Использование генеративных нейросетей для моделирования взаимодействия молекул иммунной системы
Исследование возможностей современных нейросетевых подходов к решению некоторых проблем в сфере иммунологии. Основные современные нейросетевые генеративные подходы, методы их обучения. Создание нейросетевой модели на языке программирования Python.
Рубрика | Программирование, компьютеры и кибернетика |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 01.12.2019 |
Размер файла | 2,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Понятие и характеристики облачных технологий, модели их развертывания, технологические процессы, аспекты экономики и критика. Язык программирования Python, оценка функциональности, сравнение с аналогами. Управление облаком в Python на примере libcloud.
курсовая работа [43,0 K], добавлен 08.06.2014Программное обеспечение Python и ее основные характеристики, как программной среды. Общие сведения о языке программирования Python. Особенности применения ППП Python (x,y) с использованием его различных вычислительных модулей в учебном процессе.
дипломная работа [2,9 M], добавлен 07.04.2019Отличительные особенности языка программирования Python: низкий порог вхождения, минималистичный язык, краткий код, поддержка математических вычислений, большое количество развитых web-фреймворков. Традиционная модель выполнения программ на языке Python.
реферат [51,9 K], добавлен 18.01.2015Разработка структуры базы данных для хранения дипломных проектов в среде объектно-ориентированного программирования Python. Создание внешнего вида окон ввода-вывода информации, технологии переходов. Листинг программы с пояснениями; направления улучшения.
курсовая работа [3,1 M], добавлен 27.02.2015Исследование нейросетевых архитектур и их приложений. Общие принципы, характерные для нейросетей. Локальность и параллелизм вычислений. Программирование: обучение, основанное на данных. Универсальность обучающих алгоритмов. Сферы применения нейросетей.
курсовая работа [250,5 K], добавлен 25.11.2010Схематическое представление сигмоидной функции. Слой как группа нейронов, на которые входной сигнал приходит одновременно. Характеристика специфических особенностей кохоненоподобной нейросетевой модели. Описание модели работы самоорганизующихся карт.
курсовая работа [1,6 M], добавлен 30.06.2017Разработка программ средствами библиотеки tkinter на языке Python. Изучение основы работы в текстовом редакторе Word. Описание авторской идеи анимации. Использование базовых команд и конструкций. Процесс проектирования и алгоритм разработанной программы.
контрольная работа [125,3 K], добавлен 11.11.2014Обзор существующих подходов в генерации музыкальных произведений. Особенности создания стилизованных аудио произведений на основе современных нейросетевых алгоритмов. Выбор средств и библиотек разработки. Практические результаты работы алгоритма.
дипломная работа [4,0 M], добавлен 13.10.2017Исторические аспекты развития линии "Алгоритмизация и программирование" в старшей школе. Изучение языка программирования Python с применением дистанционных курсов Coursera. Методическая система обучения программированию с использованием Coursera.
дипломная работа [808,8 K], добавлен 13.12.2017Исследование возможностей и областей использования языка программирования JavaScript. Сравнительный анализ языков программирования JavaScript и PHP. Разработка интерактивного Web-приложения на примере теста по теме "Программирование на языке Delphi".
практическая работа [26,0 K], добавлен 04.02.2015Описание функциональных возможностей технологии Data Mining как процессов обнаружения неизвестных данных. Изучение систем вывода ассоциативных правил и механизмов нейросетевых алгоритмов. Описание алгоритмов кластеризации и сфер применения Data Mining.
контрольная работа [208,4 K], добавлен 14.06.2013Постановка задачи для машинного моделирования, определение параметров и переменных. Алгоритмизация модели и её машинная реализация. Реализация алгоритма моделирования на общесистемном языке программирования. Описание диалога с пользователем, интерфейс.
курсовая работа [703,1 K], добавлен 14.01.2013Создание математической модели системы массового обслуживания на примере банка. Разработка имитационной модели на языке программирования С++. Блок-схема программы, перевод модели на язык программирования. Верификация и валидация имитационной модели.
курсовая работа [630,5 K], добавлен 01.06.2015Эффективность применения нейронных сетей при выборе модели телефона. История искусственного интеллекта. Сущность нейросетевых технологий, обучение нейросимулятора. Пример выбора по определенным параметрам модели сотового телефона с помощью персептрона.
презентация [93,8 K], добавлен 14.08.2013Порядок описание процесса разработки модели для разрешения задачи программирования с помощью средств языка программирования. Структуры данных и основные принципы их построения. Этапы компьютерного моделирования. Этапы и значение написания программы.
курсовая работа [19,5 K], добавлен 19.05.2011Различные методы решения задачи классификации. Нейросетевые парадигмы, методы обучения нейронных сетей, возникающие при этом проблемы и пути их решения. Описание программной реализации классификатора, его функциональные возможности и результаты обучения.
дипломная работа [1,0 M], добавлен 28.12.2015Представление полиномов в виде кольцевых списков и выполнение базовых арифметических действий над ними. Реализация алгоритмов сложения, умножения и вычитания полиномов класса List на языке программирования Python 2.7. в интегрированной среде Python IDLE.
курсовая работа [228,1 K], добавлен 11.01.2012Анализ основ ООП, изучение языка программирования Python, применение полученных знаний на практике для реализации предметной области. Понятие и механизм инкапсуляции. Фиксирование информационной работы отеля. Диаграмма классов. Реализация на языке Python.
курсовая работа [227,6 K], добавлен 14.05.2017Принцип работы нейросетей и модели синтеза. Ключевые моменты проблемы распознавания речи. Система распознавания речи как самообучающаяся система. Описание системы: ввод звука, наложение первичных признаков на вход нейросети, модель и обучение нейросети.
курсовая работа [215,2 K], добавлен 19.10.2010Создание имитационной модели экономической системы на языке программирования GPSS. Определение возможных мест появления очередей, количества необслуженых заявок. Выявление причин возникновения неблагоприятных факторов, усовершенствование системы.
курсовая работа [32,9 K], добавлен 13.12.2010