статья Многоспектральный оптический метод формирования и обработки изображений низкоконтрастных подкожных образований при априорной неопределенности параметров кожи
Алгоритм формирования изображения подкожного слоя, с использованием многоспектрального метода. Методы, уменьшающие искажающее влияние изменения характеристик кожи на формирование изображения без соблюдения жестких требований к точности выбора длин волн.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
| Рубрика | Программирование, компьютеры и кибернетика |
| Вид | статья |
| Язык | русский |
| Дата добавления | 30.05.2017 |
| Размер файла | 144,7 K |
Подобные документы
Анализ существующих методов масштабирования изображений. Повышение скорости обработки и изменения картинок. Алгоритм масштабирования с использованием параллелизма. Отбор пикселей для правильного расчета градиента. Выбор метода интерполяции изображения.
курсовая работа [5,8 M], добавлен 17.06.2017Общий алгоритм сравнения двух изображений. Метод максимальных площадей. Метод гистограмм. Подготовка изображения к распознаванию. Моделирование многомерной функции. Распределение векторов. Деформируемые модели. Реализация программного обеспечения.
дипломная работа [384,2 K], добавлен 29.09.2008Разработка приложения, целью которого ставится преобразование черно-белых полутоновых изображений в цветные. Обзор методики обработки изображения, способов преобразования изображения с помощью нейронной сети. Описания кластеризации цветового пространства.
дипломная работа [6,3 M], добавлен 17.06.2012Задачи цифровой обработки изображений. Методы пороговой сегментации. Создание программы представления рисунка в виде матрицы и применения к нему пороговой обработки. Разработка интерфейса программы загрузки и фильтрации изображения с выбранным порогом.
курсовая работа [2,0 M], добавлен 12.11.2012Алгоритм реализации векторного пространства, метод фильтрации шумов на изображении. Формально-логическая модель разработки программного обеспечения, выбор инструментальных средств его реализации. Анализ точности совпадения распознанного изображения.
дипломная работа [2,7 M], добавлен 13.02.2013- Определение величины дисторсии цифровых изображений, формируемых системами технического зрения (СТЗ)
Оснащение робототехнических комплексов систем технического зрения. Математическая модель и векторная диаграмма дисторсии изображения. Создание эталонного изображения тестового объекта. Определение основных погрешностей формирования изображения.
курсовая работа [1,4 M], добавлен 14.06.2014 Цифровые рентгенографические системы. Методы автоматического анализа изображений в среде MatLab. Анализ рентгеновского изображения. Фильтрация, сегментация, улучшение изображений. Аппаратурные возможности предварительной нормализации изображений.
курсовая работа [890,9 K], добавлен 07.12.2013Яркость точек и гистограммы изображения. Изменение яркости и контрастности. Метод ранговой фильтрации с оценкой середины диапазона. Наложение шумов на изображение. Преобразование изображения в негатив. Получение матрицы яркостей и построение гистограмм.
курсовая работа [1,5 M], добавлен 11.12.2012Интерфейс программы Adobe Photoshop. Внесение изменений в изображение. Инструменты изменения оттенка и искажения изображения. Последовательность формирования изображения. Тоновая и цветовая коррекция изображения, работа с фильтрами и функциями.
курсовая работа [2,8 M], добавлен 14.12.2011Выбор методов обработки и сегментации изображений. Математические основы примененных фильтров. Гистограмма яркости изображения. Программная реализация комплексного метода обработки изображений. Тестирование разработанного программного обеспечения.
курсовая работа [1,3 M], добавлен 18.01.2017
