Системный анализ, онтологический синтез и инструментальные средства обработки информации в процессах интеграции профессиональных знаний
Обобщенная логическая модель приобретения научно-технических знаний. Разработка метода автоматизированного конструирования начальной онтологии предметной области. Синтаксическая корректность концепта онтологии. Создание словосочетаний (на примере союзов).
Рубрика | Программирование, компьютеры и кибернетика |
Вид | автореферат |
Язык | русский |
Дата добавления | 16.02.2018 |
Размер файла | 1,6 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Исследуемые характеристики:
1. Зависимость скорости работы системы от объема задачи (для всех этапов разбора - морфология, синтаксис, семантика, прагматика).
2. Среднее требуемое время на этап разбора (%).
3. Среднее/пиковое число агентов при обработке одного предложения - объем задачи (число слов, тыс.).
4. Среднее число изменений\дополнений в семантический дескриптор (т.е. перестройка структуры системы при разборе нового предложения) в зависимости от объема задачи.
5. Среднее время сравнения семантических дескрипторов - сложность дескриптора (число концептов и связей).
Основные результаты и выводы:
1. Время на морфологию растет линейно - на данном этапе почти не осуществляется рассуждений.
2. Аналогичным образом линейна часть, связанная с прагматикой - т.к. она зависит только от сложности окончательно сформированного дескриптора.
3. Часть, связанная с синтаксисом, растет квадратично - связано с использованием агентных переговоров и множественностью вариантов разбора.
4. Наиболее сильно, хотя и по-прежнему квадратично, растет время, требуемое на семантический этап. Это согласуется с логикой алгоритма - большее число ветвей понимания предложения, уточнения смысла и пересмотра ранее распознанной сцены, что подразумевает возврат и повторный анализ предыдущих предложений.
5. При оценке пикового числа агентов выяснилось, что вне зависимости от объемов задачи, оно примерно совпадает, что противоречит теоретическим выводам. Таким образом, согласно нашим алгоритмам всегда есть некая «допустимая глубина перестройки», далее которой система не позволяет изменять смысл всего текста - ограничение текущей версии алгоритма.
6. Среднее число изменений и дополнений в семантический дескриптор растет с ростом размерности задачи, т.к. изменения не уходят «в глубину», а затрагивают непосредственно концепты, чей смысл изменяется с новой информацией.
7. В среднем новый объект в сцене обновляет 4-5 связей \ значений атрибутов, при этом глубина обновлений достигает 3 уровней (уровень - появление объекта \ уточнение значения).
С. Кластеризация и извлечение знаний
Исследуемые характеристики:
1. Зависимость скорости работы системы от объема задачи (точная кластеризация, кластеризация по диапазону, кластеризация семантических дескрипторов)
2. Среднее/пиковое число агентов при обработке одной записи - объем задачи (число записей).
3. Количество порождаемых кластеров - объем задачи (однокластерный и многокластерный случаи).
4. Уровень иерархии и размерность кластеров - объем задачи.
5. Среднее число изменений связей в зависимости от шага кластеризации.
6. Количество «значимых» кластеров в зависимости от объема задачи
Основные результаты и выводы:
1. Среднее число агентов (и, соответственно, время) на обработку одной записи растет медленно и линейно с ростом размерности задачи, при этом пиковое время растет квадратично.
2. По мере возрастания числа записей, рост числа кластеров и в однокластерном, и особенно в многокластерном варианте начинает затухать. Это означает, что система приходит к динамическому равновесию.
3. Среднее число изменений связей при приходе новой записи коррелирует со средним числом задействованных агентов (в среднем изменение решения одного агента влечет за собой пересмотр 4-5 связей) и тоже возрастает по линейному закону. Но в случае «пика», т.е. прихода записи, которая повлекла за собой серьезную перестройку структуры, данный график коррелирует с пиковой нагрузкой по агентам, и возрастает по полиномиальному закону.
4. Вне зависимости от объема задачи, число значимых правил составляет порядка 20-25 % от общего числа найденных правил, из них тривиальными (т.е. сразу очевидными эксперту за счет дополнительных знаний о предметной области), является порядка 60%
D. Автоматизированное пополнение онтологии
Исследуемые характеристики:
1. Скорость работы системы от объема задачи (число концептов).
2. Требуемое количество агентов (среднее/пиковое) - объем задачи.
3. Типы комбинаций концептов онтологии (%).
4. Количество комбинаций определенного типа для онтологии порядка 1000 концептов, и набора документов порядка 10000 штук.
5. Распределение для каждой комбинации встречающихся вариантов изменения онтологии.
6. Причины возникновения некорректных гипотез.
Основные результаты и выводы:
1. Учет затрат времени человека-эксперта примерно в 4 раза увеличивает общее время работы системы. (При этом качество результатов, оценочно возрастает примерно на 55%).
2. В результате предложенных изменений, которые принимались экспертом-онтологом, онтология выросла примерно на треть (32%).
