Предсказание синтезируемости молекул
Способ по предсказанию успешности реакции с помощью методов машинного обучения. Модели с использованием методов глубокого обучения, решающие задачи генерации потенциально неуспешных реакций и классификации реакций на успешно проходящие и некорректные.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Прикладная математика и информатика |
Вид | дипломная работа |
Язык | русский |
Прислал(а) | Федотов Александр Сергеевич |
Дата добавления | 24.10.2020 |
Размер файла | 9,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.
курсовая работа [3,9 M], добавлен 22.10.2012Получение и обработка данных о веб-сайте. Иерархическая классификация, алгоритмы машинного обучения. Решающие деревья, плоские классификаторы. Метрики оценки качества. Полная точность (accuracy), кросс-валидация. Параллельные вычисления, хранение данных.
курсовая работа [276,8 K], добавлен 04.09.2016Создание системы предобработки данных; разработка системы классификации на базе методов и алгоритмов машинного обучения, их реализация в программной системе. Предобработка информации, инструкция пользователя, система классификации, машинный эксперимент.
дипломная работа [917,1 K], добавлен 31.01.2015Виды машинного обучения, его основные задачи и методы. Подходы к классификации: логистическая регрессия, наивный байесовский классификатор, стохастический градиентный спуск, K-ближайший сосед, дерево решений, случайный лес, метод опорных векторов.
курсовая работа [436,9 K], добавлен 14.12.2022Изучение принципа работы интернет-аукциона (на примере сайта molotok.ru). Способ получения информации с веб-ресурсов. Разработка программного обеспечения с целью создания исходных данных для обучения нейронных сетей и классификации товаров с их помощью.
дипломная работа [2,0 M], добавлен 29.06.2012Решение дифференциального уравнения с помощью численных методов (Рунге-Кутта и Эйлера модифицированного). Особенности построения графиков в программе Microsoft Visual Basic 10 с использованием ответа задачи, который имеет незначительную погрешность.
курсовая работа [1017,3 K], добавлен 27.05.2013Анализ методов и средств профессионального обучения операторов перегрузочных машин, автоматизация процесса. Построение функциональной модели компьютерного тренажера оператора портального крана. Разработка программного и информационного обеспечения.
дипломная работа [3,7 M], добавлен 12.05.2018Метод решения математической модели на примере решения задач аналитической геометрии. Описание согласно заданному варианту методов решения задачи. Разработка математической модели на основе описанных методов. Параметры окружности минимального радиуса.
лабораторная работа [310,6 K], добавлен 13.02.2009Роль и возможности адаптивной модели в организации образовательного процесса. Структура и механизм навигации в адаптивной модели обучения АЯП Prolog. Программная реализация адаптивной модели обучения. Демонстрация созданного программного продукта.
курсовая работа [1,6 M], добавлен 19.06.2015Важнейшие принципы обучения в школе. Понятие и основные виды наглядности. Развитие воображения в процессе обучения. Диапазон использования компьютера в учебно-воспитательном процессе. Понятие содержательной линии. Общая классификация методов обучения.
курсовая работа [270,9 K], добавлен 15.12.2012