Методы машинного обучения для анализа тональности коротких текстов
Разработка и анализ работы алгоритмов для анализа тональности агрессивных комментариев, автоматического определения их эмоционального окраса. Реализация классифицирующих моделей машинного обучения, оценка их качества и сравнение их эффективности.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Информационные технологии |
Вид | дипломная работа |
Язык | русский |
Прислал(а) | Шахов Дмитрий |
Дата добавления | 10.12.2019 |
Размер файла | 2,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Описание ДСМ-метода автоматического порождения гипотез. Исследование результатов влияния компонентов ДСМ-метода на качество определения тональности текстов. Алгоритм поиска пересечений. N-кратный скользящий контроль. Программная реализация ДСМ-метода.
курсовая работа [727,0 K], добавлен 12.01.2014Искусственные нейронные сети как одна из широко известных и используемых моделей машинного обучения. Знакомство с особенностями разработки системы распознавания изображений на основе аппарата искусственных нейронных сетей. Анализ типов машинного обучения.
дипломная работа [1,8 M], добавлен 08.02.2017Анализ проблем, возникающих при применении методов и алгоритмов кластеризации. Основные алгоритмы разбиения на кластеры. Программа RapidMiner как среда для машинного обучения и анализа данных. Оценка качества кластеризации с помощью методов Data Mining.
курсовая работа [3,9 M], добавлен 22.10.2012Популярность алгоритмов машинного обучения для компьютерных игр. Основные техники обучения с подкреплением в динамической среде (компьютерная игра "Snake") с экспериментальным сравнением алгоритмов. Обучение с подкреплением как тип обучения без учителя.
курсовая работа [1020,6 K], добавлен 30.11.2016Методы машинного обучения в задачах рубрикации, положительные и отрицательные примеры. Отсечение по центрам тяжести и ближайшим соседям. Оптимальный линейный сепаратор Support Vector Machines. Особенности применения тезауруса. Расчет веса конъюнкции.
лекция [405,0 K], добавлен 01.09.2013Создание системы предобработки данных; разработка системы классификации на базе методов и алгоритмов машинного обучения, их реализация в программной системе. Предобработка информации, инструкция пользователя, система классификации, машинный эксперимент.
дипломная работа [917,1 K], добавлен 31.01.2015Разработка программного продукта для психолингвистического анализа текстов. Предметная область, основные требования. Анализ рабочих процессов отдела рекламно-выставочной и издательской деятельности. Оценка эффективности проекта и стоимости владения.
дипломная работа [3,1 M], добавлен 12.10.2015Использование классификаторов машинного обучения для анализа данных. Создание модели, которая на основании параметров, влияющих на течение диабета, выявляет показатель возвращения больного в ухудшенное состояния после оказанного лечения (реадмиссию).
дипломная работа [625,2 K], добавлен 10.06.2017Machine Learning как процесс обучения машины без участия человека, основные требования, предъявляемые к нему в сфере медицины. Экономическое обоснование эффективности данной технологии. Используемое программное обеспечение, его функции и возможности.
статья [16,1 K], добавлен 16.05.2016Морфологические анализаторы (морфологизаторы) на различных языках программирования. Анализ методов и технологий автоматической обработки ЕЯ-текстов. Разработка модуля графематического анализа и создания таблицы лексем. Программная реализация классов.
дипломная работа [3,0 M], добавлен 06.03.2012