгоритма, позволяющего находить максимум целочисленной функции.

    курсовая работа [27,9 K], добавлен 23.07.2011

  • Описание генетических алгоритмов. Применение генетического алгоритма для решения задачи коммивояжера. Постановка задачи безусловной оптимизации. Изучение распространения генетических алгоритмов на модель с несколькими взаимодействующими популяциями.

    дипломная работа [979,1 K], добавлен 30.05.2015

  • История появления эволюционных алгоритмов. Нейрокомпьютерные исследования в России. Реализация генетических алгоритмов. Расчет эффективности процедур поиска конкурирующей процедуры. Schema и теорема шим. Примеры использования нейросетевых технологий.

    курсовая работа [43,0 K], добавлен 20.10.2008

  • Основные особенности эволюционных алгоритмов. Описание алгоритмов селекции, мутации, скрещивания, применяемых для реализации генетических алгоритмов. Вычисление функции приспособленности. Программная реализация. Тестирование и руководство пользователя.

    курсовая работа [1,3 M], добавлен 11.03.2014

  • Трудности использования эволюционных алгоритмов. Построение вычислительных систем, основанных на принципах естественного отбора. Недостатки генетических алгоритмов. Примеры эволюционных алгоритмов. Направления и разделы эволюционного моделирования.

    реферат [187,4 K], добавлен 21.01.2014

  • Характеристика методов нечеткого моделирования и изучение системы кластеризации в пакетах прикладных программ. Разработка и реализация алгоритма для оптимизации базы правил нечеткого классификатора с помощью генетического алгоритма аппроксимации функции.

    дипломная работа [1,9 M], добавлен 21.06.2014

  • Принципы компьютерной стеганографии. Классификация методов сокрытия информации. Популярность метода замены наименьшего значащего бита. Сущность методов расширения палитры и блочного сокрытия. Применение методов в GIF изображениях. Реализация алгоритмов.

    курсовая работа [589,7 K], добавлен 17.02.2013

  • Исследование асимптотической временной сложности решения шахматной задачи; разработка наиболее эффективных алгоритмов и структуры данных; аналитическая и экспериментальная оценка методов сокращения перебора в комбинаторных задачах; программная реализация.

    курсовая работа [36,6 K], добавлен 25.06.2013

  • Сущность и экономическое обоснование, методы и подходы к прогнозированию валютного курса. Описание технологии интеллектуальных вычислений. Применение генетических алгоритмов для настройки архитектуры нейронных сетей. Основные способы улучшения модели.

    курсовая работа [1,3 M], добавлен 26.03.2016

  • Обзор основных алгоритмов и методов распознавания лиц. Архитектура средств динамического отслеживания лиц в видеопоследовательности. Результаты тестирования на больших объемах видеоданных. Разработка алгоритмов и методов динамического отслеживания лиц.

    дипломная работа [5,9 M], добавлен 20.07.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.