Банки и базы данных

Назначение и компоненты системы баз данных. Связи и язык моделирования. Иерархические и сетевые структуры БД. Замкнутость реляционной алгебры и операция переименования. Нормальная форма Бойса-Кодда. Структуры внешней памяти. Методы организации индексов.

Рубрика Программирование, компьютеры и кибернетика
Вид курс лекций
Язык русский
Дата добавления 15.06.2018
Размер файла 1,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

6. Значения некоторого атрибута должны удовлетворять определенному формату. Ограничение специфицируется фразой при описании соответствующего атрибута.

7. Множество значений одного из атрибутов отношения должно удовлетворять некоторому статистическому условию. Например, конкретное значение не должно превышать более чем в два раза среднее значение. Ограничение реализуется СУБД при контроле выполняемых операций, в которых используются агрегатные функции.

8. Множество значений некоторого столбца отношения является подмножеством значений другого столбца этого отношения. Ограничения также контролируются при выполнении операций.

Примеры 3--8 соответствуют второму виду ограничений--ограничений на значения данных.

9. Требуется ограничить обновление данных в заданном отношении таким образом, чтобы для указанного атрибута имело место в каждом кортеже некоторое соотношение между «старым» и «новым» значениями. Чтобы специфицировать подобное ограничение, в языках должны быть предусмотрены возможности ссылки на старое и новое значения.

10. Если транзакции А и В выполняют изменения одних и тех же данных в БД, то при их параллельном выполнении может быть нарушена целостность данных в базе. В этом случае СУБД должна реализовать специальный режим выполнения параллельных вычислений. Например, транзакция В не может обратиться к данным. пока с ними не закончится работа в транзакции Л.

11. Если транзакция выполняет несколько изменений в БД, связанных между собой ограничениями целостности, то ограничения целостности можно проверять только после выполнения транзакции. Такие ограничения называют отложенными.

Рассмотренных примеров достаточно, чтобы создать представление о составе задач, подлежащих решению при проектировании средств обеспечения целостности данных в БД.

Основная идея обеспечения ограничений целостности данных заключается в том, чтобы использовать ЯМД как средство выражения этих ограничений. Описание ограничений целостности содержит две части. В первой из них выражается само ограничение, во второй описывается, когда, при каких условиях должна выполняться проверка. Языки манипулирования данными реальных систем позволяют в той или иной мере поддерживать многие из рассмотренных ограничений целостности.

12.3 Транзакции и целостность баз данных

Поддержание механизма транзакций - показатель уровня развитости СУБД. Корректное поддержание транзакций одновременно является основой обеспечения целостности баз данных (и поэтому транзакции вполне уместны и в однопользовательских персональных СУБД), а также составляют базис изолированности пользователей во многопользовательских системах. Часто эти два аспекта рассматриваются по отдельности, но на самом деле они взаимосвязаны.

Под транзакцией понимается неделимая с точки зрения воздействия на БД последовательность операторов манипулирования данными (чтения, удаления, вставки, модификации) такая, что либо результаты всех операторов, входящих в транзакцию, отображаются в БД, либо воздействие всех этих операторов полностью отсутствует. Лозунг транзакции - "Все или ничего": при завершении транзакции оператором COMMIT результаты гарантированно фиксируются во внешней памяти (смысл слова commit - "зафиксировать" результаты транзакции); при завершении транзакции оператором ROLLBACK результаты гарантированно отсутствуют во внешней памяти (смысл слова rollback - ликвидировать результаты транзакции).

Понятие транзакции имеет непосредственную связь с понятием целостности БД. Очень часто БД может обладать такими ограничениями целостности, которые просто невозможно не нарушить, выполняя только один оператор изменения БД. Например, в базе данных СОТРУДНИКИ-ОТДЕЛЫ естественным ограничением целостности является совпадения значения атрибута ОТД_РАЗМЕР в кортеже отношения ОТДЕЛЫ, описывающем данный отдел (например, отдел 320), с числом кортежей отношения СОТРУДНИКИ таких, что значение атрибута СОТР_ОТД_НОМЕР равно 320. Как в этом случае принять на работу в отдел 320 нового сотрудника? Независимо от того, какая операция будет выполнена первой, вставка нового кортежа в отношение СОТРУДНИКИ или модификация существующего кортежа в отношении ОТДЕЛЫ, после выполнения операции база данных окажется в нецелостном состоянии.

