Система поддержки принятия решений многокритериального выбора на базе коэволюционного генетического алгоритма
Применение генетических алгоритмов (ГА), эффективных при решении задач оптимизации, их преимущества и недостатки. Процесс настройки и контроля параметров конкретного ГА, его влияние на эффективность решения задачи. Результаты тестирования алгоритмов.
Рубрика | Программирование, компьютеры и кибернетика |
Предмет | Кибернетика |
Вид | статья |
Язык | русский |
Прислал(а) | Иванов И.А. |
Дата добавления | 29.04.2018 |
Размер файла | 60,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Подобные документы
Описание генетических алгоритмов. Применение генетического алгоритма для решения задачи коммивояжера. Постановка задачи безусловной оптимизации. Изучение распространения генетических алгоритмов на модель с несколькими взаимодействующими популяциями.
дипломная работа [979,1 K], добавлен 30.05.2015Комплексное исследование истории развития, основных понятий, области применения и особенностей генетических алгоритмов. Анализ преимуществ генетических алгоритмов. Построение генетического алгоритма, позволяющего находить максимум целочисленной функции.
курсовая работа [27,9 K], добавлен 23.07.2011Основные особенности эволюционных алгоритмов. Описание алгоритмов селекции, мутации, скрещивания, применяемых для реализации генетических алгоритмов. Вычисление функции приспособленности. Программная реализация. Тестирование и руководство пользователя.
курсовая работа [1,3 M], добавлен 11.03.2014Первые работы по симуляции эволюции. Основные понятия генетических алгоритмов. Постановка задачи и функция приспособленности. Инициализация, формирование исходной популяции. Выбор исходной популяции для генетического алгоритма, решение задач оптимизации.
курсовая работа [714,1 K], добавлен 31.03.2015Основные генетические операторы. Схема функционирования генетического алгоритма. Задачи, решаемые с помощью генетических алгоритмов. Математическая постановка задачи оптимизации. Решение Диофантова уравнения. Программная реализация. Создание пособия.
курсовая работа [391,4 K], добавлен 20.02.2008Характеристика методов нечеткого моделирования и изучение системы кластеризации в пакетах прикладных программ. Разработка и реализация алгоритма для оптимизации базы правил нечеткого классификатора с помощью генетического алгоритма аппроксимации функции.
дипломная работа [1,9 M], добавлен 21.06.2014Переход от словесной неформальной постановки к математической формулировке данной задачи. Оценка различных вариантов с целью выбора наиболее эффективных структур данных и алгоритмов обработки. Реализация алгоритмов на одном из языков программирования.
курсовая работа [35,0 K], добавлен 25.06.2013Изучение особенностей создания алгоритмов вычислительных задач. Визуальное программирование стандартных компонентов среды программирования Delphi. Технология создания компонента Delphi для решения производственной задачи. Выполнение блок-схемы алгоритма.
курсовая работа [638,0 K], добавлен 30.01.2015Трудности использования эволюционных алгоритмов. Построение вычислительных систем, основанных на принципах естественного отбора. Недостатки генетических алгоритмов. Примеры эволюционных алгоритмов. Направления и разделы эволюционного моделирования.
реферат [187,4 K], добавлен 21.01.2014Виды алгоритмов как логико-математических средств, характеристика свойств. Корректный вывод алгоритма при решении вычислительной задачи. Механизм реализации алгоритма, его описание. Решение задачи Майхилла при помощи автоматной модели поведения стрелка.
курсовая работа [53,6 K], добавлен 17.07.2014