3. С помощью данных алгоритмов даже с учетом работы эксперта можно успеть качественно пополнить онтологию примерно за 1-2 рабочих дня. В случае, если б работа полностью осуществлялась вручную, по оценкам это в среднем занимает от одной до полутора недель.
4. Наиболее частыми комбинациями, встречающимися при кластеризации и нахождении зависимостей, стали «два несвязанных объекта», «объект плюс отношение», «два объекта, связанные отношением», «два атрибута одного объекта» и «объект плюс чужой атрибут». На их долю пришлось порядка 74% от общего числа найденных комбинаций.
5. Наилучшие результаты, почти всегда ведущие к пополнению онтологии, показали такие типы комбинаций, как наличие двух несвязных объектов (требуют связи отношением) - 14% погрешности, объект с «повисшим» отношением (требует новый объект в онтологию) - 26% погрешности.
В четвертом разделе рассматривается типовая прикладная задача в сфере интеграции профессиональных знаний - задача мониторинга релевантной информации в Интернете в области малых космических аппаратов с целью поддержки принятия решений в промышленном проектировании образцов новой техники.
Анализ тенденций развития космических технологий показывает, что одним из наиболее перспективных путей их совершенствования является применение малых космических аппаратов (МКА) и систем на их основе. Побудительным мотивом для перехода от создания и использования крупных универсальных спутников к МКА стал прорыв в электронике, двигателестроении, в области создания новых конструкционных материалов и др. областях, что позволило получить такие преимущества, как низкая стоимость и малый срок создания, что ведет к уменьшению финансовых рисков и возможности использования МКА как «полигона обкатки» новых космических технологий.
В силу перспективности МКА для космической промышленности России в рамках анализа существующих и планируемых решений, имеющихся на мировом рынке и предлагаемых странами-партнерами и конкурентами, становится необходимым постоянный мониторинг имеющейся и появляющейся информации, и особенно, в связи с все возрастающей популярностью Интернета, анализ электронных документов - новостных лент, специализированных порталов, блогов.
Имеющиеся на текущий момент технологии поиска и метапоиска, включая поиск по ключевым словам, поиск с использованием операндов булевой алгебры, поиск с расстоянием, построение нового запроса на базе предыдущего, поиск в определенных полях html-документа и морфологический поиск все равно не обеспечивают основного - они не дают возможность проанализировать семантику документа, выявить его реальный смысл (который зачастую противоречит указанным в нем ключевым словам, т.к., например, они были указаны с целью занятия более высокого положения в поисковых системах) и определить актуальность предлагаемой информации.
Была разработана метапоисковая система, позволяющая в удобной форме специфицировать интересующую предметную область (в данном случае - космические технологии и МКА), наполнить ее предметно-ориентированными знаниями и получить возможность анализировать возвращаемые поисковыми системами тексты с точки зрения семантики, отделяя релевантные тексты от ошибочных, анализируя степень релевантности текста запросу, осуществлять мониторинг сайтов.
С помощью методов автоматизированного построения онтологий на основе набора текстов, выданных поисковыми системами по популярным запросам в данной области, создана онтология малых космических аппаратов. Выделены классы МКА - мини, микро, нано, пико, фемто. Для каждого из классов найден набор имен существующих спутников (в частности, для класса мини это наши спутники класса COSMOS (2337-39, 2390-1 (2002), 2384-6 (2001) и пр.) и GONETS (12-14 (2001), D1-1-3 (1996) и пр.), американские SORCE (2003), RHESSI, серия GLOBALSTAR M, японский MDS-1 и т.д.).
Выделены параметры малых спутников, в том числе масса, полезная нагрузка, габариты, форма, бортовая и полезная емкость, тип орбиты, источники питания, каналы связи, типы двигателей \ горючего, датчики, стабилизация, тип оборудования, тип миссии и пр.,
Для каждого из параметров выделены возможные значения, например, для propulsion возможные значения - chemical rocket, bipropellant, air-breathing engine, monopropellant, resistojet, electric propulsion, ion thruster, solar sail, aerobraking, nuclear reactor и пр. (более 30 значений)
Также выделены типы ракетоносителей и их названия (например, для heavy lift launch vehicles - Ariane 5, Protone D1, Titan III-IV, Zenith Sealauncher и пр.), наземных баз, организаций.
Также в онтологию добавлен ряд типовых названий (имена стран, названия фирм, организаций и университетов, конференции, ученые и пр.).
Всего в системе порядка 2000 концептов, из них ~15 отношений, ~300 объектов. С учетом всех значений атрибутов и синонимов, общее количество слов в тезаурусе порядка 15 тысяч.
Для импортируемых документов из поисковых систем по набору запросов-критериев на основе онтологии предметной области создаются семантические дескрипторы, отражающие смысл сайта.
Далее происходит сравнение семантических дескрипторов критериев отбора и документов на основе онтологии предметной области (Рисунок 6). По степени соответствия выставляется рейтинг, который используется для отсечения нерелевантных документов.