Поэтому для поддержания подобных ограничений целостности допускается их нарушение внутри транзакции с тем условием, чтобы к моменту завершения транзакции условия целостности были соблюдены. В системах с развитыми средствами ограничения и контроля целостности каждая транзакция начинается при целостном состоянии БД и должна оставить это состояние целостными после своего завершения. Несоблюдение этого условия приводит к тому, что вместо фиксации результатов транзакции происходит ее откат (т.е. вместо оператора COMMIT выполняется оператор ROLLBACK), и БД остается в таком состоянии, в котором находилась к моменту начала транзакции, т.е. в целостном состоянии.

Если быть немного более точным, различаются два вида ограничений целостности: немедленно проверяемые и откладываемые. К немедленно проверяемым ограничениям целостности относятся такие ограничения, проверку которых бессмысленно или даже невозможно откладывать. Примером ограничения, проверку которого откладывать бессмысленно, являются ограничения домена (возраст сотрудника не может превышать 150 лет). Более сложным ограничением, проверку которого невозможно отложить, является следующее: зарплата сотрудника не может быть увеличена за одну операцию более, чем на 100,000 рублей. Немедленно проверяемые ограничения целостности соответствуют уровню отдельных операторов языкового уровня СУБД. При их нарушениях не производится откат транзакции, а лишь отвергается соответствующий оператор.

Откладываемые ограничения целостности - это ограничения на базу данных, а не на какие-либо отдельные операции. По умолчанию такие ограничения проверяются при конце транзакции, и их нарушение вызывает автоматическую замену оператора COMMIT на оператор ROLLBACK. Однако в некоторых системах поддерживается специальный оператор насильственной проверки ограничений целостности внутри транзакции. Если после выполнения такого оператора обнаруживается, что условия целостности не выполнены, пользователь может сам выполнить оператор ROLLBACK или постараться устранить причины нецелостного состояния базы данных внутри транзакции (видимо, это осмысленно только при использовании интерактивного режима работы).

И еще одно замечание. С точки зрения внешнего представления в момент завершения транзакции проверяются все откладываемые ограничения целостности, определенные в этой базе данных. Однако при реализации стремятся при выполнении транзакции динамически выделить те ограничения целостности, которые действительно могли бы быть нарушены. Например, если при выполнении транзакции над базой данных СОТРУДНИКИ-ОТДЕЛЫ в ней не выполнялись операторы вставки или удаления кортежей из отношения СОТРУДНИКИ, то проверять упоминавшееся выше ограничение целостности не требуется (а проверка подобных ограничений вызывает достаточно большую работу).

12.4 Изолированность пользователей

Во многопользовательских системах с одной базой данных одновременно могут работать несколько пользователей или прикладных программ. Предельной задачей системы является обеспечение изолированности пользователей, т.е. создание достоверной и надежной иллюзии того, что каждый из пользователей работает с БД в одиночку.

В связи со свойством сохранения целостности БД транзакции являются подходящими единицами изолированности пользователей. Действительно, если с каждым сеансом работы с базой данных ассоциируется транзакция, то каждый пользователь начинает работу с согласованным состоянием базы данных, т.е. с таким состоянием, в котором база данных могла бы находиться, даже если бы пользователь работал с ней в одиночку.

При соблюдении обязательного требования поддержания целостности базы данных возможны следующие уровни изолированности транзакций:

Первый уровень - отсутствие потерянных изменений. Рассмотрим следующий сценарий совместного выполнения двух транзакций. Транзакция 1 изменяет объект базы данных A. До завершения транзакции 1 транзакция 2 также изменяет объект A. Транзакция 2 завершается оператором ROLLBACK (например, по причине нарушения ограничений целостности). Тогда при повторном чтении объекта A транзакция 1 не видит изменений этого объекта, произведенных ранее. Такая ситуация называется ситуацией потерянных изменений. Естественно, она противоречит требованию изолированности пользователей. Чтобы избежать такой ситуации в транзакции 1 требуется, чтобы до завершения транзакции 1 никакая другая транзакция не могла изменять объект A. Отсутствие потерянных изменений является минимальным требованием к СУБД по части синхронизации параллельно выполняемых транзакций.

