Классификация и анализ объектов для адаптивного распознавания в видеопотоке на основе нейронных сетей

Исследование применения классификации и анализа объектов на основе нейронных сетей в задачах распознавания объектов в видеопотоке. Разработка и реализация алгоритма обучения нейронных сетей для реализации механизмов классификации объектов в видеопотоке.

Рубрика Программирование, компьютеры и кибернетика
Вид дипломная работа
Язык русский
Дата добавления 10.12.2019
Размер файла 2,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

[3] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multiperson 2d pose estimation using part affinity fields. In proceedings IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[4] M. Everingham, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman. The pascal visual object classes (voc) challenge. International Journal of Computer Vision, 88(2):303- 338, 2010.

[5] D. G. Hoare and C. Warr. Talent identification and women's soccer: an australian experience. Journal of Sports Sciences, 18(9):751-758, 2000.

[6] X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics, страницы 249-256, 2010.

[7] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, страницы 770-778, 2016.

[8] N. Homayounfar, S. Fidler, and R. Urtasun. Sports field localization via deep structured models. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, страницы 5212-5220, 2017.

[9] S. Iwase and H. Saito. Parallel tracking of all soccer players by integrating detected positions in multiple view images. In Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th International Conference on, volume 4, страницы 751-754. IEEE, 2004.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in Neural Information Processing Systems, страницы 1097-1105, 2012.

[11] A. Li, F. Tang, Y. Guo, and H. Tao. Discriminative nonorthogonal binary subspace tracking. страницы 258-271. Springer, 2010.

[12] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollar, and C. L. Zitnick. Microsoft coco: Common objects in context. In European Conference on Computer Vision, страницы 740-755. Springer, 2014.

[13] J. Liu, X. Tong, W. Li, T. Wang, Y. Zhang, and H. Wang. Automatic player detection, labeling and tracking in broadcast soccer video. Pattern Recognition Letters, 30(2):103-113, 2009.

[14] W.-L. Lu, J.-A. Ting, J. J. Little, and K. P. Murphy. Learning to track and identify players from broadcast sports videos. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7):1704-1716, 2013.

[15] C. Meylan, J. Cronin, J. Oliver, and M. Hughes. Talent identification in soccer: The role of maturity status on physical, physiological and technical characteristics. International Journal of Sports Science & Coaching, 5(4):571-592, 2010.

[16] M. Naemura, A. Fukuda, Y. Mizutani, Y. Izumi, Y. Tanaka, and K. Enami. Morphological segmentation of sport scenes using color information. IEEE Transactions on Broadcasting, 46(3):181-188, 2000.

[17] J. Pers and S. Kova Ў ciЎ c. Tracking people in sport: Making use Ў of partially controlled environment. In Computer Analysis of Images and Patterns, страницы 374-382. Springer, 2001.

[18] A. Radford, L. Metz, and S. Chintala. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

[19] J. Redmon and A. Farhadi. Yolo9000: Better, faster, stronger. arXiv preprint arXiv:1612.08242, 2016.

[20] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3):211-252, 2015.

[21] Y. Seo, S. Choi, H. Kim, and K.-S. Hong. Where are the ball and players? soccer game analysis with color-based tracking and image mosaick. In International Conference on Image Analysis and Processing, страницы 196-203. Springer, 1997.

[22] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[23] H. K. Stensland, V. R. Gaddam, M. Tennшe, E. Helgedagsrud, M. Nжss, H. K. Alstad, A. Mortensen, R. Langseth, S. Ljшdal, Ш. Landsverk, и др. Bagadus: An integrated real-time system for soccer analytics. ACM Transactions on Multimedia Computing, Communications, and Applications (TOMM), 10(1s):14, 2014.

[24] G. Thomas. Real-time camera tracking using sports pitch markings. Journal of Real-Time Image Processing, 2(2- 3):117-132, 2007.

[25] A. M. Williams and T. Reilly. ”talent identification and development in soccer,” International Journal of Sports Science, 18, страницы 657-667, 2000.

[26] N. Wojke, A. Bewley, and D. Paulus. Simple online and realtime tracking with a deep association metric. arXiv preprint arXiv:1703.07402, 2017.

[27] M. D. Zeiler and R. Fergus. Visualizing and understanding convolutional networks. In European Conference on Computer Vision, страницы 818-833. Springer, 2014.

[28] MobileNetV2: Inverted Residuals and Linear Bottlenecks - https://arxiv.org/pdf/1801.04381.pdf

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.