Рисунок 6 - Представление сайта в виде семантического дескриптора и онтологическое сравнение с поисковым запросом
В процессе экспертного сравнения качества результатов на наборе тестовых выборок, проанализированных вручную, показано, что степень отбора релевантных документов достигает 85-90%, во всех исследованных примерах разработанная система позволяла существенно улучшить результаты с точки зрения семантики сайтов \ документов, интересующих пользователя, четко разделяла релевантные и нерелевантные сайты и корректно упорядочивала релевантные сайты по степени соответствия пользовательскому запросу
Предложенная система, в которой сочетаются разработки в области систем понимания текста на естественном языке и извлечения знаний, является уникальным примером процесса интеграции знаний, ориентированным на конкретного пользователя, предоставляя механизмы для формализации и структурирования предметных областей, интеллектуального поиска, анализа и классификации сайтов и документов. В сочетании с предлагаемыми методами анализа и формирования знания, система способна решать основные проблемы, стоящие в текущий момент перед Интернет-сообществом, и может служить основой для общеинтеграционной платформы систематизации, обобщения и анализа научно-технических и производственных знаний в самых разных предметных областях.
В пятом разделе рассматривается ряд прикладных задач в сфере промышленного производства и других областях, решенных с использованием предлагаемых методов и средств, а также проводится сравнение с имеющимися аналогами.
Проблема автоматической обработки, преобразования и коррекции логистических сообщений стандартных форматов обмена бизнес-данными. С целью интеграции информационных служб промышленных компаний-партнеров используются стандартные форматы обмена бизнес-данными (ANSI X12, EDIFACT, XML и пр.). Проблема перевода сообщений между различными форматами решается путем ручного конструирования схемы преобразования форматов с помощью некоторой программы интеграции приложений (например, BizTalk). Сложность такого решения состоит в том, что требуется серьезный предварительный экспертный анализ, помогающий выяснить семантические соответствия полей различных форматов. В случае же, если формат был адаптирован под нужды фирмы, или в рамках стандартного формата происходит интерпретация полей, специфичная только для данного клиента, процесс выявления соответствий может быть очень сложен и долог. На текущий день, по оценкам экспертов, построение соответствия одного раздела формата в рамках пакета стандартов занимает около недели. На то, чтобы полностью интегрировать информационные службы двух компаний, уходит не менее полугода, что является очень дорогостоящим решением, к тому же не отвечающим предъявляемым рынком требованиям к динамике и скорости реакции.
Основной идеей предложенного подхода является введение «промежуточного» уровня - онтологии, хранящей знания о предметной области, т.н. нейтрального формата. Таким образом, знания, представленные в любом формате, хранятся в специальной внутренней структуре, не зависящей ни от структуры формата, ни от платформы. Подобная архитектура позволяет осуществлять перевод из формата в формат естественным образом - как только построено соответствие между новым форматом и онтологией, обеспечивается возможность коммуникации между всеми уже зарегистрированными форматами.
Предложенные в диссертации методы помогли автоматизировано построить начальную версию онтологии нейтрального формата, покрывающую семантику различных форматов данных. В дальнейшем использование эвристических правил исправления на основе онтологии предметной области с поддержкой методов понимания текстов на естественном языке позволило подстраиваться под вариации имеющегося формата, определяя по контексту смысл неизвестного поля в процессе регистрации нового формата. А алгоритмы кластеризации, объединяя типовые значения полей и давая возможные корректные варианты и их вероятность, позволили осуществлять автоматизированное исправление значений в поступающих сообщениях в режиме онлайн.
Задача классификации профессиональных, деловых, и научно-технических документов. У крупной страховой компании возникла задача классифицировать группы семантически схожих документов (страховых договоров), для построения на их базе документа-образца (например, необходимо все договора по страхованию автомобиля автоматически разделить на группы, т.к. условия сильно отличаются в зависимости от клиента - возраст, пол, история вождения, доход и пр., учесть аналогичные договора конкурирующих фирм, и для каждой группы схожих страховых договоров сформировать шаблон типового договора, включающий наиболее удачные пункты документов группы).
Для решения данной задачи был предложен подход, основанный на разрабатываемых в работе методах - а именно: на основе выборки документов была автоматизированным образом построена онтология предметной области. Далее все документы получили семантические дескрипторы. Затем с помощью алгоритма кластеризации была сформирована иерархия групп документов. Для каждой группы, на основе эвристических правил, заданных в онтологии и статистики частности использования терминов и ключевых абзацев, формировался документ-шаблон.
При анализе качества результатов приведем реальные цифры, выявленные при решении данной задачи для страховой компании. Имелось 25 000 различных договоров и соглашений в области страхования. В среднем один документ в формате MS Word имел объем порядка 30 страниц. По предварительным оценкам фирмы заказчика, на решение задачи классификации и формирования шаблонов групп документов им должно было потребоваться порядка 16 человеко-лет. С помощью разработанной программы задачу удалось решить в 30 человеко-месяцев - 6.5 раз быстрее.