Второй уровень - отсутствие чтения "грязных данных". Рассмотрим следующий сценарий совместного выполнения транзакций 1 и 2. Транзакция 1 изменяет объект базы данных A. Параллельно с этим транзакция 2 читает объект A. Поскольку операция изменения еще не завершена, транзакция 2 видит несогласованные "грязные" данные (в частности, операция транзакции 1 может быть отвернута при проверке немедленно проверяемого ограничения целостности). Это тоже не соответствует требованию изолированности пользователей (каждый пользователь начинает свою транзакцию при согласованном состоянии базы данных и в праве ожидать видеть согласованные данные). Чтобы избежать ситуации чтения "грязных" данных, до завершения транзакции 1, изменившей объект A, никакая другая транзакция не должна читать объект A (минимальным требованием является блокировка чтения объекта A до завершения операции его изменения в транзакции 1).

Третий уровень - отсутствие неповторяющихся чтений. Рассмотрим следующий сценарий. Транзакция 1 читает объект базы данных A. До завершения транзакции 1 транзакция 2 изменяет объект A и успешно завершается оператором COMMIT. Транзакция 1 повторно читает объект A и видит его измененное состояние. Чтобы избежать неповторяющихся чтений, до завершения транзакции 1 никакая другая транзакция не должна изменять объект A. В большинстве систем это является максимальным требованием к синхронизации транзакций, хотя, как мы увидим немного позже, отсутствие неповторяющихся чтений еще не гарантирует реальной изолированности пользователей.

Заметим, что существует возможность обеспечения разных уровней изолированности для разных транзакций, выполняющихся в одной системе баз данных (в частности, соответствующие операторы предусмотрены в стандарте SQL 2). Как мы уже отмечали, для поддержания целостности достаточен первый уровень. Существует ряд приложений, для которых первого уровня достаточно (например, прикладные или системные статистические утилиты, для которых некорректность индивидуальных данных несущественна). При этом удается существенно сократить накладные расходы СУБД и повысить общую эффективность.

К более тонким проблемам изолированности транзакций относится так называемая проблема кортежей-"фантомов", вызывающая ситуации, которые также противоречат изолированности пользователей. Рассмотрим следующий сценарий. Транзакция 1 выполняет оператор A выборки кортежей отношения R с условием выборки S (т.е. выбирается часть кортежей отношения R, удовлетворяющих условию S). До завершения транзакции 1 транзакция 2 вставляет в отношение R новый кортеж r, удовлетворяющий условию S, и успешно завершается. Транзакция 1 повторно выполняет оператор A, и в результате появляется кортеж, который отсутствовал при первом выполнении оператора. Конечно, такая ситуация противоречит идее изолированности транзакций и может возникнуть даже на третьем уровне изолированности транзакций. Чтобы избежать появления кортежей-фантомов, требуется более высокий "логический" уровень синхронизации транзакций. Идеи такой синхронизации (предикатные синхронизационные захваты) известны давно, но в большинстве систем не реализованы.

12.5 Сериализация транзакций

Понятно, что для того, чтобы добиться изолированности транзакций, в СУБД должны использоваться какие-либо методы регулирования совместного выполнения транзакций.

План (способ) выполнения набора транзакций называется сериальным, если результат совместного выполнения транзакций эквивалентен результату некоторого последовательного выполнения этих же транзакций.

Сериализация транзакций - это механизм их выполнения по некоторому сериальному плану. Обеспечение такого механизма является основной функцией компонента СУБД, ответственного за управление транзакциями. Система, в которой поддерживается сериализация транзакций обеспечивает реальную изолированность пользователей.

Основная реализационная проблема состоит в выборе метода сериализации набора транзакций, который не слишком ограничивал бы их параллельность. Приходящим на ум тривиальным решением является действительно последовательное выполнение транзакций. Но существуют ситуации, в которых можно выполнять операторы разных транзакций в любом порядке с сохранением сериальности. Примерами могут служить только читающие транзакции, а также транзакции, не конфликтующие по объектам базы данных.

Между транзакциями могут существовать следующие виды конфликтов:

· W-W- транзакция 2 пытается изменять объект, измененный не закончившейся транзакцией 1;

· R-W - транзакция 2 пытается изменять объект, прочитанный не закончившейся транзакцией 1;

· W-R - транзакция 2 пытается читать объект, измененный не закончившейся транзакцией 1.

