статья Терминальное управление электроприводом постоянного тока на основе нечеткой нейронной сети
Применение нечеткой нейронной сети на основе алгоритма Сугено путем аппроксимации управляющего напряжения, как функции координат системы, для реализации терминального управления. Описание базы правил и функции принадлежности, результаты применения сети.
Нажав на кнопку "Скачать архив", вы скачаете нужный вам файл совершенно бесплатно.
Перед скачиванием данного файла вспомните о тех хороших рефератах, контрольных, курсовых, дипломных работах, статьях и других документах, которые лежат невостребованными в вашем компьютере. Это ваш труд, он должен участвовать в развитии общества и приносить пользу людям. Найдите эти работы и отправьте в базу знаний.
Мы и все студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будем вам очень благодарны.
Чтобы скачать архив с документом, в поле, расположенное ниже, впишите пятизначное число и нажмите кнопку "Скачать архив"
Рубрика | Программирование, компьютеры и кибернетика |
Вид | статья |
Язык | русский |
Дата добавления | 21.02.2013 |
Размер файла | 147,6 K |
Подобные документы
Исследование нечеткой модели управления. Создание нейронной сети, выполняющей различные функции. Исследование генетического алгоритма поиска экстремума целевой функции. Сравнительный анализ нечеткой логики и нейронной сети на примере печи кипящего слоя.
лабораторная работа [2,3 M], добавлен 25.03.2014Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.
лабораторная работа [1,1 M], добавлен 05.10.2010Разработка алгоритма и программы для распознавания пола по фотографии с использованием искусственной нейронной сети. Создание алгоритмов: математического, работы с приложением, установки весов, реализации функции активации и обучения нейронной сети.
курсовая работа [1,0 M], добавлен 05.01.2013Описание структурной схемы искусственного нейрона. Характеристика искусственной нейронной сети как математической модели и устройств параллельных вычислений на основе микропроцессоров. Применение нейронной сети для распознавания образов и сжатия данных.
презентация [387,5 K], добавлен 11.12.2015Нейронные сети и оценка возможности их применения к распознаванию подвижных объектов. Обучение нейронной сети распознаванию вращающегося трехмерного объекта. Задача управления огнем самолета по самолету. Оценка экономической эффективности программы.
дипломная работа [2,4 M], добавлен 07.02.2013Прогнозирование валютных курсов с использованием искусственной нейронной сети. Общая характеристика среды программирования Delphi 7. Существующие методы прогнозирования. Характеристика нечетких нейронных сетей. Инструкция по работе с программой.
курсовая работа [2,2 M], добавлен 12.11.2010Математическая модель нейронной сети. Однослойный и многослойный персептрон, рекуррентные сети. Обучение нейронных сетей с учителем и без него. Алгоритм обратного распространения ошибки. Подготовка данных, схема системы сети с динамическим объектом.
дипломная работа [2,6 M], добавлен 23.09.2013Принцип построения и описание прибора. Назначение и область применения спектрометра космических излучений на алмазных детекторах. Аппроксимация степенным многочленом. Математическая модель нейронной сети. Описание интерфейса программного комплекса.
дипломная работа [591,1 K], добавлен 03.09.2017Прогнозирование на фондовом рынке с помощью нейронных сетей. Описание типа нейронной сети. Определение входных данных и их обработка. Архитектура нейронной сети. Точность результата. Моделирование торговли. Нейронная сеть прямого распространения сигнала.
дипломная работа [2,7 M], добавлен 18.02.2017Выявление закономерностей и свойств, применимых в искусственной нейронной сети. Построение графиков и диаграмм, определяющих степень удаленности между объектами. Моделирование, тестирование и отладка программной модели, использующей клеточный автомат.
дипломная работа [4,1 M], добавлен 25.02.2015