Разработанные в диссертации методы, в том числе метод понимания текста, обеспечивающий поиск и классификацию документов, и метод кластерного анализа, использующийся для извлечения знаний и нахождения зависимостей, достаточно универсальны и применимы в различных предметных областях, причем настройка осуществляется путем изменения онтологии предметной области, не затрагивая алгоритмы. Поэтому они способны решать задачи и вне сферы промышленного производства, характерными примерами чего могут служить проблема семантико-ориентированного поиска и проблема анализа действий пользователя в рамках Интернет-портала, рассмотренные ниже.
Проблема семантико-ориентированного поиска в информационно-поисковой системе MEDLINE. Доступная в Интернете БД MEDLINE ежегодно пополняется более чем миллионом статей, посвященных современным проблемам биологии, химии, медицины. Для нахождения рефератов используется механизм поиска по ключевым словам, который, как показала практика, является поверхностным и весьма неточным, в изобилии предлагающим пользователю избыточную информацию и зачастую пропускающим необходимую. Становится востребованным другой механизм поиска, ориентированный на семантику предметной области и допускающий запросы вида: «Нас интересуют результаты экспериментов класса «А», причем только такие, в которых воздействию подвергался объект «Б», имеющий свойства «В» и «Г», при этом длительность этого процесса не превышала «Д»».
Для решения проблемы был предложен новый подход, основанный на механизмах понимания текстов на естественном языке. В данном подходе посредством начального анализа текстов предметной области была построена онтология молекулярной биологии, которая затем валидировалась экспертом. На основе данной онтологии каждому документу, получаемому по исходному запросу к БД, ставился в соответствии семантический дескриптор, и далее система позволяла определить степень релевантности статьи запросу на основе сравнения дескрипторов с помощью онтологии.
Сравнивая результаты системы со статьями, вручную проверенными и отобранными экспертами, было показано, что подобный подход позволяет добиться точности от 82 до 90% в отборе правильных рефератов (зависит от типа запроса), и порядка 5-8 % ошибки в процессе отсечения неправильных.
На выполнение конкретного практического задания заказчиков-биологов по оценке вручную требовалось порядка 4 человеко-лет, с помощью разработанной системы удалось решить задачу за 8 человеко-месяцев, т.е. более, чем в 6 раз быстрее, тем самым высвободив ценные человеческие ресурсы и сэкономив значительные средства.
Система онлайн анализа пользователей Интернет-портала по продаже «горящих» авиационных билетов. Ключевой возможностью портала фирмы-заказчика была идея учета индивидуальных предпочтений пользователя для интегрированного предложения различных сервисов, например, выбора гостиницы, кросс-продажи билетов на культурные события, бронирования ресторанов, сдача в аренду машин и пр.
Для решения этой задачи использовался предложенный модуль кластерного анализа, позволивший проанализировать предпочтения пользователей, приходящих на сайт (как явные, задаваемые матрицей на сайте, так и неявные, следующие из выбора опций), выявить группы пользователей со сходными интересами, а также проанализировать качество предлагаемых услуг, сравнивая получаемые результаты на соответствие ожиданиям пользователя.
Тем самым, была достигнута индивидуализация в общении с пользователями - каждому предлагались целенаправленно сервисы, интересующие его согласно предпочтениям, и повышено общее качество обслуживания.
Предложенная система способна подключаться к любому Интернет-порталу со специфицированным форматом хранения данных с целью выявления правил, описывающих типы пользователей и их интересы, что позволяет повысить качество взаимодействия с клиентами за счет индивидуализации подхода.
ЗАКЛЮЧЕНИЕ
В диссертации решена научная проблема разработки и развития теоретических основ и инструментальных программных средств для решения проблемы интеграции профессиональных научно-технических знаний, представленных в виде текстов на естественном языке, с целью индивидуализации процесса приобретения и анализа знаний.
Сущность предложенной методики состоит в использовании единого онтологического подхода в рамках субъектно-ориентированной модели приобретения знаний для индивидуализации процесса представления и анализа знаний для эксперта предметной области, и использовании мультиагентного подхода для реализации основных блоков инструментальной среды онтологического анализа и синтеза.
ВЫВОД
1. Предложен онтологический подход к задаче интеграции профессиональных научно-технических знаний, ориентированный на субъекта исследования и реализуемый на основе использования онтологии предметной области, индивидуально подстраиваемой под субъекта и автоматизировано сконструированной с помощью имеющихся материалов и знаний эксперта о предметной области, что обеспечивает полный цикл приобретения и интеграции научно-технических знаний, необходимый для эффективного и оперативного использования информации и поддержки принятия решений в сфере промышленного проектирования и производства, а также других областях.
2. Предложен метод автоматизированного построения начальной онтологии, реализующийся путем итеративного анализа строящейся онтологии с помощью предложенного мультиагентного метода понимания научно-технических текстов на естественном языке с применением базовой онтологии языка и набора предметно-ориентированных текстов, позволяющий оперативно получать начальное формализованное знание о предметной области.