Лекция 13. Степень соответствия СУБД реляционной модели

13.1 Степень соответствия СУБД реляционной модели

Завершая обсуждение моделей данных подведем некоторые итоги. Преимущества реляционного подхода достаточно очевидны:

1. Предсказуемость результатов работы с данными. В основе реляционной модели лежит математическая модель, следовательно, любой запрос к базе данных, составленный на корректном языке влечет ответ, однозначно определяемый схемой БД и конкретными данными. При этом пользователю не требуется информация о физической организации данных.

2. Предметная область часто достаточно естественно описывается в терминах таблиц (к сожалению, в реляционной модели имеются проблемы с представлением иерархических структур.

По этим причинам идея создания реляционной СУБД стала популярна среди разработчиков вскоре после ее появления. Сейчас существует множество коммерческих и некоммерческих систем, создатели которых заявляют об их "реляционности". Для того, чтобы более определенно сформулировать цель, к которой разработчикам нужно стремится, Е.Кодд в конце 70-х годов опубликовал 12 правил соответствия реляционной модели, которые опираются на основное (подразумеваемое) правило: Система, которая провозглашается поставщиком как реляционная СУБД, должна управлять базами данных исключительно способами, соответствующими реляционной модели.

Конкретные требования к реляционной СУБД раскрываются в следующих правилах (цитируется по статье В.Пржиялковский Модели, базы данных и СУБД в информационных системах):

1. Информационное правило. Вся информация, хранимая в базе данных, должна быть представлена единственным образом: в виде значений в реляционных таблицах.

2. Правило гарантированного логического доступа. К каждому имеющемуся в реляционной базе атомарному значению должне быть гарантирован доступ с помощью указания имени таблицы, значения первичного ключа и имени атрибута.

3. Правило наличия значения (missing information). В полностью реляционной СУБД должны иметься специальные индикаторы (отличные от пустой символьной строки или строки из одних пробелов и отличные от нуля или какого-то другого числового значения) для выражения (на логическом уровне, не зависимо от типа данных) того факта, что значение отсутствует по меньшей мере по двум различным причинам: его действительно нет, либо оно не применимо к данной позиции. СУБД должна не только отражать этот факт, но и распространять на такие индикаторы свои функции манипулирования данными не зависимо от типа данных.

4. Правило динамического диалогового реляционного какталога. Описание базы данных выглядит логически как обычные данные, так что авторизованные пользователи и прикладные программы могут употреблять для работы с этим описанием тот же реляционный язык, что и при работе с обычными данными.

5. Правило полноты языка работы с данными. Сколько бы много в СУБД ни поддерживалось языков и режимов работы с данными, должен иметься по крайней мере один язык, выразимый в виде командных строк в некотором удобном синтаксисе, который бы позволял формулировать:

o определение данных

o определение правил целостности

o манипулирование данными (в диалоге и из программы)

o определение таблиц-представлений (в том числе и возможности их модификации)

o определение правил авторизации

o границы транзакций

6. Правило модификации таблиц-представлений. В СУБД должен существовать корректный алгоритм, позволяющий автоматически для каждой таблицы-представления определять во время ее создания, может ли она использоваться для вставки и удаления строк и какие из столбцов допускают модификацию, и заносящий полученную таким образом информацию в системный каталог.

7. Правило множественности операций. Возможность оперирования базовыми таблицами или таблицами-представлениями распространяется полностью не только на выдачу информации из БД, но и на вставку, модификацию и удаление данных.

8. Правило физической независимости. Диалоговые операторы и прикладные программы на логическом уровне не должны страдать от каких-либо изменений во внутреннем хранении данных или методах доступа СУБД

9. Правило логической независимости. Диалоговые операторы и прикладные программы на логическом уровне не должны страдать от таких изменений в базовых таблицах, которые сохраняют информацию и теоретически допускают неизменность этих операторов и программ.

10. Правило сохранения целостности. Диалоговые операторы и прикладные программы не должны изменяться при изменении правил целостности в БД, задаваемых языком работы с данными и хранимых в системном каталоге.

11. Правило независимости от распределенности. Диалоговые операторы и прикладные программы на логическом уровне не должны зависеть от совершаемого физического разнесения данных (если первоначально СУБД работала с нераспределенными данными) или перераспределения (если СУБД распределенная).

