Характеристика и виды искусственных нейронных сетей

Перцептрон - математическая модель обработки информации человеческим мозгом. Нейронная сеть - громадный распределенный параллельный процессор, состоящий из элементарных единиц обработки данных, накапливающих и анализирующих экспериментальные знания.

Рубрика Программирование, компьютеры и кибернетика
Вид реферат
Язык русский
Дата добавления 02.11.2020
Размер файла 160,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.

    реферат [158,2 K], добавлен 16.03.2011

  • Режимы компьютерной обработки данных. Централизованный, децентрализованный, распределенный и интегрированный способы обработки данных. Средства обработки информации. Типы ведения диалога, пользовательский интерфейс. Табличный процессор MS Excel.

    курсовая работа [256,9 K], добавлен 25.04.2013

  • Простейшая сеть, состоящая из группы нейронов, образующих слой. Свойства нейрокомпьютеров (компьютеров на основе нейронных сетей), привлекательных с точки зрения их практического использования. Модели нейронных сетей. Персептрон и сеть Кохонена.

    реферат [162,9 K], добавлен 30.09.2013

  • Модели нейронных сетей и их реализации. Последовательный и параллельный методы резолюции как средства логического вывода. Зависимость между логическим следованием и логическим выводом. Применение технологии CUDA и реализация параллельного алгоритма.

    дипломная работа [1,5 M], добавлен 22.09.2016

  • Описание технологического процесса напуска бумаги. Конструкция бумагоделательной машины. Обоснование применения нейронных сетей в управлении формованием бумажного полотна. Математическая модель нейрона. Моделирование двух структур нейронных сетей.

    курсовая работа [1,5 M], добавлен 15.10.2012

  • Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.

    презентация [98,6 K], добавлен 16.10.2013

  • Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.

    дипломная работа [814,6 K], добавлен 29.09.2014

  • Способы применения технологий нейронных сетей в системах обнаружения вторжений. Экспертные системы обнаружения сетевых атак. Искусственные сети, генетические алгоритмы. Преимущества и недостатки систем обнаружения вторжений на основе нейронных сетей.

    контрольная работа [135,5 K], добавлен 30.11.2015

  • Компьютер как электронный прибор, предназначенный для автоматизации создания, хранения, обработки и транспортировки данных. Общая характеристика основных составных частей персонального компьютера: процессор, память. Анализ схемы обработки информации.

    контрольная работа [882,0 K], добавлен 02.05.2013

  • Особенности нейронных сетей как параллельных вычислительных структур, ассоциируемых с работой человеческого мозга. История искусственных нейронных сетей как универсального инструмента для решения широкого класса задач. Программное обеспечение их работы.

    презентация [582,1 K], добавлен 25.06.2013

  • Преимущества распределенных система обработки данных. Классификация интегрированных технологий. Модели реализации технологии "клиент-сервер". Мониторы обработки транзакций. Глобальные вычислительные и информационные сети. Виды доступа к глобальным сетям.

    презентация [2,1 M], добавлен 20.11.2013

  • Рост активности в области теории и технической реализации искусственных нейронных сетей. Основные архитектуры нейронных сетей, их общие и функциональные свойства и наиболее распространенные алгоритмы обучения. Решение проблемы мертвых нейронов.

    реферат [347,6 K], добавлен 17.12.2011

  • Виды режимов обработки данных в ЕАИС: мультипрограммный, пакетный, оперативный, телеобработки и обработки в реальном масштабе времени. Основной эффект от объединения ЭВМ и терминалов в вычислительную сеть. Иерархические уровни обмена данными в сети.

    реферат [17,4 K], добавлен 10.08.2017

  • Психодиагностика и нейронные сети. Математические модели и алгоритмы психодиагностики. Решение нейросетями задач психодиагностики. Интуитивное предсказание нейросетями взаимоотношений. Полутораслойный предиктор с произвольными преобразователями.

    диссертация [643,7 K], добавлен 02.10.2008

  • Сущность и функции искусственных нейронных сетей (ИНС), их классификация. Структурные элементы искусственного нейрона. Различия между ИНС и машинами с архитектурой фон Неймана. Построение и обучение данных сетей, области и перспективы их применения.

    презентация [1,4 M], добавлен 14.10.2013

  • Применение нейрокомпьютеров на российском финансовом рынке. Прогнозирование временных рядов на основе нейросетевых методов обработки. Определение курсов облигаций и акций предприятий. Применение нейронных сетей к задачам анализа биржевой деятельности.

    курсовая работа [527,2 K], добавлен 28.05.2009

  • Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.

    дипломная работа [1,8 M], добавлен 08.02.2017

  • Нейронные сети как средство анализа процесса продаж мобильных телефонов. Автоматизированные решения на основе технологии нейронных сетей. Разработка программы прогнозирования оптово-розничных продаж мобильных телефонов на основе нейронных сетей.

    дипломная работа [4,6 M], добавлен 22.09.2011

  • Сущность и понятие кластеризации, ее цель, задачи, алгоритмы; использование искусственных нейронных сетей для кластеризации данных. Сеть Кохонена, самоорганизующиеся нейронные сети: структура, архитектура; моделирование кластеризации данных в MATLAB NNT.

    дипломная работа [3,1 M], добавлен 21.03.2011

  • Структурная схема компьютера. Основные характеристики процессора - устройства, предназначенного для обработки информации и управления процессом обработки. Способы хранения информации. Описание, назначение и принципы работы устройств ввода и вывода данных.

    презентация [862,1 K], добавлен 20.07.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.