3. Предложен метод преобразования неструктурированной информации на естественном языке в семантическую сеть в терминах онтологии предметной области, заключающийся в применении механизмов агентного взаимодействия квантов знаний, позволяющих реконструировать смысл предложения, и использовании построенных онтологий для хранения межфразового контекста.
4. Предложен метод кластерного анализа, реализованный на основе агентного взаимодействия, что обеспечивает механизмы динамической иерархии групп семантически схожих объектов как в пошаговом, так и в пакетном режимах, а также дает возможность работы с неструктурированными квантами информации.
5. Предложен метод машинного обучения системы в форме автоматизированного пополнения онтологии новыми знаниями на основе зависимостей, найденных в процессе анализа выявленных групп кластеров, что дает возможность уточнять знания о предметной области, улучшая качество представления, поиска и анализа документов.
6. Разработана и реализована инструментальная среда онтологического анализа и синтеза, где инструментарий инженерии знаний включает в себя конструктор онтологий, автоматизированную систему построения онтологий, систему понимания текста на естественном языке, систему извлечения знаний, модуль пополнения онтологических знаний и ряд дополнительных модулей, в том числе отладочную систему, интерфейсы работы с базами данных и внешними приложениями.
7. Выработаны критерии оценки и проведены экспериментальные исследования реализационных характеристик разработанных методов и средств, получено порядка 50 оценок и рекомендаций по применению предлагаемых алгоритмов. Исследования подтвердили эффективность предлагаемых методов, в частности было показано, что начальное автоматизированное построение онтологии позволяет сконструировать от 60 до 85% онтологии, представление текста в виде семантического дескриптора остается корректным примерно в 85-90% случаев, кластерное извлечение знаний формулирует до 22-27% значимых правил, при этом порядка 10-12% являются неизвестными для экспертов предметных областей, а пополнение онтологий позволяет дополнительно расширить начальную онтологию до 32% от первоначального объема.
8. На основе разработанных методов и средств создан ряд прикладных промышленных систем для применения в задачах мониторинга информации в области малых космических аппаратов, логистики, поисковых и метапоисковых системах, системах классификации профессионального и научно-технического документооборота, семантическом анализе действий пользователя в режиме онлайн, электронной коммерции и других. Полученный опыт свидетельствует, что разработанные методы и средства позволяют эффективно решать задачи анализа и извлечения знаний из естественно-языковых текстов, а использование созданного инструментария повышает производительность труда, сокращает стоимость и сроки разработки, а также упрощает процессы интеграции и сопровождения рассматриваемых промышленных систем.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ ДИССЕРТАЦИИ ОТРАЖЕНЫ В СЛЕДУЮЩИХ РАБОТАХ
1. Минаков И.А. Онлайн-анализ пользователей Интернет-портала продажи «горящих» авиабилетов // Информационные технологии, 2006. № 1. С.62-68.
2. Андреев В., Виттих В., Батищев С., Ивкушкин К., Минаков И., Ржевский Г., Сафронов А., Скобелев П. Методы и средства создания открытых мультиагентных систем для поддержки процессов принятия решений // Изв. РАН. Теория и системы управления, 2003. № 1. С.126-137.
3. Минаков И.А. Система интеллектуального метапоиска в сети Интернет для оперативного нахождения и мониторинга релевантной информации в области малых космических аппаратов // Вестник Самарского гос. техн. ун-та. Серия «Технические науки», 2007. № 1(19). С.28-35.
4. Минаков И.А. Интеграция профессиональных знаний, представленных в виде текстов на естественном языке // Вестник Самарского гос. техн. ун-та. Серия «Технические науки». Самара: СамГТУ, 2006. Вып. 41. С. 18-25.
5. Минаков И.А. Кластеризация неструктурированной информации, представленной в виде текстов на естественном языке // Вестник Самарского гос. техн. ун-та. Серия «Технические науки». Самара: СамГТУ, 2006. Вып. 40. С. 15-22.
6. Минаков И.А. Анализ эффективности и выработка рекомендаций для повышения качества алгоритмов кластеризации и текстопонимания в онтологической модели приобретения знаний // Вестник Самарского гос. техн. ун-та. Серия «Технические науки». Самара: СамГТУ, 2005. Вып. 39. С. 10-17.
7. Минаков И.А. Архитектура инструментальной среды, ориентированной на решение задач извлечения знаний и понимания текста на естественном языке //Вестник Самар. гос. техн. ун-та. Серия «Технические науки», Самара: СамГТУ, 2005. Вып. 32. С. 12-19.
8. Минаков И.А. Автоматизированное пополнение онтологии на основе знаний, извлеченных в процессе кластеризации // Вестник Самар. гос. техн. ун-та. Серия «Технические науки». Самара: СамГТУ, 2005. Вып. 33. С. 321-326.
9. Минаков И.А. Разработка автоматизированной системы построения онтологии предметной области на основе анализа текстов на естественном языке // Вестник Самар. гос. техн. ун-та. Серия «Технические науки». Самара: СамГТУ, 2004. Вып. 20. С. 44-48.