12. Правило ненарушения реляционного языка. Если в реляционной СУБД имеется язык низкого уровня (для работы с отдельными строками), он не должен позволять нарушать или "обходить" правила, сформулированные на языке высокого уровня (множественном) и занесенные в системный каталог.

Список литературы по теме курса

Дейт К. Дж. Введение в системы баз данных, 6-е издание: Пер. с англ. - К.; М.; СПб.: Издательский дом «Вильямс», 2000. - 848 с.

Мартин Дж. Организация баз данных в вычислительных системах, 2-е издание: Пер. с англ. - М.: Мир, 1980. - 664 с.

Зеленков Ю.А. Введение в базы данных. - Центр Интернет ЯрГУ.

Когаловский М.Р. Технология баз данных на персональных ЭВМ. - М.: Финансы и статистика, 1992. - 224 с.

Кузнецов С.Д. Основы современных баз данных. Информационно-аналитические материалы Центра Информационных Технологий МГУ.

Ульман, Дж. Д. Основы систем баз данных: Пер. с англ. - М.: Финансы и статистика, 1983.

Ульман Дж.Д., Уидом Дж. Введение в системы баз данных: Пер с англ. - М.: Издательство «Лори», 2000. - 374 с.

Четвериков В.И., Ревунков Г.И., Самохвалов Э.Н. Базы и банки данных. - М.: Высшая школа, 1987.

Размещено на Allbest.ru


Подобные документы

  • Использование нормализации. Вторая и третья нормальные формы. Нормальная форма Бойса-Кодда. Четвертая и пятая нормальная форма. Семантическое моделирование данных, ER-диаграммы. Основные понятия модели Entity-Relationship.

    контрольная работа [43,0 K], добавлен 07.08.2007

  • Использование средств вычислительной техники в информационных системах. Программно-аппаратные средства, обеспечивающие сбор, обработку и выдачу информации. Модели данных - списки (таблицы), реляционные базы данных, иерархические и сетевые структуры.

    реферат [105,1 K], добавлен 08.11.2010

  • Понятия банка и базы данных, ее компоненты. Многоуровневые модели предметной области, их представление в базе данных. Идентификация объектов и записей. Способы обращения к записям или отдельным элементам данных, их поиск. Определение структуры данных.

    контрольная работа [39,6 K], добавлен 10.04.2010

  • Построение концептуальной модели, процесс моделирования смыслового наполнения базы данных. Основные компоненты концептуальной модели. Построение реляционной модели. Целостность данных в реляционной базе. Нормализация. Проектирование базы данных в ACCESS.

    курсовая работа [1,8 M], добавлен 29.10.2008

  • Иерархические, сетевые и реляционные модели данных. Различия между OLTP и OLAP системами. Обзор существующих систем управления базами данных. Основные приемы работы с MS Access. Система защиты базы данных, иерархия объектов. Язык программирования SQL.

    курс лекций [1,3 M], добавлен 16.12.2010

  • Понятие базы данных, их цели и задачи, требования к БД; система управления базами данных. Файловые системы: именование и структуры файлов, программное обеспечение. Уровни абстракции в СУБД, функции абстрактных данных. Экспертные системы и базы знаний.

    презентация [301,6 K], добавлен 17.04.2013

  • Современные базы данных – многофункциональные программные системы, работающие в открытой распределенной среде изучении администрирования базы данных. Способы организации внешней памяти баз данных. Системы управления базами данных для хранения информации.

    курсовая работа [185,6 K], добавлен 07.12.2010

  • Представление данных в памяти компьютера. Обобщенные структуры и модели данных. Методы доступа к информации. Физическая организация системы управления базами данных, структура сервера. Архитектура "клиент-сервер". Создание базы данных с помощью "Денвер".

    курсовая работа [770,3 K], добавлен 17.11.2014

  • Составление схемы концептуальной модели данных. Разработка структуры реляционной базы данных и интерфейса пользователя. Особенности главных этапов проектирования базы данных. Способы реализации запросов и отчетов. Специфика руководства пользователя.

    курсовая работа [186,9 K], добавлен 18.12.2010

  • Описание состава реляционной базы данных как системы связанной информации, сохраняемой в двумерных таблицах. Основные функции CMS и изучение структуры сервера MySQL. Разработка системы выборок данных по товарам для интернет-магазина, таблицы покупателей.

    курсовая работа [2,0 M], добавлен 21.04.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.