Технология нейронной стилизации изображений с помощью машинного и глубокого обучения: методы и применение

Появление и перспективы использования технологии нейронной стилизации. Типологизация методов машинного обучения для стилизации изображений. Рассмотрение реализации стилизации изображений с помощью машинного и глубокого обучений на языке Python.

Рубрика Программирование, компьютеры и кибернетика
Предмет Информационные системы
Вид статья
Язык русский
Прислал(а) Бунина Д.А., Лузан С.Р.
Дата добавления 09.12.2024
Размер файла 299,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Типы изображений (черно-белые, полутоновые, цветные) и их форматы. Устройства, создающие цифровые изображения, и их параметры. Применение и характеристики методов сжатия изображений. Поиск по содержимому в базах данных изображений. Структуры баз данных.

    презентация [360,4 K], добавлен 11.10.2013

  • Сравнительная оценка существующих программ, повышающих разрешение изображений на языке Borland Delphi. Выбор оптимального инструментария для разработки логической схемы. Форма поиска файлов, преобразования изображений и реализации алгоритмов интерполяции.

    дипломная работа [3,0 M], добавлен 29.11.2011

  • Цифровые рентгенографические системы. Методы автоматического анализа изображений в среде MatLab. Анализ рентгеновского изображения. Фильтрация, сегментация, улучшение изображений. Аппаратурные возможности предварительной нормализации изображений.

    курсовая работа [890,9 K], добавлен 07.12.2013

  • Обработка изображений на современных вычислительных устройствах. Устройство и представление различных форматов изображений. Исследование алгоритмов обработки изображений на базе различных архитектур. Сжатие изображений на основе сверточных нейросетей.

    дипломная работа [6,1 M], добавлен 03.06.2022

  • Основы программирования на языке VB.NET. Область применения трехмерных изображений. Форматы хранения пакетов инженерной графики. Преимущества трехмерного моделирования. Разработка программы по вращению трехмерных изображений на языках VB.NET и VRML.

    курсовая работа [195,1 K], добавлен 11.03.2013

  • История автоматизированного перевода. Современные компьютерные программы перевода. Сфера использования машинного перевода. Формы организации взаимодействия человека и ЭВМ в машинном переводе. Интерредактирование и постредактирование машинного перевода.

    курсовая работа [30,0 K], добавлен 19.06.2015

  • Історія машинного перекладу як науково-прикладного напряму. Теорія машинного перекладу. Особливості використання систем, орієнтованих на персональні комп’ютери. Напрямки розвитку та застосування машинного перекладу. Приклади систем машинного перекладу.

    реферат [21,5 K], добавлен 19.02.2011

  • Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.

    курсовая работа [3,9 M], добавлен 22.10.2012

  • Machine Learning как процесс обучения машины без участия человека, основные требования, предъявляемые к нему в сфере медицины. Экономическое обоснование эффективности данной технологии. Используемое программное обеспечение, его функции и возможности.

    статья [16,1 K], добавлен 16.05.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.