10. Батищев С.В., Лахин О.И., Минаков И.А., Ржевский Г.А., Скобелев П.О. Разработка мультиагентной системы дистанционного обучения для Интернет-портала «Оптик-сити» // Изв. СНЦ РАН. - 2003. - Т.5, №1. - С.91-95.
11. Батищев С., Ивкушкин К., Минаков И., Ржевский Г., Скобелев П. Открытые мультиагентные системы для поддержки процессов принятия решений при управлении предприятиями // Изв. СНЦ РАН, Январь - Июнь 2001. Самара: СНЦ РАН, 2001. С.71-79.
12. Батищев С.В., Лахин О.И., Минаков И.А., Ржевский Г.А., Скобелев П.О. Разработка инструментальной системы для создания мультиагентных приложений в сети Интернет // Изв. СНЦ РАН. Самара: СНЦ РАН, 2001. Т.3, №1. С.131-135.
13. Минаков И.А. Сравнительный анализ некоторых методов случайного поиска и оптимизации // Изв. СНЦ РАН. Самара: СНЦ РАН, № 2. 1999. С.286-293.
14. Виттих В.А., Минаков И.А. Интеграция профессиональных знаний: основные положения подхода // Проблемы управления и моделирования в сложных системах: Тр. IХ Междунар. конф., Самара, 22 июня - 29 июня 2007. Самара: СНЦ РАН, 2007. С.191-197.
15. Минаков И.А. Интеграция профессиональных знаний: методы и средства // Проблемы управления и моделирования в сложных системах: Тр. IХ Междунар. конф., Самара, 22 июня - 29 июня 2007. Самара: СНЦ РАН, 2007. С. 498-510.
16. Igor Minakov, George Rzevski, Petr Skobelev, Simon Volman “Automatic Extraction of Business Rules to Improve Quality in Planning and Consolidation in Transport Logistics Basing on Multi-Agent Clustering”. Proceedings of the 2nd International Workshop - Autonomous Intelligent Systems: Agents and Data Mining (AIS-ADM-07), St. Petersburg, Russia, June 3-5, 2007, LNAI 4476, pp. 124-137.
17. Marat Kanteev, Igor Minakov, George Rzevski, Petr Skobelev, Simon Volman “Multi-Agent Meta-Search Engine Based on Domain Ontology“. Proceedings of the 2nd International Workshop - Autonomous Intelligent Systems: Agents and Data Mining (AIS-ADM-07), St. Petersburg, Russia, June 3-5, 2007, LNAI 4476, pp. 269-274.
18. Igor Minakov, George Rzevski, Petr Skobelev, and Semen Volman “Dynamic Pattern Discovery using Multi-Agent Technology”. Proceedings of the 6th WSEAS International Conference on Telecommunications and Informatics (TELE-INFO '07), Dallas, Texas, USA, March 22-24, 2007, 75-81.
19. Минаков И.А. Скобелев П.О. Томин М.С. Мультиагентная система интеллектуальной обработки факсов, используемых для обмена бизнес-данными // Проблемы управления и моделирования в сложных системах: Тр. VIII Междунар. конф., Самара, 24 июня - 28 июня 2006. Самара: СНЦ РАН, 2006. С.510-515.
20. Вольман С.И., Минаков И.А. Применение методов извлечения знаний в задачах транспортной логистики // Проблемы управления и моделирования в сложных системах: Тр. VIII Междунар. конф., Самара, 24 июня - 28 июня 2006. - Самара: СНЦ РАН, 2006. С.516-521.
21. Minakov Igor, Rzevski George, Skobelev Petr, Volman Semen. Automatic Generation of Business Rules for Logistics Company using Multi-agent clustering // 1st International Conference on Business Information, Organisation and Process Management (BIOPoM 2006), Westminster Business School, University of Westminster London, June, 2006. http://www.wmin.ac.uk/wbs/pdf/BIOPoM_2006_Final_-Programme2.pdf
22. Minakov I., Tomin M., Volman S. Development of Multiagent Internet Meta-Search Engine // Международная конференция «ИТ в бизнесе» (ITIB), Санкт-Петербург, 14-17 июня 2005 г. http://itib.finec.ru/ru/05/
23. Вольман С.И., Минаков И.А., Томин М.С. Мультиагентная система интеллектуального анализа содержимого Интернет-страниц // Проблемы управления и моделирования в сложных системах: Тр. VII Междунар. конф., Самара, 27 июня - 1 июля 2005. - Самара: СНЦ РАН, 2005. С.403-408.
24. Вольман С.И., Карягин Д.В., Минаков И.А., Скобелев П.О. Разработка системы нахождения бизнес-правил с использованием кластеризации на примере данных логистической компании // Проблемы управления и моделирования в сложных системах: Тр. VII Междунар. конф. Самара, 27 июня - 1 июля 2005. - Самара: СНЦ РАН, 2005. С.409-413.
