Дональд Хебб: значение нейронных связей в обучении

Смысл постулата Хебба в том, что если изначально наблюдается причинно-следственная связь между активациями пре- и постсинаптического нейрона, то эта связь имеет тенденцию к усилению. Следствия, исходящие из правила Хебба. Структурная схема нейрона.

Рубрика Программирование, компьютеры и кибернетика
Предмет Программирование
Вид презентация
Язык русский
Прислал(а) манн
Дата добавления 20.05.2020
Размер файла 119,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Механизмы работы синапса биологического нейрона, в которую входят: воссоздание пороговых принципов ограничения потенциала нейрона, а также торможения и возбуждения с их временными зависимостями. Испытания работы нейрона с различной структурой мембраны.

    дипломная работа [1,8 M], добавлен 03.02.2015

  • Достоинства, недостатки и применение нейронных сетей. Преимущества мозга, как вычислительного устройства, над современными вычислительными машинами. Структурные части, виды и активационные функции нейрона. Обобщенное представление искусственного нейрона.

    презентация [145,5 K], добавлен 03.01.2014

  • Механизм работы биологического нейрона и описание системы дифференциальных уравнений его работы. Алгоритм работы модели биологического нейрона, модель синапса. Элементы нейрологики с позиции аппаратной реализации и разработка программного комплекса.

    дипломная работа [1,7 M], добавлен 07.09.2012

  • Общие сведения о принципах построения нейронных сетей. Искусственные нейронные системы. Математическая модель нейрона. Классификация нейронных сетей. Правила обучения Хэбба, Розенблатта и Видроу-Хоффа. Алгоритм обратного распространения ошибки.

    дипломная работа [814,6 K], добавлен 29.09.2014

  • Понятие искусственного нейрона и искусственных нейронных сетей. Сущность процесса обучения нейронной сети и аппроксимации функции. Смысл алгоритма обучения с учителем. Построение и обучение нейронной сети для аппроксимации функции в среде Matlab.

    лабораторная работа [1,1 M], добавлен 05.10.2010

  • Понятие и свойства искусственных нейронных сетей, их функциональное сходство с человеческим мозгом, принцип их работы, области использования. Экспертная система и надежность нейронных сетей. Модель искусственного нейрона с активационной функцией.

    реферат [158,2 K], добавлен 16.03.2011

  • Описание технологического процесса напуска бумаги. Конструкция бумагоделательной машины. Обоснование применения нейронных сетей в управлении формованием бумажного полотна. Математическая модель нейрона. Моделирование двух структур нейронных сетей.

    курсовая работа [1,5 M], добавлен 15.10.2012

  • Сущность и функции искусственных нейронных сетей (ИНС), их классификация. Структурные элементы искусственного нейрона. Различия между ИНС и машинами с архитектурой фон Неймана. Построение и обучение данных сетей, области и перспективы их применения.

    презентация [1,4 M], добавлен 14.10.2013

  • Определение и виды модели, ее отличие от понятия моделирования. Формула искусственного нейрона. Структура передачи сигнала между нейронами. Способность искусственных нейронных сетей к обучению и переобучению. Особенности их применения в финансовой сфере.

    реферат [136,2 K], добавлен 25.04.2016

  • Механизм работы нервной системы и мозга человека. Схема биологического нейрона и его математическая модель. Принцип работы искусственной нейронной сети, этапы ее построения и обучения. Применение нейронных сетей в интеллектуальных системах управления.

    презентация [98,6 K], добавлен 16.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.