Распараллеливание в OpenMP среднеквадратических приближений неполиномиальными сплайнами минимального дефекта

Применение неполиномиальных сплайнов минимального дефекта к задаче построения среднеквадратического приближения. Различные варианты оптимизации решения методом релаксации системы линейных алгебраических уравнений, возникающей в процессе построения.

Рубрика Программирование, компьютеры и кибернетика
Предмет Программирование
Вид статья
Язык русский
Прислал(а) Винник М.П.
Дата добавления 15.01.2019
Размер файла 389,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.


Подобные документы

  • Системы линейных алгебраических уравнений. Код программы для решения систем линейных алгебраических уравнений. Математические и алгоритмические основы решения задачи методом Гаусса. Программная реализация решения. Алгоритмы запоминания коэффициентов.

    лабораторная работа [23,5 K], добавлен 23.09.2014

  • Проектирование приложения, позволяющего находить решение системы алгебраических линейных уравнений матричным методом. Выбор количества уравнений, заполнение значений коэффициентов системы уравнений и свободных членов, алгоритм решения линейных уравнений.

    курсовая работа [939,4 K], добавлен 16.01.2014

  • Применение итерационных методов численного решения системы линейных алгебраических уравнений при вычислении на ЭВМ. Математические и алгоритмические основы решения задачи, метод Гаусса. Функциональные модели и блок-схемы, программная реализация решения.

    курсовая работа [527,5 K], добавлен 25.01.2010

  • Интерполирование рабочих точек в пакете Mathcad с помощью полиномов (канонического, Лагранжа и Ньютона) и сплайнов (линейного, квадратичного, кубического). Реализация программы для решения системы линейных алгебраических уравнений на языке Pascal.

    лабораторная работа [202,8 K], добавлен 15.11.2012

  • Требования к языкам программирования, их эффективность, лаконичность, ясность, реальные возможности. Создание языка С#. Применение систем линейных алгебраических уравнений для практических задач, сущность и особенности метода Крамера для их решения.

    курсовая работа [118,1 K], добавлен 13.11.2009

  • Алгоритм решения систем линейных уравнений методом Гаусса, его этапы. Система уравнений для определения коэффициентов сплайна, представляющая собой частный случай систем линейных алгебраических уравнений. Программная реализация, тестовый пример.

    курсовая работа [431,8 K], добавлен 15.06.2013

  • Метод Гаусса-Зейделя как модификация метода Якоби, его сущность и применение. Разработка программы решения системы линейных алгебраических уравнений на языке VB, проверка правильности работы программы в MS Excel и математических пакетах MathCad и MatLab.

    курсовая работа [325,5 K], добавлен 27.10.2013

  • Приведение системы линейных алгебраических уравнений к треугольному виду прямым ходом метода Гаусса. Применение обратного хода метода вращений. Создание алгоритма, блок-схемы и кода программы. Тестовый пример решения уравнения и его проверка в MathCad.

    лабораторная работа [164,3 K], добавлен 02.10.2013

  • Изучение систем линейных алгебраических уравнений (СЛАУ) с использованием табличного процессора MS Excel 2007. Пример решения системы линейных алгебраических уравнений методом Крамера. Прикладное программное обеспечение, применяемое для решения СЛАУ.

    курсовая работа [184,5 K], добавлен 20.11.2013

  • Сущность матричного метода. Разработка программы решения системы уравнений линейных алгебраических уравнений методом решения через обратную матрицу на языке программирования Delphi. Представление блок-схемы и графического интерфейса программного продукта.

    курсовая работа [1,0 M], добавлен 27.09.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.