25. Вольман С.И., Минаков И.А., Томин М.С. Увеличение эффективности поиска информации в Интернете с использованием формальных семантических дескрипторов текста // Интеллектуальные системы принятия решений и прикладные аспекты информационных технологий (ISDMIT'2005): Тр. Междунар. научной конф., Херсон, 18-21 мая 2005. - Херсон: Изд-во Херсонского морского ин-та, 2005. Т. 4. С. 102-105.
26. Алексеев А., Вольман С., Минаков И., Орлов А., Томин М. Создание мультиагентной системы автоматической обработки, преобразования и коррекции логистических сообщений стандартных форматов обмена бизнес-данными // Проблемы управления и моделирования в сложных системах: Тр. VI Междунар. конф.Самара, 14-17 июня 2004. - Самара: СНЦ РАН, 2004. С.270-276.
27. Андреев В., Лахин О., Минаков И., Сальков А., Скобелев П. Развитие элементов самоорганизации и эволюции в мультиагентном портале социокультурных ресурсов Самарской области // Проблемы управления и моделирования в сложных системах: Тр. VI Междунар. конф. Самара, 14-17 июня 2004. - Самара: СНЦ РАН, 2004. С.277-281.
28. Андреев В., Ивкушкин К., Минаков И., Ржевский Г., Сафонов А., Скобелев П. Основные компоненты внутреннего устройства мультиагентной системы // Проблемы управления и моделирования в сложных системах: Тр. V Междунар. конф. Самара, 17-21 июня 2003. - Самара: СНЦ РАН, 2003. С. 304-316.
29. Андреев В., Вольман С., Ивкушкин К., Карягин Д., Минаков И., Пименов А., Скобелев П., Томин М. Разработка мультиагентной системы интеллектуальной обработки и классификации документов // Проблемы управления и моделирования в сложных системах: Тр. V Междунар. конф. Самара, 17-21 июня 2003. - Самара: СНЦ РАН, 2003. С.317-323.
30. Andrejev V., Batishchev S., Ivkushkin K., Minakov I., Rzevski G., Safronov A., Skobelev P. MagentA Multi-Agent Engines for Decision Making Support // International Conference on Advanced Infrastructure for Electronic Business, Science, Education and Medicine on the Internet (ISBN 88-85280-63-3), 29 July - 4 August 2002, L'Aquila, Italy, pp. 64-76.
31. Андреев В., Батищев С., Ивкушкин К., Минаков И., Ржевский Г., Сафронов А., Скобелев П., Шамашов М. Принципы построения открытых мультиагентных систем для поддержки процессов принятия решений // Проблемы управления и моделирования в сложных системах: Тр. IV Междунар. конф. Самара, 17-24 июня 2002. С. 127 - 140.
32. Андреев В., Гельфанд М., Ивкушкин К., Казаков А., Новичков П., Томин М., Вольман С., Минаков И., Скобелев П. Разработка мультиагентной системы интеллектуального поиска информации в области современных биотехнологий // Проблемы управления и моделирования в сложных системах: Тр. IV Междунар. конф. Самара, 17-24 июня 2002. - Самара: СНЦ РАН, 2002. С. 338 - 345.
33. Batishev S.V., Ivkushkin C.V., Minakov I.A., Rzevski G.A., Skobelev P.O. MagentA Multi-Agent Systems: Engines, Ontologies and Applications // Proc. of the 3rd Intern. Workshop on Computer Science and Information Technologies CSIT'2001, Ufa, Russia, 21-26 September, 2001. - Ufa State Aviation Technical University - Institute JurInfoR-MSU, Vol. 1: Regular Papers, 2001, pp. 73-80.
34. Ивкушкин К.В., Минаков Г.А., Ржевский Г.А., Скобелев П.О., Шамашов М.А. Транспортная логистика на основе мультиагентных систем // В кн.: Системная логистика и центр консолидации грузопотоков на международных трассах: Тр. 1-ой Междунар. научн.-практ. конф.. Вып. 1. - Самара, 2001. С. 120-129.
35. Андреев В.В., Волхонцев Д.В., Ивкушкин К.В., Карягин Д.В., Минаков И.А., Ржевский Г.А., Скобелев П.О. Мультиагентная система извлечения знаний // Проблемы управления и моделирования в сложных системах: Тр. III Междунар. конф. Самара, 4-9 сентября 2001. - Самара: СНЦ РАН, 2001. С. 206 - 212.
36. Андреев В.В., Ивкушкин К.В., Карягин Д.В., Минаков И.А., Ржевский Г.А., Скобелев П.О., Томин М.С. Разработка мультиагентной системы понимания текста // Проблемы управления и моделирования в сложных системах: Тр. III Междунар. конф. Самара, 4-9 сентября 2001. - Самара: СНЦ РАН, 2001. С. 489 - 495.
37. Ivkushkin K., Minakov I., Rzevski G., Skobelev P. MA DAE: MagentA Multi-Agent Desktop Application Engine // Proceedings of the 3rd International Workshop on Computer Science and Information Technologies CSIT'2001, Ufa, Russia, 21-26 September, 2001. - Ufa State Aviation Technical University - Institute JurInfoR-MSU, Vol. 1: Regular Papers, 2001, pp. 81-89.
38. Batishev S.V., Ivkushkin C.V., Minakov I.A., Rzevski G.A., Skobelev P.O. A Multi-Agent Simulation of Car Manufacturing and Distribution Logistics // Proc. of the II International Conference "Complex Systems: Control and Modelling Problems", Samara, Russia, June 20-23, 2000, pp. 100-104.
39. Ивкушкин К.В., Минаков И.А., Ржевский Г.А., Скобелев П.О. Мультиагентная система для решения задач логистики // Тр. 7-й Национальной конф. по искусственному интеллекту с международным участием ИИ-2000, 24-27 октября 2000, Переславль-Залесский, Россия - М.: Физматлит, 2000, т. 2, с. 789-798.
40. Кораблин М.А., Минаков И.А. Эволюционные алгоритмы в имитационном моделировании //Проблемы управления и моделирования в сложных системах: Тр. междунар. конф. Самара: СНЦ РАН, 1999. С. 45-50.
41. Андреев В.В., Ивкушкин К.В., Карягин Д.В., Минаков И.А., Ржевский Г.А., Пшеничников В.В., Симонова Е.В., Скобелев П.О. Основы построения мультиагентных систем. Ч. I. Уч. пособие // Самара: ПГАТИ, 2005. 114 с.
42. Свидетельство о регистрации программы № 2004610968 от 20 апреля 2004 г. Инструментальная система конструирования мультиагентных систем для десктопных приложений //В.В. Андреев, К.В. Ивкушкин, И.А. Минаков, Г.А. Ржевский, А.В. Сафронов, П.О. Скобелев.
43. Свидетельство о регистрации программы № 2004610970 от 20 апреля 2004 г. Мультиагентная система понимания текстов на естественном языке //В.В. Андреев, И.А. Минаков, Г.А. Ржевский, П.О. Скобелев, М.С. Томин.
44. Свидетельство о регистрации программы № 2004610966 от 20 апреля 2004 г. Мультиагентная система извлечения знаний методом кластеризации // С.И. Вольман, Д.В. Карягин, И.А. Минаков, Г.А. Ржевский П.О. Скобелев.
Размещено на Allbest.ru
Подобные документы
Методы представления знаний заданной предметной области. Создание онтологии бортовых информационно управляющих систем автомобиля. Создание среды разработки и приложения для поиска в интернете с использованием онтологии. Проверка эффективности приложения.
презентация [1,6 M], добавлен 25.12.2014Создание множества религиозных понятий и их определение. Преимущества использование платформы Protеgе. Разработка онтологии по предметной области "Буддизм" посредством компьютерной программы Protеgе 4.2.0. Представление онтологии в графическом виде.
курсовая работа [768,0 K], добавлен 18.08.2013Формализации в онтологии областей знаний с помощью концептуальной схемы. Определение атрибутов класса и свойств экземпляров. Создание экземпляров класса и DL-Query запросов. Методика использования для разработки онтологии среды разработки Protege.
курсовая работа [2,0 M], добавлен 18.06.2014Построение онтологии предметной области для анализа глобальных процессов на основе информации, получаемой из новостных лент. Средства разработки онтологий, используемых для поиска событий, фактов, извлечённых из СМИ; моделирование экономических рисков.
курсовая работа [3,4 M], добавлен 27.08.2017Обоснование использования виртуальной модели, средства для разработки функциональных модулей. Разработка виртуальной модели "Представление знаний в информационных системах". Разработка алгоритмов построения виртуальной модели предметной области.
дипломная работа [1,4 M], добавлен 12.08.2017Информационное обеспечение научных исследований в университете. Разработка онтологии в области управления. Создание глоссария по менеджменту, списка персоналий. Семантическая разметка массива документов. Методика работы с базой научных публикаций.
дипломная работа [3,5 M], добавлен 13.01.2015Разработка и внедрение автоматизированного комплекса проверки знаний, позволяющего производить одновременный контроль знаний до 127 рабочих мест. Система сбора и обработки информации на основе локальной микросети на базе микропроцессорных контроллеров.
курсовая работа [37,2 K], добавлен 23.12.2012База знаний - структурированная информация из области знаний для использования кибернетическим устройством (человеком). Классификация, структура, формат представления знаний, интеллектуальные системы поиска информации. Базы знаний на примере языка Пролог.
презентация [51,3 K], добавлен 17.10.2013Определения знаний и приобретения знаний человеком. Виды знаний и способы их представления. Приобретение и извлечение знаний. Визуальное проектирование баз знаний как инструмент обучения. Программное обеспечение для проведения лабораторных работ.
дипломная работа [960,9 K], добавлен 12.12.2008Понятие и компоненты онтологии. Назначение и использование рубрикаторов в интернет-системах по товарам. Автоматическая рубрикация по товарам. Фрагмент описания рубрики "Автозапчасти". Проблемы пословного поиска в системе Ontoseek и средства их решения.
презентация [1,2 M], добавлен 01.09.2013